ALGEBRAS GROUPS AND GEOMETRIES 35169 -204 (2018) - 169 -
DOI 10.29083/AG(.35.02.2018

FOUR INDEPENDENT EIGENVECTORS AND THEIR PROPERTIES
FOR THE PROBLEM OF ACOUSTIC 4P-SH-WAVE PROPAGATION
INCORPORATING GRAVITATIONAL PHENOMENA

Aleksey Anatolievich Zakharenko
International Institute of Zakharenko Waves (IIZWs)
660014, ul. Chaikovskogo, 20-304, Krasnoyarsk, Russia
aazaaz@inbox.ru

Received October 21, 2018

Abstract

This theoretical investigation has obtained four independent pairs of main
eigenvectors called the E-, H-, G-, and F-eigenvectors. Their properties are also
demonstrated. The obtained eigenvectors together with the eigenvalues represent the
solutions of the coupled equations of motion when the shear-horizontal (SH) acoustic
wave propagation in the 6 mm solids is coupled with the electrical, magnetic,
gravitational, and cogravitational potentials, i.e. 4P-SH-waves. To obtain suitable forms
of the eigenvectors is very important because they form the final solutions of the
propagation velocities, with which the acoustic waves propagate in the solids. It is
expected that their proper forms can demonstrate dominating factors causing the
acoustic wave propagation, i.e. the physical properties of the wave processes. To know
the acoustic wave propagation velocities in the solids is one of very important
engineering problems in the signal processing technology. This allows the constitution
of various technical devices such as filters, sensors, delay lines, energy harvesting and
wireless devices, etc. The successful development of the theoretical, mathematical,
experimental, engineering, and technological directions of investigations of the four-
potential waves and their applications can result in the instant interplanetary (interstellar
and éven intergalactic) communications, for instance, the instant interplanetary Internet.
This is possible because the evaluated speeds of the recently discovered fast four-
potential waves propagating in a vacuum can be thirteen orders faster than the speed of
light, i.e. the speed of the electromagnetic waves representing two-potential waves.

Keywords: Transversely isotropic continuous media; Acoustic wave propagation;
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1 Introduction

In the jubilee year 2016, it was developed the theory [1] that incorporates the
mechanical, electrical, magnetic, gravitational, and cogravitational subsystems
in the wave motion process. As a result, the new four-potential shear-horizontal
surface acoustic wave (4P-SH-SAW) [1] was discovered when the acoustic wave
propagates in the transversely isotropic material of symmetry class 6 mm. It was
a centenary jubilee of the prediction of the existence of the gravitational waves
by Albert Einstein in 1916 [2]. To this jubilee, a very large international research
team has experimentally proved the existence of the gravitational waves. Their
experimental results [3] published in 2016 have soundly confirmed the existence
of the theoretically predicted gravitational waves.

Developed theory [1] uses this experimental fact of the propagation of the
gravitational waves in the free space (vacuum) at the speed of light. It is well-
known that the electromagnetic waves also propagate in a vacuum at the speed
of light, The speed of light was precisely measured only in the 1970s and now
can be found in any modern reference book on physics. For instance, the
measured value of the speed of light can be found in popular reference book [4].
So, it is possible to write down the following value of the speed of light: C;, =
(goto) ™12~ (yono) ™12 = 299792458 x 10® [m/s], where eo, uo, Yo, and #o are
the electric constant, magnetic constant, gravitic constant, and cogravitic
constant for a vacuum, respectively. A gravitational and electromagnetic
analogy was first stated by Heaviside [S] and then developed by many
researchers. The famous book by Jefimenko [6] operates with gravitation and
cogravitation to develop Newton's theory of gravitation to its physical and
mathematical conclusion. So, the purely gravitational analogy to the theory of
electromagnetism is now called the theory of the gravitoelectromagnetism. It is
expected that the gravitic constant yo and the cogravitic constant #o for a vacuum
can be precisely measured in this century and then recorded in physics reference
books.

Created theory [1] relating to numerical experiment takes into account the
fact that the speed of the electromagnetic waves in both a solid and a vacuum is
five orders faster than the speed of any acoustic wave in a solid. As a result, a
quasi-static approximation is used in the theory of acoustic wave propagation in
continuous solid media. In the solids, the slow speed of the new 4P-SH-SAW
[1] can naturally depend on the speed of the electromagnetic wave. However, it
also depends on the speed of new fast waves that can be thirteen orders faster
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than the speed of light. These new fast waves can also propagate in a vacuum
with the following speeds: Ay = ({pdo)™1/% = 10*3C, and Ay, =
(&0B0) "% — 10'3C,, where the vacuum parameters ¢, Ao, &o, and fo are called
the gravitoelectric, cogravitomagnetic, cogravitoelectric, and gravitomagnetic
constants, respectively. These vacuum parameters relating to the gravitational
phenomena must be also measured and recorded in any modern reference book
on physics.

The existence of the new fast waves propagating in a vacuum with the speeds
Aor and Aoz can be true because the famous Russian astronomer and
astrophysicist Kozyrev [7] has created his own tools, with which he has observed
true positions of stars from his observatory. It is obvious that astronomers use
optic tools to observe stars. As a result, they can for instance observe a star
distant from the Earth on several light years at its position it was several light
years ago. There are a lot of stars distant from the Earth on 10, 100, 1000 light
years. Therefore, any optic tools for observation of stars cannot record true
positions of the stars. To observe the true position of any star, Kozyrev [7] has
first used some optic tools to observe a star. After that, he has calculated the true
position of the star and used his own tools to observe this star at the true position.
This means that there is something that can propagate in a vacuum significantly
faster than the speed of light. To explain this phenomenon, Kozyrev has
developed his own theory called the theory of time.

Kozyrev is not the single researcher who has found that there is something
significantly faster than the speed of light. The French mathematician Pierre-
Simon Laplace [8], also known as the French Newton, has evaluated the stability
of the Solar system. He has investigated the motion of space bodies in the Solar
system and concluded that gravity must propagate millions of times faster than
light, since otherwise violation of Newton's law of universal gravitation would
be observed. It is worth noting that Newton's law of universal gravitation
assumes an infinitely large speed of gravity, i.e. the gravity can instantly
propagate. However, the first attempt to explain Newton's law of gravitation was
done by Nicolas Fatio de Duillier in 1690 and by Georges-Louis Le Sage in
1748. This is a kinetic theory of gravity originally proposed by Fatio and later
developed by Le Sage. The theory proposed a mechanical explanation for
Newton's gravitational force in terms of streams of tiny unseen particles
impacting all material objects from all directions [9]. Concerning the movements
of planets in the Solar system in the fluid consisting of the particles (i.e. in the
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free space), Le Sage [9] has used an argument to demonstrate that the speed of
the fluid must be thirteen orders faster than the speed of light. To review all
existing evaluations of the speed of gravity and possible gravitational
phenomena does not represent the main purpose of this study. Therefore, it is
necessary to return to modern theory [1] because the thermodynamic functions
and the thermodynamic variables were used to develop this theory.

The hottest application of the new fast waves propagating in a vacuum at the
speeds Ao1 and Ao is the instant interplanetary communication [10, 11] inside
the Solar system, for instance, the space Internet. The possible applications
proposed in paper [10] for the new fast waves propagating in the continuous
medium such as a vacuum is the natural consequence from theory [1] developed
for the continuous medium such as a solid. Theory [1] considers the acoustic
wave propagation in the smart solid materials such as the piezoelectromagnetics
(magnetoelecroelastics) with taking into account the gravitational phenomena.
In this case, the gravitational phenomena significantly complicate the theoretical
developments compared with the case of pure piezoelectromagnetics without the
phenomena [12, 13, 14]. However, it is necessary to treat the gravitational
phenomena because the propagation of acoustic waves means energy
transmission between the wave generator and the wave detector. One century
ago Einstein has postulated that any kind of energy (and any change in energy)
is coupled with gravitation. Therefore, theory [1] treats the gravitational and
cogravitational subsystems in addition to the mechanical, electrical, and
magnetic subsystems. As a result, the wave motions are caused by exchange
interactions (i.e. some energetic exchanges) among the subsystems. It is
expected that such energetic system consisting of five subsystems can be more
reach than the purely piezoelectromagnetic system consisting of only three
subsystems such as the mechanical, electrical, and magnetic subsystems, It is
natural because piezoelectromagnetics with (without) taking into account the
gravitational phenomena can be used instead of pure piezoelectrics.

Today, piezoelectrics are utilized in various technical devices such as filters,
(chemical and biological) sensors, delay lines, energy harvesting and wireless
devices, etc. They are also used in the cutting-edge technologies of mobile
communication and wireless sensors [15, 16]. The piezoelectric materials are
also studied for applications in energy harvesting devices [16, 17, 18, 19].
However, smart piezoelectromagnetic materials are more preferable for
constitution of the wireless devices [20, 21, 22] in comparison with the
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conventional  piezoelectrics, It is also  expected that the
piezogravitocogravitoelectromagnetic materials [1] with the mechanical,
electrical, magnetic, gravitational, and cogravitational subsystems can be more
reach regarding the energy harvesting and energy conversion, Recently, Fiizfa
[23] has found a method to study interactions of the electrical or magnetic
subsystem with the gravitational or cogravitational subsystem at the laboratory
conditions on the Earth instead of very expensive space experiments. The
theoretical, mathematical, experimental, engineering, and many relative
investigations can be useful for the development of infrastructure including the
technical devices for generating, receiving, and signal processing of the new fast .
waves for the new era of the instant interplanetary communication.

The theoretical investigations were initiated in pioneer paper [1]. However,
this created theory has released some mathematical problems that must be also
resolved. One of the most important mathematical problems is the finding of
proper eigenvectors because their forms can result in final solutions for the
propagating velocities of the acoustic waves. Theoretical work [24] has
demonstrated only half of the twenty-four possible eigenvectors that can be
obtained in the framework of theory [1]. However, all of them can be reduced to
four main independent eigenvectors. To obtain these four eigenvectors called the
E-, H-, G-, and F-eigenvectors and their properties is the main purpose of this
study. The theoretical part and mathematical methods are very important even
in the case of the acoustic wave propagation in the pure piezoelectrics. To find
propagation velocities in different structures represents an engineering problem.
There is famous book by Dieulesaint and Royer [25] concerning applications of
the elastic waves in the piezoelectric solids to signal processing. Therefore,
original theory [1] represents a rudiment for further development of the theory
of the acoustic wave propagation in the piezogravitocogravitoelectromagnetic
solids guided by the surface [1], interface [26], and plate (thin film) [27]. In all
these cases, it is very important to know eigenvalues and eigenvectors
representing the solutions of the corresponding coupled equations of motion.

2 The equations of motion and solutions

To construct the coupled equations of motion, it is necessary first of all to
treat the suitable thermodynamic functions and thermodynamic variables for an
adiabatic process in solid continuous media. For the mechanical, electrical,
magnetic, gravitational, and cogravitational subsystems, the thermodynamic
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functions are the mechanical stress, electrical induction, magnetic induction,
gravitational induction, and cogravitational induction. The thermodynamic
variables are the mechanical strain, electrical field, magnetic field, gravitational
field, and cogravitational field. So, this is a multidisciplinary research arena. The
mechanical parameters came from the theory of elasticity, the electrical and
magnetic parameters from the theory of electromagnetism, and the gravitational
and cogravitational parameters from the theory of gravitoelectromagnetism.
There is some analogy between the theories of gravitation and the
electromagnetism [5]. As a result, some analogy can be found between the
theories of electricity and gravitation (i.e. gravitoelectricity) and between the
theories of magnetism and cogravitation [6] (i.e. gravitomagnetism [28]). This
part of theory is quite large and the reader can find it in paper [1]. However, it is
also necessary to mention that the quasi-static approximation must be applied to
obtain the coupled equations of motion in the form of a set of second-order
partial differential equations. This approximation is used because the speed of
the electromagnetic waves in a solid is close to the speed of light in a vacuum
and five orders faster than the speed of any acoustic wave.

To resolve the second-order partial differential equations, it is natural to
exploit the plane wave solutions. These solutions naturally transform the
differential form of the coupled equations of motion into the tensor form of the
equations. In the common case of the acoustic wave propagation in an
anisotropic solid, the tensor form can be written down in the following compact
expression called the modified Green-Christoffel equation [1]: (GL, ;=
&; ]prh)UP = 0, where the indices 7 and J run from 1 to 7 and p is the mass
density listed in table 1. The phase velocity P will be defined below by
expression (7). GLy stands for the components of the modified symmetric tensor
[1] and Jir represents the Kronecker delta-function with the following
conditions: oy =1 for I=J<4, é;y= 0 for I #J, and a4 = ds5 = de = o717 = 0.
Also, parameters UP represent the components of the -eigenvector
W, u2,us,ul,ud,ul,U?). This tensor form of the coupled equations of
motion represents the common problem for determination of the eigenvalues and
eigenvectors. This common problem is very complicated and can be numerically
resolved. However there are the high-symmetry propagation directions in solid
materials with certain crystal symmetries [25, 29] that allow significant
simplifications leading to some analytical solutions.
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Table 1: The material parameters of the transversely isotropic material (crystal)
of symmetry class 6 mm and their physical dimensions,

Material parameter Symbol [dimension]

Mass density p [kg/m’]

Elastic stiffness constant
Piezoelectric constant

Piezomagnetic coefficient

Piezogravitic constant
Piezocogravitic coefficient
Electric constant

Magnetic constant

Electromagnetic constant
Grayvitic constant
Cogravitic constant
Gravitocogravitic constant

Gravitoelectric constant

Cogravitoelectric constant
Gravitomagnetic constant

Cogravitomagnetic constant

C = Cua4 = Cos [kg/(mxs?)], [N/m?]

e = e1s = es4 [kg"?/m*?], [C/m?]

h = hi6 = hsa [kg!?/(m'2xs)], [N/(Axm)],
[T]

g = gi6= g4 [kg/m’]

f=fie=fu[s"]

€ = e11 = £33 [s%/m?], [F/m]

p o= pnn = psn [-], [Nxs*C?, [H/m],
[N/A?%],  [Txm/A],  [Wb/(Axm)],
[Vxs/(Axm)]

a = o11 = a33 [s/m], [Nxs/(VxC)]

y =11 = y33 [kgxs*/m®], [kg¥/(Nxm?)]

n =nu =n3 [m/kg]

§ =911 = 333 [s/m]

C o= i o= {0 [kg'xs¥m*?,
[Cxkg/(Jxm)]

&= &1 =& [s/(kgPxm'2)], [m/Wb]

B =P = B3 [kg'*xs/m*?], [Txkgxm/J]
2 = Al = ,133 [mI/Z/kgI/2]’
[Txm3/(CxWb)]

For a solid of symmetry class 6 mm, the high-symmetry propagation
directions on the certain cuts of the solid are well-known. According to review
paper [30], the sixfold symmetry axis must be directed along the x»-axis,
perpendicular to both the wave propagation direction towards the x1-axis and the
surface normal along the xs-axis, The rectangular coordinate system {x1, x2, x3}
and the corresponding wavevector components {ki, k2, k3} are used. For this
case, the modified Green-Christoffel equation representing a set of seven
homogeneous equations splits into two independent sets. The first set of two
homogeneous equations with the eigenvector (U2, US) corresponds to the purely
mechanical wave with the in-plane polarization. The second set of five
homogeneous equations with the eigenvector (U9, UJ, U3, U, UY) represents the
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main interest in this study because here the acoustic wave propagation is coupled
with the following four potentials: the electrical ¢, magnetic y, gravitational @,
and cogravitational ¥ potentials. This is the case of propagation of the anti-plane

polarized four-potential shear-horizontal (4P-SH) acoustic waves.

For this case, it is possible to deal only with the suitable GL-tensor
components of the modified Green-Christoffel equation [1]. Therefore, the
coupled equations of motion describing the 4P-SH-wave propagation coupled
with the four potentials can be then expressed by the following five
homogeneous equations:

GLyy ~ Pszh GLzs

GLSZ

GLyy
GLg,
GLey
GL74

GLys
GLgs

GLys GLyy\ (U3
GLys GLy, \| U2
GLgg Glgy ug | =
GLes GLgy |\ U2
GLye GLy7/ \y@

(D

COOCOCo

With the material parameters listed in table 1, equations (1) must be rewritten

as follows:

c [m ~ (Vph/VM)Z] em
—em
~am
—&m

em
hm
gm
fm

where

(U°,¢%y°, 0% ¥ = (U3,U], U3, Ug, U7

hm gm fm ue
—am -{m -ém ¢°
—um —pm  —im || ¥°
-pm —ym ~9m |\ ®°
~Am —-9m —-ym/ \¥°
m=1+n3
ng = ka/k

Vie =+4/C/p

0
0

=lo| @
0
0

(3)

C))

(5)

(6)
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Vor = w/k @)

All the suitable eigenvalues n3 and the corresponding eigenvectors
respectively defined by expressions (4) and (5) must be obtained by resolving
equation (2). The velocity Vu defined by expression (6) represents the speed of
the purely mechanical bulk SH-wave. The phase velocity Vs defined by
expression (7) is proportional to the angular frequency w and inversely
proportional to the wavenumber k in the propagation direction,

Expanding the determinant of the coefficient matrix in equations (2), it is
possible to obtain a secular equation representing a polynomial that must be
equal to zero. To find all the possible polynomial roots ns, it is convenient to
rewrite the polynomial in the form of several suitable cofactors in order that each
cofactor contains two polynomial roots »3. Therefore, it is possible to write down
the following convenient form consisting of five cofactors:

mxmxmXxXmXdet (V) =0 (8)
where
¢ [m - (Vph/vt4)2] e h g f
em - —-a ={ =¢
det (V) = hm —a —-u -f =i O
gm - =B -y ¥
fm - -4 -9 -

It is clearly seen that the first four cofactors in equation (8) are identical.,
Therefore, they actually release the following four pairs of identical eigenvalues:

nng) _ n§3,4) = n§5’6) - ng7.8) = 4j (10)

where j = v—1 is the imaginary unity.
Expanding determinant (9) leads to the following fifth pair of the eigenvalues:

2
n§°’1°) = i‘]'\/ 1- (Vph/ Vtemgc) (b
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where

Vtemgc =4 C/p (1 + Kezmgc)llz

2 —
Kemgc -

£

21
Az

(12)

(13)

Ay = e*(uyn + 2BA9 — A2y — B2n — 9%u) + h2(eyn + 28§09 — 92 — {*n ~
§2y) + g?(eun + 2ad — 226 — an — §2p) + 2 (euy + 2apg — p2e —

a?y = {2u) + 2eh(9%a + {Bn + EyA — ayn — (A9 — §BI) + 2eg(apn +
A28 + §9u — add — Sun — §BA) + 2ef (ayA + {9u + B2§ — apd — {PA —
§uy) +2hg(edd + {an + 2B — enf — {A§ — E9a) + 2hf (B9 + (2 +
Say — edy — {0a — E(B) + 2gf (eBA + a®P + §ud — epd — afA — aff) (14)

Az = Ceu — a®)(yn —9%) + C(B2E% — E2py — B2en) + C(A20% — APey —
{Pun) + 2C(yaéd + naPl + eBAY + udéd — {§BA — alAd — apéd) (15)

Table 2: The physical dimensions of factors Mee, Mhn, Mgg, My, Men, Meg, Moy,

Mg, My, Myr and CEMGCMC coupling mechanisms M, Mo, Ms, Ma, Ms.

Factor Dimension
Mee s%/m?

M s*/m*

Mg s%/(kgxm)
My kgxs*/m®

Men s3/m>

Meg 2 /(kgl 2 Xm3/2)
Me .f kg1/2 X S3 /m7/2
th §3 /(kgl 2 xm5/2)
My kgl2xs"/m?2
Myr $*/m3

M kg!2xs%/m"
M, kg!2xs*/m2
M, s%/m3

M, kgxs*/m’

Ms s*/m*

eMy, hMo, gMi, fMy, CMs kgxs*/m’
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In definition (12), the velocity Viemg Of the shear-horizontal bulk acoustic
wave (SH-BAW) is coupled with the electrical ¢, magnetic y, gravitational @,
and cogravitational ¥ potentials. This velocity depends on the nondimensional
patameter  KZ,,c  (13)  called the  coefficient of  the
electromagnetogravitocogravitomechanical coupling (CEMGCMC). It is useful
to rewrite the parameter K2, . (13) as a function of the CEMGCMC coupling
mechanisms M, Ma, M, Ma, and Ms, Their physical dimensions are listed in
table 2. So, the parameter K2, reads:

Kezmgc _ eM1+th‘:{gsM3+fM4 (16)
where
My = eMge + hMgp + gMeg + fMf 17
M, = eM.p, + hMpy, + gMpg + My (18)
M; = eMgy + hMpg + gMgg + fMys (19)
M, = eMgp + hMps + gMgr + fMsy (20)

Mg = eM,, + aM,, + <Meg + fMef = aMgp + uMpp, + Bth + Ath =
qug +ﬂth +yM,gg +1.9Mgf = fMef + /1th +19Mgf +7]Mff =
(eu — a?)(yn — 9%) + (BE — A))? — (§2uy + Ben + A%ey + {Pun) +

2(yaéd + napl + efA9 + pl&d — alld — aféd) 3}
because | |
Mo = uyn + 2BA9 — A%y — B%n — 9%y (22)
Mpp, = &y + 2069 — 92 = {2 — &2y (23)
My, = eun + 2afd — A%e — a’n — &2 (24)

My = euy + 20§ — B2e — a’y — {Pp @25)
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Mo = {Bn + &yA + 9%a — ayn — (A9 — §BI (26)
Mg = afn + E9u + 120 — add — un — §BA (27)
Mep = ayA + {Ou + 2§ — afd — {BA — Euy (28)
Myg = A9 + {an + §2B — a0 — (A — enf (29)
My = eB9 + §ay + %A — ald ~ {§f — ely (30)
Myp = €BA + Eug + a?0 — ald — aBE — eud 31)

The physical dimensions of parameters (22)-(31) are listed in table 2. To
obtain the eigenvector components, it is necessary to resolve equation (2). This
was done in paper [24]. However, paper [24] has demonstrated only half of
twenty-four possible eigenvectors. Moreover, each of the twenty-four
eigenvectors can be reduced to one of four main independent eigenvectors that
will be obtained together with their properties in the next four sections. These
independent eigenvectors are called the F-eigenvectors, G-eigenvectors, H-
eigenvectors, and E-eigenvectors. In conclusion to this section, it is useful to
write down some useful expressions for the nondimensional material parameters
defined below by equalities from (32) to (41). These material parameters are
used in the following four sections. For them, it is necessary to mention that the
coefficient KZ,5. (CEMGCMC) is defined by expression (16) and all the
material constants are listed in table 1. These nondimensional material
parameters read: ‘

Kt g2_e
Ky =1-17 = Ki=¢ (32)

1 _ Kk 2 _h?
Ku=1-g Kh=C (33)

KZ 2
KG=1—%,K5=% (34)



K 22
Ke=1 KEmgc’Kf e (35)

—1_ K& p2_ch
K,=1 Komae” K; = - (36)

1 _ K8 2 _gf
Kr=1-71 K3 =2 (37)

K% 2 _ h
Kg=1- Komae K = o (38)
K,=1-—t gz=2 39
z- Kémge’ ¢ T ( )

2

_ X g2 ef
KS = 1 Kgmgc ’ K{‘ - Cf (40)

K2 h
Ko=tl-g o =g @y

3 The F-eigenvectors and their properties

The first pair of the eigenvectors called the first and second F-eigenvectors is
defined below by expressions (42) and (43), respectively. Eigenvector (42)
relates to eigenvalues (10) and eigenvector (43) relates to eigenvalues (11). For
eigenvector (42), the eigenvector components correspondingly depend on the
parameters Mes, My Mgs, and Mythat are defined by expressions (28), (30), (31),
and (25), respectively, and contain the subscript “f’ symbolizing the F-

eigenvectors. So, the F-eigenvectors can be written in the following convenient
forms:
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Uo(l) UO(Z) UO(3) U0(4) UO(S) U0(6)
¢0(1) ¢0(2) ¢0(3) ¢0(4) ¢0(5) ¢0(6)
¢0(1) =| 0@ | = ¢0(3) = ¢0(4) = ¢0(5) = 1/,0(6) =
@0(1) @) @03 o) @ 005) OO
wo(1) wo(2) wo@3) wo) wo(s) po(6)
ul?” =0
f
o Uo® o7y _ \
$O) $0®) ¢’ = Mg
Yo | = | po@® | = zp}’(’) = Mys (42)
(DO(?) 4)0(3) ¢;)(7) = 7
qu(?) 410(8) o) _
‘{} M
Ufo(9)
U0(9) U0(10) ¢0(9)
¢0(9) 4)0(10) };9
0O | =| yoao | = ¢f() (43)
¢0(9) @0(10) ¢0(9)
o) y0(10) f
q,f0(9)
where
\ o _ 977 emuy P egofPurep® 44
f CKezmgc CKgmgc

¢?(9) = yaAKGKAKL + uﬂ{KMKTKZ + ﬁszBzKS - aﬁaKAKBKT —
2 2
ﬁA{KBKLKZ - #Yé.KMKng = ¢f0(7) - ya). (-—Ifg— + K + _.I_(L_) -

KZmge KZmge Kémge

2 2 2 2 2
g (e o 4 K )—62{(2—152—-+-—13-—)+aﬁz9( KE B,

Kgmgc Kgmgc KZmge Kgmgc KZmge Kinge Kimge

) @)

—’fé—-)+ﬂaq( %o, 9, K >+uy§( khoy G, K

KZmge KZmge Kgmgc KZmge Kgmgc Kgmgc Kmge
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t/10(9) = yafKGKAKS + A{ZKLKZ + eB9KzKg Ky — aS{K K K7 —
ﬂf(KBKSKZ EYAKEKGKL = II)O(7) yaf (.—‘2—. . S, K“ + __Ef__)

KZmge Kgmgc Kemgc

1 (2 )—eﬁﬁ( ey )y +ad (s iy
Kemge Kimge Kémgc

Kgmgc Kemgc K3mge KZmge

)+ﬁf{( o S )+sy/1(Kemgc+ 5§ ) @)

Kgmgc Kimge  Kimge Kgmgc KZmge

2

Kemgc

¢>j§’(9) = a29K,*Ky + ué{Ky KKy + efAKz Kz K;, — aAlK, K Ky —
aPSKyKpKs — epdKgKyKr = ¢]9(7) — a2y (2 k& 4 —'—‘L)

KZmge Kemgc

2
)—eﬂl( T R )+aA{(
Kemgc

Kemgc Kemgc
2

2

Kin
+ +
#f{ (Kemgc Kemgc Kemgc Kemgc
2
—-&—+-——i—)+a ( . B )+£ 19( ey K”)
Kgmgc Kemgc ﬁf Kemgc Kemgc Kemgc H Kemgc Kgmge Kgmgc

(47

2
Kz

80 = 20BK,KpKy + ey KKK — va*KoKa? = ig?Kigz? =
2
ep2KeKy? = 97 — 2080 (L b 4K )—-sm/( Ky Kby

Kemgc Kemgc KZmge Kemgc Kemgc

2
i) vt (ke 2ggk) e (v o) + o (5
Kgmgc y Kemgc + Kemgc + #( Kemgc Kemgc + EB Kgmgc +
. K
| 257-) (49)
Kémge

It is clearly seen in expressions (45), (46), (47), and (48) that the eigenvector
components 4)0(9), zp°(9) @0(9) nd ¥ o) depend on the corresponding
eigenvector components ¢f(7) 1/)0(7) ¢,0(7) and ¥ 97" This manifests that both

eigenvectors (42) and (43) are naturally called the F-eigenvectors. The
analogical reason was used for distinguishing of the rest three independent
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eigenvectors called the G-, H-, and E-eigenvectors in the following three
sections. :

With the CEMGCMC coupling mechanisms Ms and Ms defined by
expressions (20) and (21), respectively, the properties of the corresponding
components of the F-eigenvectors can be demonstrated by all the expressions
written below in this section. For the linear combinations of the components of
the first F-eigenvector, the following five expressions disclose some useful
properties:

0(7 o(7 0(9 09
e¢f( ) + hlpf( ) + gd);-)(?) +fq;f0(7) = e¢f( ) + hlpf( ) + g(bfo(g) +quf0(9) =
EMef +thf+gMgf+fof =M4, (49)

epp " + apf” + ()7 + €87 = eKypt® + aky; P + (K00 +
)
EKs# =0 (50)

ap;” + pp;? + pOf T + 2877 = aky ! + Ky} + B0, +
AP =0 (51)
7

C‘P})(?) +ﬁ¢})(7) +Y¢f9(7) + 19%0(7) — {Kz¢})(9) + BKBV)})(Q) +yKG¢f?(9) +
9K =0 (52)
f

A

£07 + 2p P + 9077 + 8’7 = EMyp + AMyg + My + nMyy = Mg
(33)

For the linear combinations of the components of the second F-eigenvector,
the following equalities can be obtained:
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€¢}>(9) + a¢?(9) + {¢0(9) + flPO(Q) —eK ¢0(7) ak 1/)0(7) - K, ¢0(7) -

7 7 7
ERs¥ ' = oo gc( ,‘3<7’+h¢°‘7)+g¢°“+ LA ’) e (59

a¢°(9) +tm/)f(9) + ﬁ¢°(9) +,1!1U°(9) —aKk ¢0( ) — uKy, ¢0(7)
ﬁKB 0(7) ).K 0(7) €¢})(7) +h¢°(7) +g¢0(7) +qu°(7))

(55)

|

CKmge Kemgc

(62 + pyl® +y 00 4 58° = —2K, 027 - Kol — yR 00D —

0(7) (7) 0(7) 0(7) 0(7) — _gMs
9Kr ¥} cxgmgc (ed)f +hp}? + gof D + f7 ) = —2———61@’”“ (56)
K5 ® + A pp 7 + 0K 7D + i =0 (57)

Using property (57), it is possible to write down the following equalities:

0(9 0(9 K¢ o
§-¢ ()+Alp0(9)+19¢0(9)+n ()-§+¢f()+lkzagcwf0(9)+

9 ﬁ <D°(9)+17 [ ‘},0(9) f ( 0(9)+h1/)0(9)+ ¢0(9)+

Kemgc Kimge CKEmge \ 7 f
0(9) 0(7) 0(7) 0(7) 0(7) K 0
LAGE CKWC —L—(e¢?? + hp? + 9o} + ff ) = ¢ o+
N /1_?&_1/}0(7) + ,‘9_L_¢0(7) + T]-—Llpo(']) f;”& (58)
Kémge KZmge Kemgc CKémge

4 The G-eigenvectors and their properties

The explicit forms of the second pair of the independent eigenvectors called
the G-eigenvectors are obtained below in expressions (59) and (60). For first G-
eigenvector (59), the eigenvector components correspondingly depend on the
parameters Meg, Mg, Mge, and M,y that are defined by expressions (27), (29),
(24), and (31), respectively, and contain the subscript “g” symbolizing the G-
eigenvectors. So, the first and second G-eigenvectors respectwely read:
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U0(1) Uoc2 Uo® Uo“ o) U0(6)
PO 0@ $°® ¢0(4) ¢0(5) ¢o(a)
1/)0(1) ¢0(2) ¢0(3) 1/)0(4) = ¢O(S) = ¢0(6) =
0D ®0Q) 03 04 06 6
qJO(l) qJO(Z) 1}/0(3) 410(4) 410(5) ¢p0(6)

i
i
i

yo o g
PO $°® g =Meg

O | = | 0@ 07 = My, (59)
®O) ®0®) o7 _

o) oe) % 99

I
i

Yo y0(10)
$°®) $010) g

YOO | =| 010 0(9) (60)
@00 0(10) %0(9)

1}10(9) QPO(lO)

where

OO _ el enpt® 1 golOeput®

S - 61
g CKZmgc CKémge (61)

0" = NaBKeKyKp + uOEKuKrKs + 120K, Ky — abAK KK, ~
K2 2 KZ
unl{KyuKeKy, — BAEKg K K = 07) _ nap (Kzf L Y ) _

g emge  Kémge Kémge
2
Gy, ) [yt g, K
[.tﬁf(Kz toa -t - 2%¢ ZFL'*'}T;_ + a9l | = +E§-ﬁ—+
emgc emgce emge emgce emgc emgc emge

2 2 2 2 2 2
i) 4 g (e 4 S )+p,1§(—"é—+—i‘&-+—"i—) 62)

KZmge Kimge Kimge Kimge Kimge Kimge Kimge
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Yo = nalKpK,Ky + BEKpKs® + e9AKgKrKy, — a9 KKK —
2
MKLIGK, = enpKekeks = ;7 ~ned (o i i) -

emge Kemgc Kemyc

ﬂ{z( afi +2K ) 819/1(K + K5 + K )+m9£(
emge emge

KZmge Kimge Kémge

S+ ——L +
Kemgc Kemgc

—-‘f-—)+1¢'{( LS . )+snﬁ( ke +—Kf + K”) (63)

Kinge Kemgc Kimge Kémge K2mge Kemgc KZmge

¢;(9) = 20A§K K Ks + epnKeKyKe — na?KpKy? = p&2KyKs* -
2
KK, = 007 - 2078 (e b o ) - e/m( L S

Kemgc Kemgc Kemgc KZmge Kemgc

2
—:-(L)+na2( AP )+u§2(Km +2K )+8A2( +
emgc Kem,gc

Kémge Kemgc KZmge Kimge

z——&—) (64)

Kgmgc

w2 = a29K,7 Ky + uE¢KyKsKz + eBAKsKpKy, — alCKAKLKz
ABEK Ko Ks — e Ko Kogr = ¥y 7 = a9 (28 4 )

emgc Kemgc
K
uEg ( S

K5 K?
B i
- /1( + + ) + al (
szgc Kemgc Kemgc) ﬁ Kemgc Kemgc Kemgc (

2

Kemgc
K K2 K}
—&—+—5——)+ ﬂf(Kz Ly )+e/.a9(K + Kby "*’)
emge emgc emgce

Kemgc Kemgc KZmge Kimge  Kimge

(65)

The properties of the corresponding G-eigenvectors’ components can be
illuminated by all the equalities written below in this section, where the
CEMGCMC coupling mechanism M; is defined by expression (19). For the
natural linear combinations of the components of the first G-eigenvector, the
reader can find the following five expressions:

e¢3(7) +hl/)3(7) + ¢0(7) +fq10(7) - e¢g(9) +hl/)3(9) +g¢0(9) +f(1;0(9)
eMeg + hMyg + gMgy + fMyr = M3 (66)
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epg” + apy” + ()7 + 90D = ek )™ + aKu g + (K, 0] +
E) P =0 (67)

apg” + )" + BOS7 + 287 = akypo® + ks + PRy 0N +
AK P = o (68)

(g + By +y D37 + 99T = (M, + Mg + ¥ Mgy + OM,p = M
(69)

Epg” + Ay + 9007 + D = £k 0@ + AR W) + 9K 0] +
nKe¥ > =0 (70)
For the linear combinations of the components of the second G-eigenvector,
it is natural to demonstrate the following obtained properties shown in the five
expressions below:
8¢§(9) + a1p3(9) + {¢0(9) + {q;o(g) —eK ¢°(7) aK ¢0(7) ~ K, ¢0(7)

KW = CKZ (e¢§(’)+h¢°(7’+g¢°<7)+fw°(7)) C;mgc (711)

“4’3(9) + #¢3(9) + ﬁ(po(';) +/1‘1U0(9) —ak ¢0( ) — uKy ]/)0(7)
ﬁKB¢;(7) AK (I;O(7) — e¢g(7) + hwg(n + 9450(7) + flIUOU))

(72)

CKezmgc (
CKgmgc
(K00 + BRspy® + YK 0y + 9K, P =0 (73)

Using equality (73), it is possible to obtain the followmg equalities:

{(f)g(g) + ﬁ¢0(9) +Y¢0(9) +z9‘l’0(9) - ( § ¢3(9) +ﬁ I[JO(Q) +

__L_ 0(9) K% 0(9) _
14 Kezmgc ¢ +9 Kgmgc l[’ CKgmgc

(eqb;(g) + thg(") + g¢0(9) +
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0(9) 0(7) 0(7) 0(7) 0(7) 0(7)
fop®) = CKgmgc(eg +hpy? + go) 7 + [ ) = c ¢ +

ﬁ é lpg(ﬂ_}_ g @0(7)_*_19 12 qjo(7) QMS (74)

Kemge Kemgc Kimge 9 CKgmgc

For the last linear combination, one can get the following equality:

54)3(9) + /'hpg(‘?) + 19(1,0(9) + nlpo(‘)) —EK; ¢0( ) - K ¢0(7) 9Ky ¢0(7) —-

771{ !1!0(7) (e¢g(7) + h¢3(7) +g¢0(7) +fq;0(7)) _fM; (75)

CKZ CK""

5 The H-eigenvectors and their properties

The third independent pair of the suitable eigenvectors is naturally called the
H-eigenvectors. Their explicit forms are given below in expressions (76) and
(77). For first eigenvector (76), the eigenvector components respectively
represent the parameters Men, Mun, Myg, and My These parameters are defined
by expressions (26), (23), (29), and (30), respectively, and contain the subscript
“h” symbolizing the H-eigenvectors. Accordingly, the first and second H-
eigenvectors are respectively written as follows:

yo® yoc) Uo@®) U o) yod)
PR e RO PO $°® $O©
X 1/)0(1) = lIJO(Z) = 1/)0(3) = ¢0(4) = 1/10(5) = 1/)0(6) =
@O PO E)! @O @) @6
(}10(1) q;o(Z) 1110(3) 410(4) l[l0(5) q]O(6)
| Uy =0
yo ye® o(7)
PO $°® n = Men
o0 | =| 0@ | =| P27 = My, (76)
o) \oow) | O = Mg

B = My
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o
Uo® [°(10) i(t) .
PO P00 h( )
PO | = yoao) | = "1’(9) (77)
®0© HO(10) &
po(9) y0(10) 00
h
where
09) _ eop tnypPrgyPerey®
Un Fomge CKomge (78)

¢£(9) = 0:192KAK7-2 + nB{KFKBKZ + yAfKGKLKS —_— YnaKGKFKA —
2 2 2
9AKrK Ky — BOEKpKrKs = ¢pp ) — mgz< KE_ 5 KB ) —nBe ( K_ZKf_ +

Kgmgc Kezmgc emgc
K2 K 2 2 K2 2 2
—.E—+—-z_)_.‘y1§'< Kg + Ka- 4 § )+y77a(...{.(ﬂ..+._KL.+

KZmge Kgmgc Kgmgc Kgmgc Kezmgc KZmge  Kémge

2 2 2
_KE_ )+mc( S L )+ﬁz9{(——9—K .« B ) (79)

Kémge Kgmgc Kémge KZmge KZmge Kgmgc Kémge

n) = 2080 KrKKy + ey KoKy ~ Y€ KKs* —n{*KeKz" ~
2 2 2
02 KgKy? = 07 — 219;{( Kg 44 X )— eyn (——-—"5 e

Kimge Kémge Kémge KZmge Kimge
2{ )'*“}’fz(gg +2 25 )+17(2 2[ +2 2; +€1.92(28 +
Kémge Kémge Kémgc Kemge Kémge Kémgc

zﬂ—) (80)

Kgmgc

0, = nafKpKyKy + BE2KaKs® + e9AKp KKy, — AECK KsK; —
0(7) K} K& K¢
a9 K4KrKs — enBKeKeKp = @, — naf | ——+ + ) -

Kémgc  Kimge Kimge
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2( K5, K ) ( K . _KE ) ( __.L
— &9 + + + 8¢ (K-
ﬁf (Kemgc + Ke?mgc Kemgc Kemgc Kgmgc f( Kgmgc + Kemgc +
2 2

——‘-—ZK )+m9£( +K 4 21(5 )+enﬂ(2 + kf + KB) (81)
Kemgc Kémgc

Kémge KZmgc Kémge Kgmgc KZmge

q’:(g) = yaf KoK Ks + efOKsKsKr + AJ2K K;? — a0 K, Kr Ky —
2 z
PECKp KK, — eyAKp KK, = WOU) ya{'( + K% + ) _

K zmgc Kemgc Kemgc

K} k3 K2
epv £ 2 ) 2 ( b+ 2 ) + a¥ ( —-L
B (Kgmgc + Kemgc + K3mge ¢ KZmgc Kgmgc ¢ KZmge + Kimge +

Kgmgc)ﬂ?f{ ( oy L S )+ey/1( By K Kemgc) (82)

Kgmgc Kemgc Kemgc Kgmgc Kgmgc

The natural linear combinations of the corresponding H-eigenvectors’
components disclose the properties obtained in all the expressions written below
in this section, where the CEMGCMC coupling mechanisms M, and Ms are
defined by equations (18) and (21), respectively. For the linear combinations of
the components of the first H-eigenvector, the following five properties can be
obtained:

e2D 4 hpl? 4 go®? 4 Fpd) — g00) 4 06D 4 (0O L o)
eMeh + thh + thg + thf =M, (83)

ey ? + aps® + (0D 4 £w?) = ek 0 + K,y +( (K0 +
. | EKwYP =0 (84)

apy® + upp” + fop” + WD = aMip + uMpy + Mg + AMyy = M
(85)

191( w,f"‘” i (86)

Epe? + 2y + 9007 + D = EKpn® + AK WD + 9K 0 +
nke¥)® =0 (87)



-192 -

For the linear combinations of the components of the second H-eigenvector
there are also the five properties written down in the following last five
expressions for this section:

8¢,(:(9) + 061/10(9) + <¢0(9) + SHPOG) —eK ¢0(7) aK ¢°(7) ~ K, ¢0(7) -

st 0(7) CKe (e¢h(7) +h¢£(7) +g¢0(7) +f'1’°(7)) CeMz (88)

aKap)® + ukypo® + pR 0P + Ak, WY = 0 (89)

Utilizing expression (89), the following equalities in expression (90) can be
obtained:

a¢0(9) +#t/)’2(9) +ﬂ¢0(9) +)’[1]0(9) ¢h(9) + K2 gc.lp;:(g) +

B _&_¢0(9) + A____L (}/0(9)

® h 0(9) 0(9)
Kgmgc KZmgc CKgmgc (e¢h + l/) +g¢’ +

0(9) 0(7) 0(7) 0(7) 0(7) Ka 0(7)
f’{l ) CKz (e¢h + htph t9P "+ f‘l’ ) Kémgc ¢h +
xp,‘:m +p —qu“’) + ,1——&- po" = M (qq)

Kemgc emgc CKemgc

For this section, the last two natural linear combinations demonstrate the
following properties:

{¢h(9) +ﬁ‘l)0(9) +y¢0(9) +1911/°(9) K, ¢0(7) ﬁKB¢0(7) - yK; ¢0(7) _

9K 7 = (e¢,‘:(’) +hpp? + g, P + f0 ) = L (91)

01(2 mgc cxzmgc

{-¢’?(9) +/11/):(9) +a¢0(9) + nqjo(‘?) —&K; ¢0(7) AK, ¢°(7) 9Ky ¢0(7) _

nKF 0(7) ( ¢h(7) +h¢0(7) +g¢0(7) +f'z”o(7)) CI);;WZ (92)
. emgce
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6 The E-eigenvectors and their properties

The last independent pair of the eigenvectors is called the E-eigenvectors.
Expressions (93) and (94) written below stand for the first and second E-
eigenvectors, respectively, The corresponding components of the first E-
eigenvector are naturally equal to parameters Me. (22), Men (26), Meg (27), and
M (28). Here, subscript “e” symbolizes the E-eigenvectors. Therefore, the E-
eigenvectors are

Uo(1) o) o3 o« o) U0(6)
¢0(1) ¢0(2) ¢0(3) ¢0(4) ¢0(5) ¢0(6)
¢0(1) = ¢o(2) == ¢0(3) = ¢0(4) = ,(/)0(5) = 11)0(6) =
@O0 @02 @O3) ) @O @ 0(6)
q;0(1) yo(2) yo@3) yo4) qu(S)  0(6)
ul” =0
o [o® 057)
GO $°(®) e | = Meg
o | =] po® | = 2(7)=Meh (93)
@0 @ o) ¢£(7) =M,
w0(7) 1}10(8) o7
qje( ) = Mef
0(9)
[o®) 1y0(10) U,
0(9) 0(10) 0(9)
¢ ¢ -
\ Yo | = ¢0(10) = . (94)
O] @0(10) (p;)(g)
(o) y0(10) e
e
where
00O = 02 +hypl®+g0f®rred® My 95)

CKgmgc CKgmgc
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2 2 2 5
#792KMKT2=¢3(7)_2B‘9/1( Kg + Ks + K3 )___mm( K3, +-Kg_+

Kgmgc Kgmgc Kezmgc Kezmgc Kgmgc
K% K2 K2 K2 K3 K2
—Z—L)+y,12(29 + 2 ) 4 2 (o + 22 ) 4 92 (2
Kemge Kémge Kemge Kémge Kémge Kemge
K2
25-) (%)
Kémge

2(9) - aﬁzKAKTZ + nB{Kp KpK; + YAEKG K Kg — ynaKeKeKy —
2 2 2[
BOEKaKrKs = 81Kk Ky = 9i 7 = a0? (e 4 2. 8) — g (L +

Kimge K3mgc Kgmgc
KZ Kz 2 2 I(Z 2 KZ
—L+—5-—)-—ylf( R )+yna(——'9;+-—-f—+

Kimge  Kimge KZmge Kémge Kimge Kimge Kémge

2 2 2 2 2
K& )+519£(Kfﬁ 8K )+19,1<(-—L" RS S ) 97)

2 2
Kemge émgc Kgmgc Kgmgc Ke?mgc Kemgc Kezmgc

¢£(9) = naf KKKz + XZ{KLZKZ + WKy KrKs — BASKp K K —
o7) K} kg _ _Kp
aﬁAKAKTKL - ﬂn(KMKFKZ = ¢e - naﬁ + + B

, \ Kgmgc Kgmgzc Kgmgc
2 2 2 2
,12((2-&-+-—'3—)—m9§( LC .« B )+ﬂ/1£(——'(£—+—51—+

Kegmgc Kgmgc KZmge Kgmgc Kgmgc Kgmgc Kgmgc

2 2 2 2 2 2
Ty * o0 () ot (e 4 e )
nge) T M Gae T ¥omge T Fomge) T g T omge T Kimge) O
0O = yadK K K, + p9¢ Ky KoKy + B2EK*Ks ~ aBOK, KKy —

. 2 2 2
BATKo KK, = uyEKyKks = #77 = yaa (g + o ) -

Kgmgc Kimge Kimge
2 2 2 2 2 2
;w(( oy fo i X )—Bzf(Z—L(L-i-K—zKL) +a,819( L R S

Kimge Kimge Kimge KZmge smge K%

N

emgce Kgmgc

z K% 2 K} 2 K2 K?
)+ ¢ (et i )y (e i ) (09)
Kemge Kémge Kémge Kémgc Kémge Kemge Kemge

With the natural linear combinations of the suitable E-eigenvectors’
components, this pair of the E-eigenvectors possesses the properties
demonstrated in the rest ten expressions written below, where M in expression
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(100) stands for CEMGCMC coupling mechanism (17). The following first five

expressions relate to the linear combinations of the components of the first E-
eigenvector:

e¢e(7) + h¢3(7) + ¢,0(7) + fg{[o(n e¢2(9) + h¢g(9) + g¢£(9) +fq;e0(9) =
Mo + hMep, + gMoy + fMgp = My (100)

g™ + apl? + ¢@2M + 0D = eM,, + aMoy + (M, + EMep = M
(101)

ag;” + up;” + o] + 2877 = akype® + ke + PRy 0, +
AP =0 (102)

(P04 Bpd? +y 02D 4 9w = ¢k, 0P + BKpH2 D + YK B2 +
KW' =0 (103)

E0e” + e " + 9027 + qwd D = £k ® + AK P + 9K 0, D +
nK¥'® =0 (104)

Concerning the properties of the second E-eigenvector, the following equality
is useful:

eKgd?® + ak, 0@ + (K, 00 + KPP =0 (105)

With expressions (105), (32), (36), (39), and (40), the following property can
be obtained:

0(9 9 0(9 9 09
€¢e()+a¢g()+(¢0(9)+£qj ()= ¢e()+a1(3mgc¢e()+
K2
i 00 4 i g0 = (e¢e @ e + g2 +
Kemge Kémge CKe
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fq,eom) cxz (e¢3(7) + hp2® 4 gad? 4 fq,om) e g0
st W+ ¢ 0l 4 g0 = e (106)
Kemgc Kemge CK

The final three expressions for the linear combinations of the components of
the second E-eigenvector are

a¢2(9) + ¢3(9) +B¢0(9) +/11Pe°(9) -akK d)o() ~ uKy, ¢0(7)
,BKBd)eOU) AKL 0(7) ( ¢3(7) + hwi_)(?) +g¢£(7) + fw0(7)) =

cz<2
(107)

4 Kgmgc

€~¢3(9) + ﬁwg(g) +y¢0(9) +19qj°(9) ~{K, ¢0(7) ,BK ¢0( ) —yK; ¢°(7) —

9Ky = L (e¢e<7>+th°<7>+g¢°<7>+ F07) = &= 08)
em, gc

gd)g(‘?) +Aw°(9) +‘l9¢0(9) + wo(‘?) ~&K ¢0(7) AK ¢0(7) 9Ky 4)0(7) _

0 7
nKF ( ) CKe (e¢e (7) + h¢2(7) + g¢o(7) +f|1]0(7)) Cf;”l (109)

So, this paper has obtained the four pairs of the main independent
eigenvectors called the F-eigenvectors (third section), G-eigenvectors (fourth
section), H-eigenvectors (fifth section), and E-eigenvectors (this sixth section).
Their properties are described in the corresponding section below each pair of
the corresponding eigenvectors. All the four pairs of the main independent
eigenvectors are written above in convenient explicit forms. However, the reader
can find that their forms are quite complicated and to verify their properties is
not easy to perform. Indeed, it was not easy to find that all the twenty-four
possible eigenvectors (paper [24] has obtained only half of them) reduce to one
of the four pairs of the main independent eigenvectors and then to demonstrate
the properties of the F-, G-, H-, and E-eigenvectors.

All the properties obtained in this and the previous three sections are the main
results of these theoretical investigations. In this section, property (100)
demonstrates that the E-eigenvectors relate to the coupling mechanism M, (17)
of the CEMGCMC K2 émge (16). Corresponding properties (49), (66), and (83) in
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the previous three sections manifest that the F-, G-, and H-eigenvectors relate to
the CEMGCMC coupling mechanisms M, Ms, and Ma defined by formulae (20),
(19), and (18), respectively. Moreover, all of these four independent
eigenvectors also relate to the fifth coupling mechanisms Ms (21). Properties
(53), (69), (85), and (101) support this statement. It is necessary to state that each
of these five coupling mechanisms can release propagation velocities of the 4P-
SH acoustic waves guided by the surface of the solid, the interface between two
dissimilar solids, or plate (thin film) waveguide. All the properties of the four
eigenvectors obtained in this and the previous three sections can be actually
useful for analysis of various boundary conditions’ determinants to obtain
suitable propagation velocities. Indeed, suitable properties can be used for
‘representing final results of propagation speeds in compact and convenient forms
because many linear combinations of the eigenvector components (i.e.
properties) are equal to zero. This will be useful even in numerical calculations
because it is obvious that many possible final results of propagation speeds will
be very complicated due to the existence of a lot of material parameters listed in
table 1. Also, for the calculations it is preferable to use measured values of the
parameters listed in the table. Note that measured values of the material
parameters listed in the last several rows of table 1 are currently absent because
their measurements require creation of perfect experimental tools.

It is necessary to mention that the acoustic waves are very slow in comparison
with the speed of light, Cy, and can propagate in solids at the speeds of ~ 10°
m/s. For the mechanical subsystem, the treatment of additional subsystems such
as the electrical, magnetic, gravitational, and cogravitational can result in the fact
that the propagation speeds of the acoustic waves can be slightly higher.
However, the presence of these additional subsystems allows one to deal with
smart materials because any change in one subsystem can result in some
response changes in the other subsystems. This fact allows the constitution of
various smart technical devices.

7 Discussion

It is necessary to mention also that this work belongs to the case of
investigations of the piezogravitocogravitoelectromagnetic materials [1, 31]
possessing the mechanical, electrical, magnetic, gravitational, and
cogravitational subsystems. Namely this paper further develops the results
obtained in pioneer work [1] and paper [24]. It is now possible to compare the
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obtained results in this work with the results obtained in book [12] for the case
of acoustic wave propagation in piezoelectromagnetics (PEMs) possessing only
the mechanical, electrical, and magnetic subsystems, i.e. without taking into
account the gravitational phenomena. For the case of the PEM materials there
are only two possible pairs of the main independent eigenvectors and they are
quite simple compared with the case described in this paper above. However, the
investigations of the PEM materials also have peculiarities described in papers
[32] and [33]. To ignore these peculiarities can result in obtaining incorrect final
solution for the acoustic wave propagation velocities in the PEM materials. The
reader can also find single review [14] on the subject of the acoustic wave
propagation in the PEM materials, The common problem representing the
peculiarity of this study and study [12] is that any eigenvector component does
not depend on the propagation velocity. It is worth noting that the cubic PEM
materials do not possess such peculiarity because the eigenvectors depend on the
propagation velocity in the cubic case treated in book [13]. However, the cubic
PEM materials have the other peculiarities. Concerning some investigations of
the piezogravitocogravitoelectromagnetic materials with the cubic symmetry,
the development of theoretical backgrounds is also possible in the future.

It is now possible to briefly discuss the most exciting thing for the reader
concerning the possibility of the instant interplanetary (tele)communication. It
was mentioned in the introduction that in the solids, the slow speed of the new
4P-SH-SAW [1] can naturally depend on the speed of the electromagnetic wave,
speed of the gravitational wave, and the speeds Ao1 = ({odo) ™2 — 10'3C and Aoz
= (&oBo) 2 — 10'3C;, of the new fast waves that can be thirteen orders faster than
the speed of light, Cr. Also, it is necessary to state that any acoustic wave cannot
propagate in a vacuum. So, the transition of information in a vacuum is only
possible with one of the following speeds: Cy, do1, and Ae2. It is obvious that the
speed Cy is too slow for the instant interplanetary communication. On the other
hand, the speeds Ao1, and Ao that thirteen orders faster than C; are already
enough for the instant interplanetary (and even intergalactic) communication.
Therefore, it is necessary to develop technologies and infrastructure in order to
have the instant interplanetary communication. Indeed, it is not easy and fast.
First of all, it is necessary to measure the vacuum parameters (o, Ao, &, and fo
called the gravitoelectric, cogravitomagnetic, cogravitoelectric, and
gravitomagnetic constants, respectively, This will allow the human civilization
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to know the complete set of the vacuum parameters and the exact values of the
speeds Ao1 and Ao2.

The Cr-communication due to the well-developed Ci-infrastructure is well-
developed on the Earth. This successful development lasted during the last
several centuries and involved millions of researchers and engineers on this
planet. This means that trillions of the United States dollars were accumulated
to have the success in the development of the Cr-communication that is now
used even for the slow interplanetary communication. The C;-communication
simultaneously incorporates only two subsystems (electrical and magnetic) to
transfer signals through a vacuum. For the mobile Ci-communication, many
kinds of mobile devices are commercially available today, for instance, mobile
phones even for children. For the Aoi- and Ag-communication (say A4-
communication below) it is possible to use some interplanetary infrastructure
schematically shown and discussed in paper [10]. It is assumed that the
development of some mobile 4-communication can be the final aim after the
successful development of the voice and video A-communications. For this
purpose, it is useful to know the complete set of the material constants for solids
listed in table 1.

There are millions of different solids (monocrystals, alloys, composites, etc.)
and their wave characteristics can be very important to constitute various (smart)

- technical devices. However, it is necessary to state that the contributions from
both the piezoelectric and piezomagnetic effects to the speed of the acoustic
wave are in general small but well-measurable today. Even the contribution from
the magnetoelectric effect for the smart PEM materials is well-measurable today
in spite of its weakness. The magnetoelectric effect is characterized by the
electromagnetic constant a listed in table 1. This constant symbolizes some
exchange between the electrical and magnetic subsystems with the following
evaluated exchange speed: V., = 1/a. The exchange speed ¥ must be faster than
the speed of the electromagnetic wave Veu in a PEM solid, Vo > Veu = (gu)™2
because the following condition of thermodynamic stability o? < gy [34, 35] must
hold. Practically there is always o? << gu (Vo >> VEu) for the magnetoelectric
solids. Even for strong magnetoelectric composites the speed 7, is several orders
faster than the speed Vgu. For majority of the magnetoelectric solids, it is
assumed that the difference between the speeds V. and Ve can even reach ten
orders. Indeed, this is a huge difference. The thermodynamic stability condition
Ve >> Vi for the system representing the electromagnetic wave in a solid or a
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vacuum means that the exchange speed ¥V, between the electrical and magnetic
subsystems should be significantly higher the speed Veu of the whole system.
This allows the whole system to thermodynamically exist and propagate for long
distances in continuous media such as a vacuum and solids.

For the gravitational and cogravitational subsystems there is the
gravitocogravitic constant 3 listed in table 1 and the evaluated exchange speed
is Vs =1/8. The corresponding thermodynamic stability condition can be written
as follows: 9% <yn and Vs> Vac = (y)™"? (even $* << yy and Vs >> Vc) where
the gravitic constant y and the cogravitic constant # are also listed in table 1. It
is natural to expect that minimum values for the exchange speeds ¥, and Vg can
be comparable. Some exchange possibilities must exist among the gravitational,
cogravitational, electrical, and magnetic subsystems. The possible exchange
processes between each pair of the four subsystems can be characterized by the
material constants {, 4, £ and § listed in the last four rows of table 1. These
constants introduce the following exchange speeds: 4; = ({1)™2 — 10"3C; and
Az = (&By 12 — 1013C;. The thermodynamic stability conditions can be written
here as follows: Ay > Vo> Vir, A2 > Vo> Veu, A1 > Vs> Vac, A2 > Vs> Ve or
even Ay >> Vo >> Vi, A2 >> Vo >> Ve, 41 >> Ve>> Ve, A2 >> Ve >> Ve, The
contributions from all of these speeds to the speed of the acoustic wave defined
by formula (12) are complicatedly hybridized in the CEMGCMC KZ,4c (13)
that possesses the five different coupling mechanisms in form (16).

For a vacuum, it is also possible to assume that there are the following
thermodynamic stability conditions: Ao1 > Vao > Cr, Aoz > Vao > Cr, Aoy > Vo >
Cr, Aoz > Vo > Cp or even Aoy >> Vo >> Cy, Aoz >> Vo >> Cp, Aoy >> Vo >>
CL, Aoz >> Vg >> Cy, where Voo = 1/ap and Vs = 1/%0. The most popular case
of interactions among the gravitational, cogravitational, electrical, and magnetic
subsystems in a vacuum 'is the captivation of an electromagnetic wave
propagating close enough to a gigantic black hole. This case was also discussed
in paper [31]. In this case, the black hole gravitation can change the propagation
direction of the electromagnetic wave and the wave will be finally directed
towards the black hole. It is obvious that these interactions must be significantly
faster than the speed of light, Ci, i.e. at the fast speeds Ao; and Ao2. This allows
one to treat the system (the electromagnetic wave) as a stationary system at an
equilibrium. Each interaction is negligibly small that allows the system to relax
after each exchange among the gravitational, cogravitational, electrical, and
magnetic fields. However, an enormous number of these interactions can result
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in significant change in the propagation direction of the electromagnetic wave
while the propagation speed C; can stay the same because a vacuum represents
an isotropic continuum, i.e. the value of the speed of light is the same in any
propagation direction. Also, it is assumed that some change in energy of the
electromagnetic wave can exist.

8 Conclusion

This theoretical research has obtained the E-, H-, G-, and F-eigenvectors.
They are the four pairs of the main independent eigenvectors. The properties of
the obtained eigenvectors were also demonstrated. It was found that some
suitable linear combinations of the eigenvector components can be equal to one
of the CEMGCMC coupling mechanisms Mi, Ma, M3, Ma, and Ms defined by
expressions (17), (18), (19), (20), and (21), respectively. These eigenvectors
(namely the CEMGCMC coupling mechanisms) can define the propagation
velocities in the theory of the acoustic wave propagation in the transversely
isotropic materials of the symmetry class 6 mm. The acoustic waves propagate
in the directions when there is some coupling among the mechanical, electrical,
magnetic, gravitational, and cogravitational subsystems. It is expected that the
coupling with some gravitational phenomena will allow the human civilization
to develop gravitoelectromagnetic technologies for instant interplanetary
(interstellar, intergalactic) communications. Indeed, the instant intergalactic
Internet is necessary that can be based on the new fast four-potential
gravitocogravitoelectromagnetic waves instead of the conventional two-
potential electromagnetic waves propagating at the speed of light. The
cooperative development of the electromagnetic and gravitational technologies
can be feasible already to the end of this century because the four-potential
waves can propagate in a vacuum at the speed thirteen orders faster than the
speed of light.
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