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PREFACE  

 

 

This theoretical work addresses to calculations of characteristics of seven new shear-

horizontal surface acoustic waves (SH-SAWs). These new SH-SAWs can propagate 

on the surface of the cubic piezoelectromagnetic (composite) materials concerning 

direction [101]. These materials can possess both piezoelectric and piezomagnetic 

phases. Applying different electrical and magnetic boundary conditions in the 

theoretical treatments, wave characteristics of the seven new SH-SAWs were 

obtained. Calculations of the new SH-SAW characteristics were performed for 

sample two-phase composite materials, consisting of the piezomagnetic phase 

(Metglas, Terfenol-D, Galfenol, Alfenol) and the piezoelectric phase (Tl3TaSe4, 

Tl3VS4, PZT) when average material properties are used. It was also found that the 

surface Bleustein-Gulyaev-Melkumyan (BGM) wave can propagate in the cubic 

piezoelectromagnetics. Also, it was found that for both the sets of the eigenvector 

components, only single SH-SAW solution can be revealed in the case of the cubic 

piezoelectromagnetics for both the CMEMC Kem
2 < 1/3 and Kem

2 > 1/3. For Kem
2 < 1/3, 

the seven new SH-SAWs can propagate with speeds higher than that of the surface 

BGM-wave and slower than that of the SH-BAW characterized by the velocity Vtem. 

For Kem
2 > 1/3, the SH-SAWs can propagate with the speeds slower than the value of 

the solution denoted by VK. This is a significant difference from the case of the wave 

propagation in the transversely isotropic piezoelectromagnetic composites, in which 

two SH-SAW solutions solidly exist for each set of the boundary conditions due to 

two different sets of the eigenvector components and the solution VK does not exist. 

Also, the dependence on the speed of light in a vacuum is revealed in the cubic 

piezoelectromagnetics for the suitable boundary conditions. It is obvious that the 

obtained results can be useful for complete understanding of wave processes in two-

phase and laminated composite materials with the cubic and hexagonal symmetries in 

acoustoelectronics, acoustooptics, and optoelectronics. It is expected that the obtained 
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results can be utilized in fabricating smart materials in the microwave technology. It 

is thought that utilizing the electromagnetic acoustic transducers (EMATs), 

measurements of all the new SH-SAWs propagating in the cubic 

piezoelectromagnetics and transversely isotropic piezoelectromagnetic composite 

materials can be carried out.  

 

PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 

75.20.En, 75.80.+q, 81.70.Cv  

 

Keywords: cubic piezoelectromagnetics, magnetoelectric effect, SH-SAWs, new 

surface acoustic waves, EMATs.  

 

 



 4

 

COMMENTS BY THE AUTHOR  

 

 

This book describes the theoretical work carried out for the International 

Institute of Zakharenko Waves (IIZWs). The author address for correspondence is as 

follows: A.A. Zakharenko, 660037, Krasnoyarsk-37, 17701, Krasnoyarsk, Russia (E-

mail: aazaaz@inbox.ru). It is thought that this book can be interesting for researchers 

and students who deal with cubic and transversely-isotropic piezoelectromagnetics. 

Indeed, knowledge of wave properties of piezoelectromagnetics is beneficial to 

design of smart devices, sensors, actuators, etc. It can also represent an interest in 

some applications in the non-destructive testing and evaluation. Also, the obtained 

results in this book can allow one to choose appropriate materials to constitute 

piezoelectromagnetic laminate composite materials in the microwave technology. It 

is well-known that innovative smart composite materials are also created for the 

aerospace industry.  

This book deals with propagation of the shear-horizontal surface acoustic waves 

(SH-SAWs) in cubic piezoelectromagnetics. This studying subject relates to the 

disciplines of Applied Physics and Electromagnetic Engineering. The descriptive 

term “acoustic” (rather than “elastic”) follows common usage in physics, where 

ordinary elastic motions in crystals are called acoustic modes. This distinguishes the 

acoustic modes from optical ones. The optical modes involve internal degrees of 

freedom within a crystal unit cell. The term “acoustic” also reflects common 

terminology among researchers and engineers engaged in developing elastic wave 

devices for radar and communication systems. This arena of technological 

development has been strongly influenced by the philosophy, concepts, and 

techniques of microwave electromagnetics. This is also known as microwave 

acoustics. So, utilization of the term “acoustic” accurately describes the aim and 

scope of the book.  
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The International Institute of Zakharenko Waves (IIZWs) was recently created to 

support researches on different Zakharenko waves, as well as for monitoring the non-

dispersive Zakharenko type waves in many complex systems such as the layered and 

quantum systems. Indeed, any complex system in which dispersive waves can 

propagate is of a great interest for the IIZWs. The well-known examples of dispersive 

waves are the dispersive Rayleigh and Bleustein-Gulyaev type waves as well as the 

Love and Lamb type waves. It is also stated that there are currently more than twenty 

papers and books relevant to the IIZWs. The International Institute of Zakharenko 

Waves also studies different dispersive and non-dispersive waves both theoretically 

and experimentally, including different applications of the waves for signal 

processing (filters, sensors, etc.) and the structural health monitoring.  

It is worth noting that the International Institute of Zakharenko waves 

possessively takes all the planets and smaller natural space bodies in the space 

outside the Solar System to develop both the IIZWs and the planets concerning 

economics, ecology, and population. Also, it is thought that this is necessary in order 

to exclude any sale of the planets and their surfaces by any human or other. This 

activity of the IIZWs was also created due to a problem to find a spot for the IIZWs 

on Earth. Note that the single person, namely Mr. Dennis Hope from the United 

States of America (USA) possesses the planets in the Solar System (but Earth) who 

sells surfaces of the planets to individuals. It is also noted that only several thousands 

of planets orbiting their own stars can be currently observed in the Star Systems 

which are situated relatively near the Solar System. This does not mean that only 

several thousands of planets can exist outside the Solar System we can observe. It is 

expected that in average ten planets can orbit each star of enormous number of Star 

Systems in our Universe. It is thought that our Universe can accumulate more than 

10999 stars.  

 

Aleksey Anatolievich Zakharenko  

Krasnoyarsk, Russia, 2011  
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INTRODUCTION  

 

 

The beginning of this millennium demonstrates a good dynamics of 

development of theoretical and experimental directions of investigations of 

piezoelectromagnetic (PEM) composite materials. These composite materials are of 

interest for the engineering of different materials with either new or desired 

properties that are not present in single-phase materials. In composites consisting of 

piezoelectric and magnetostrictive phases, magnetoelectric (ME) effect represents the 

resulting product property, namely mechanical deformation due to magnetostriction 

results in a dielectric polarization owing to the piezoelectric effect. The latterly 

review [1] published in 2010 by Srinivasan acquaints the reader with the most recent 

advances in the physics of ME interactions in layered composites and nanostructures 

and discusses potential device applications. For instance, the magnetic-field sensors, 

dual electric-field- and magnetic-field-tunable microwave and millimetre-wave 

devices can be the potential device applications for the composites. However, this 

review does not cover all very significant works on bulk composites and other ME 

materials and phenomena since 2000.  

The review paper [2] published one year earlier also focuses on demonstration of 

a plethora of applications of ferrites (a special class of magnetic materials using Fe as 

a constituent) in passive microwave components such as isolators, circulators, phase 

shifters, filters, and miniature antennas operating in a wide interval of work 

frequencies from 1 GHz to 100 GHz. It is noted that ferrites can also be utilised as 

magnetic recording media. There is a problem of miniaturization of the passive 

components. This problem can be resolved using high magnetic susceptibility of 

ferromagnets coupled with high dielectric permittivity of some ferroelectrics. It is 

mentioned that piezoelectric materials respond to applied electric field by change in 

dimensions or vice versa. Piezoelectrics and ferromagnets are a subclass of materials 
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lacking centrosymmetry. Such materials can also exhibit nonlinear optical properties 

and can be used in optical communication and signal processing.  

The 2008 review [3] overviews the brief history of ME laminated composites. 

Ref. [3] also discusses some of the important advancements in material couples, 

configurations of laminated composites consisting of piezoelectric and 

magnetostrictive layers, and operational modes that can dramatically enhance the ME 

voltage (αME) and charge coefficients. Laminated composite materials have much 

higher ME coefficients (giant ME effect) compared with ME single phase and two-

phase particulate composite materials. The ME effect of single phase materials is 

scientifically very interesting and has constantly shown only small values of αME and 

only at low temperatures.  

The ME voltage coefficient αME is defined by the following formula [3]: αME = 

E/H where E and H are the bias electrical and magnetic fields, respectively. Using the 

tensor form following Ref. [2], the components of ME voltage coefficient (αME)ij are 

given by  

 

 
r

ij

j

i
ij H

E






0
ME       (1) 

 

where δEi and δHj are the components of the AC electrical and magnetic fields, 

respectively. In equation (1), αij stands for the second-rank ME-susceptibility tensor, 

ε0 and εr are the dielectric permittivity of a vacuum and the relative permittivity of a 

material, respectively. Note that the quantity (αME)ij in equation (1) is generally 

measured during experiments.  

Using the Landau theory and SI units, the ME effect in monocrystals can be 

described by writing the expansion of the free energy F(E, H) of the ME system [2, 4, 

5]. Ignoring the higher order terms in the expansion, the following condition of 

limitation of the ME response can be obtained [2, 4]:  

 

jjiiij  2      (2) 
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where εij and µij are the dielectric permittivity and magnetic permeability tensors of 

the second rank, respectively. Note that the linear ME term can be less than zero, 

according to Ref. [2]. In PEM composite systems, a linear behavior is usually 

observed by means of AC magnetic field application, albeit the non-linear ME effect 

can be also observed in the case of bias magnetic field application. Using SI units, the 

components αij are expressed in s/m. However, they are dimensionless values in 

Gaussian units. The value of α is very small and reaches several ps/m. For instant, the 

following value of α is given in Ref. [4]: α = 4.13 ps/m for Cr2O3. The largest ME 

coefficients for monocrystals can have one order larger values: α = 30.6 ps/m for 

LiCoPO4 [6], and α = 36.7 ps/m for TbPO4 [7].  

In contrast to the ME monocrystals, the ME laminated composites of two-phase 

composites can reveal several orders larger ME coefficients [1-4, 8]. The ME effect 

in two-phase composite materials is realized by exploiting the idea of average 

product properties via various connectivities p-q (p, q = 0, 1, 2, 3 represent the phase 

dimensions) [1, 2, 4, 9-12]. Therefore, the laminated composites can pertain to (2-2) 

connectivity in the case of thin films or to (3-2), (2-3), or (3-3) connectivities when it 

is necessary to treat bulk properties for some thicker films. When point (zero 

dimensional) inclusions of one phase are dotted across the volume of the second 

phase bulk material it is possible to say that one copes with (0-3) 

piezoelectromagnetic composites. Indeed, such zero-dimensional inclusions of the 

first phase must occupy a significant volume fraction in percentage to solidly change 

the bulk properties of the second phase to demonstrate already average product 

properties. Therefore, the important feature of such composite is the volume fracture 

of one phase into the second one.  

The promising piezomagnetic (magnetostrictive) phase materials to form the 

composites are such Fe-containing alloys (ferrites) as Terfenol-D (Tb27Dy73Fe195), 

Galfenol (Fe81Ga19), Alfenol (Fe87Al13), and Metglas (FeBSiC) [3, 8] which can 

possess the cubic symmetry of class m3m. Terfenol-D can also pertain to the 

transversely-isotropic symmetry of class 6 mm. However, the cubic symmetry is also 
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possible for the rare earth alloy Terfenol-D [13, 14]. Comparing with the other 

magnetic materials, ferrites have large resistances and small magnetostriction. 

Terfenol-D [15] of ferrites has the largest magnetostriction of any known material. 

Notwithstanding, this alloy cannot be coprocessed with oxide ferroelectrics because 

sintering can oxidize the iron and significantly reduce the superior magnetostriction 

of such alloys [3]. Probably, Terfenol-D is not suitable for high frequency 

applications due to its low electrical resistance that can result in Eddy current losses 

[3]. However, it was found that Terfenol-D is suitable for ME laminated composited 

in the frequency range from 0 to 0.1 MHz.  

Also, the alloy Terfenol-D can be readily substituted for the other well-known 

alloys Galfenol [16, 17] and Alfenol [12, 18-21]. The alloys Galfenol and Alfenol 

possess smaller magnetostrictions than that of Terfenol-D and are mechanically 

ductile whereas Terfenol-D is brittle. They are tough and not toxic, and can be 

machined and used without any special handling in technical devices. Indeed, the 

alloys can be used in magnetic transducers which are increasingly considered as 

actuators and sensors for copious aerospace, aeronautic, automotive, industrial, and 

biomedical applications [22-29]. The topical review article [30] published in 2008 

describes recent development on the deformation and fracture of soft ferromagnetic 

materials and the mechanics of ferromagnetic composites. Also, some studies of the 

Fe-containing alloys are cited in Refs. [31-69] and some of the United States and 

international applications can be found in Refs. [70-81]. Also, one of the most 

promising magnetostrictive alloys is Metglas [82] which has a vast relative magnetic 

permeability. The Metglas magnetization is smaller than that of Terfenol-D and 

saturates at very low DC magnetic biases.  

It is thought that Chalcogenide family materials are the suitable piezoelectric 

phase cubic ones which can contain no oxygen, in order to avoid oxidization of iron 

in the Fe-containing alloys. They belong to the cubic class 43m and can possess 

both zero temperature coefficients and strong piezoelectric coupling. Indeed, the 

Chalcogenide piezoelectric crystals such as Tl3VS4 and Tl3TaSe4 [83] can serve as the 

possible pair materials for the piezomagnetic alloys. The Chalcogenides represent a 
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particularly large potential interest, especially for moderate frequency and large 

bandwidth. However, they are not commercially available, probably because of their 

mechanical softness and fabrication difficulties. On the other hand, the oxygen-

containing cubic symmetry piezoelectric ceramics of the point group 23 (Bi12SiO20 

and Bi12GeO20 [84] and Bi12TiO20 [85] can also have the strong piezoelectric effect) 

cannot be used for the purpose. Also, it is assumed that the well-known transversely-

isotropic materials Pb(Zr,Ti)O3 called PZT, which have the strongest piezoelectric 

effect, can be solidly used as the piezoelectric phase materials, for instance, a powder 

as the zero-dimensional inclusions in a volume of the bulk cubic piezomagnetics. So, 

it is possible to assume that the resulting piezoelectromagnetic composite materials 

will have the corresponding cubic symmetry and possess corresponding average 

product properties. In addition, the transversely-isotropic PZT and PVDF 

(polyvinylidene difluoride) together with the cubic Galfenol and Metglas were 

successfully used for the laminated composites [3, 60, 86, 87]. These all studies relate 

to experimental investigations of piezoelectromagnetics.  

Concerning the theoretical investigations of wave propagation in 

piezoelectromagnetics, the reviews [1-3, 30] published in 2008, 2009, and 2010 did 

not mention about the recent theoretical achievements by Arman Melkumyan in his 

work [88] published in 2007. He discovered twelve new shear-horizontal surface 

acoustic waves (SH-SAWs) propagating in the transversely-isotropic 

piezoelectromagnetics and has written the new wave speeds in corresponding explicit 

forms. Following the theoretical work [88] by A. Melkumyan, further theoretical 

investigations [89] of the SH-SAW propagation in the transversely-isotropic 

piezoelectromagnetics also revealed the existence of additional seven new SH-SAWs 

and their velocities were also discovered in the corresponding explicit forms [89]. It 

is very interesting that discovered in the transversely-isotropic piezoelectrics 

approximately forty years ago, the classical surface Bleustein-Gulyaev (BG) wave 

speed [90, 91] can be also received for some particular cases [88, 89]. It is worth 

noticing that the propagation direction of the surface BG-wave should be 

perpendicular to an even-order symmetry axis. This soundly demonstrates 
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connections among the theories for some SH-SAWs. Also, the authors of Ref. [92] 

stated that SH-SAWs can easily be produced by electromagnetic acoustic transducers 

(EMATs) which can offer a series of advantages over traditional piezoelectric 

transducers [93, 94]. It is worth noting that an improved optical method for 

measurements of both the phase and group velocities is described in Ref. [95]. This 

method allows one to measure the phase velocity with accuracy by about 2 m/s. This 

is true for measurements of characteristics of wave propagation in both the cubic and 

transversely-isotropic piezoelectromagnetics. Note that no complete theoretical 

calculations of wave characteristics in any cubic piezoelectromagnetics are still 

carried out.  

The theoretical treatments of cubic materials relate to analytical and numerical 

studies of characteristics of wave propagation in either purely piezoelectric or purely 

piezomagnetic monocrystals. It is historically put together that first attempt to 

discover SH-SAWs was done with cubic piezoelectrics [96] before the discovery of 

the classical surface BG-wave [90, 91] in 1968-1969 in the transversely-isotropic 

piezoelectrics. In 1966, Kaganov and Sklovskaya [96] reported a possible existence 

of new surface waves coupled with the electrical potential in cubic piezoelectric 

monocrystals. Ref. [96] stated that the phase velocity Vph of the new (additional) 

surface wave is higher than 31/2Vt/2 and lower than Vt (according to the paper text) 

where Vt denotes the shear-horizontal bulk acoustic wave (SH-BAW) velocity 

uncoupled with the electrical potential. Also, they in Ref. [96] did not state that such 

SH-SAWs can propagate when the direction of wave propagation is perpendicular to 

an even-order symmetry axis of a piezoelectric monocrystal. However, Kaliski [97] 

working for the Polish Academy of Science reported in 1967 that the classical surface 

BG-waves [90, 91] do not exist in cubic piezoelectric crystals. Indeed, at the 

beginning of this Millennium the SH-SAWs were also not found in 2005 in Ref. [84] 

studying cubic piezoelectric monocrystals of class 23 in propagation direction (001) 

[100] (Z-cut).  

However, it is indispensable to state that several attempts to find the classical 

surface BG-waves in cubic piezoelectrics were done after 1967, namely in 1970 [98, 
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99], 1972 [100], and 1989 [101]. However, these attempts [98-101] to analytically 

and numerically find the SH-SAWs in crystals with the cubic symmetry did not 

reveal the significant differences of the SH-SAW propagation in cubic crystals from 

that in the transversely-isotropic materials. Moreover, these studies [98-101] 

represented their results in such ways that the SH-SAW propagation in cubic crystals 

is similar to that in the transversely-isotropic materials with no significant differences 

pithily described below. This is in fact not trustable and looks like bogus or incorrect 

results. As the result, RAS Academician Gulyaev (the co-discoverer of the surface 

BG-waves) and Hickernell (who worked with the other co-discoverer) stated in their 

2005 paper [102] that the surface BG-waves cannot exist in cubic piezoelectrics. The 

author of Ref. [103] agreed with the statement by Gulyaev and Hickernell.  

Treating the SH-SAW propagation, the significant differences between the cubic 

crystals and the transversely-isotropic materials can be established based on the 

results obtained in Ref. [103]. The work [103] soundly demonstrated that the new 

SH-SAWs called the ultrasonic surface Zakharenko waves (USZWs) can exist in the 

cubic piezoelectric monocrystals. The very important features of the cubic 

piezoelectrics are the very simple values of Ke
2 = 1/3 and VaK obtained in the explicit 

form in Ref. [103]. Note that the transversely-isotropic materials cannot possess these 

features. Therefore, all cubic piezoelectrics in contrast to the transversely-isotropic 

materials can be divided into two groups: the first group includes cubic piezoelectrics 

with Ke
2 < 1/3 and the second is for those with Ke

2 > 1/3, where Ke
2 is the coefficient 

of the electromechanical coupling (CEMC). For Ke
2 < 1/3, the USZW velocity can 

significantly differ from the BG-wave velocity compared with the difference between 

the velocity of the SH-BAW coupled with the electrical potential and the BG-wave 

velocity, and the value of VaK is always found. For materials with Ke
2 > 1/3, the 

USZW velocity is situated slightly below the value of VaK, but not slightly below the 

speed of the SH-BAW (this is the case for the BG-wave). Therefore, for cubic 

crystals with Ke
2 > 1/3, it is possible to treat the value of VaK as the first 

approximation for the USZW speed due to negligible difference between them in 

suitable cases. However, the case of the electrical potential φ = 0 of the electrical 
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boundary conditions demonstrates a coincidence of the USZW velocity for cubic 

piezoelectrics with the BG-wave velocity for the transversely-isotropic materials.  

Indeed, utilization of cubic piezoelectrics in addition to the transversely-isotropic 

materials can broaden a list of suitable materials and represents an interest in 

engineering and design of SAW devices (filters, dispersive delay lines, etc.). As an 

important class of smart materials, piezoelectric ceramics are also broadly utilized as 

actuators and sensors in adaptive microelectromechanical systems [104]. In recent 

years, many efforts have been made in the area of wave propagation in piezoelectric 

media that is the subject of increasing research activity. Many important findings for 

the SH-SAWs on piezoelectrics have been mentioned in the historical note [105].  

In theoretical paper [106], Alshits, Darinskii, and Lothe conducted a qualitative 

research on the existence of SH-SAWs in piezomagnetic and piezoelectric elastic 

half-spaces. According to Ref. [106], the piezomagnetic effect and the piezoelectric 

effect can be described in the same way. As a result, as in the transversely-isotropic 

piezoelectrics, the surface BG-waves can also propagate in the transversely-isotropic 

piezomagnetics, using the corresponding material characteristics for the 

piezomagnetic materials. Piezoelectric and piezomagnetic properties of anisotropic 

materials were established by Al’shits and Lyubimov in Ref. [107]. In addition, 

Gulyaev, Dikshtein, and Shavrov mentioned in their review paper [108] that 

dispersion relations for magnetoelastic SH-waves in ferromagnetics and (anti-

)ferromagnetics can also lead to the surface BG-wave velocity. Also, the first study of 

the USZW existence in cubic piezomagnetics was theoretically performed in Ref. 

[14], in which the studied cubic material Galfenol can relate to both groups with Km
2 

< 1/3 and Km
2 > 1/3, where Km

2 is the coefficient of the magnetomechanical coupling 

(CMMC).  

Also, it is necessary to succinctly describe the history of the researches on the 

magnetoelectrical (ME) effect. Notice that as early as 1894 is the year of the original 

prediction of the ME effect done by P. Curie [109]. He stated a possiblity for an 

asymmetric molecular body to be directionally polarized under the influence of a 

magnetic field. Later, Landau and Lifshitz [110] were the new generation 
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theoreticians who demonstrated from symmetry considerations that a linear ME 

effect can be revealed in magnetically ordered crystals. On the basis of theoretical 

analysis, Dzyaloshinskii [111] predicted the existence of the ME effect in the 

antiferromagnetic Cr2O3. The confirmation of the prediction was published in Ref. 

[112] by Astrov who has carried out measurements of the electric field-induced 

magnetization. Later, Rado and Folen [113] have detected the magnetic field-induced 

polarization and also confirmed the prediction. The primary requirement for the 

observance of the ME effect in materials is as follows: magnetic and electric dipoles 

must coexist.  

Also, Smolensky and Ioffe [114] in 1958 synthesized the antiferromagnetic 

ferroelectric perovskite ceramic with the chemical formula Pb(Fe1/2Nb1/2)O3 (PFN). 

Later, the presence of a weak spontaneous moment in the ferroelectric phase of 

grown single crystals of PFN was confirmed below 9K [115]. In addition to the 

antiferromagnetic Cr2O3 [116], the ME effect has been found in many compounds 

[117-132]. According to the famous classical book by Smolenskii and Chupis [129], 

the ME effect can exist in such materials as perovskites, pseudo-ilmenites, rare earth 

magnates, BaMeF4 (Me = Mn, Fe, Co, Ni), Cr2BeO4, and inverted spinels. In 1980, 

Ismailzade et al. [130] reported the presence of linear ME effect in the 

antiferromagnetic-ferroelectric compound BiFeO3. Its combination with barium 

titanate and bismuth titanate forms a big family with the general chemical formula 

Bi4Bim-3Ti3Fem-3O3m+3 (m = 4, 5, and 8) in which ferroelectricity and magnetic nature 

can coexist up to high temperatures [131]. Schmid [132] has comprehensively 

worked on boracites which pertain to the large crystal structure family with the 

general chemical formula M3B7O13X, where M stands for one of the following 

bivalent cations Mg2+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, etc. and X stands for 

one of the following monovalent anions (OH)–, F–, Cl–, Br–, I–, or (NO3)–. In the 

sample material such as nickel boracite Ni3B7O13I, the simultaneous presence of 

ferromagnetism and ferroelectricity in coexistence with ferroelasticity activates 

coupling between the spontaneous magnetization, spontaneous polarization, and 

spontaneous deformation.  
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For composite materials, van Suchtelen [133] introduced the concept of the 

product properties to realize the ME effect, which was then studied by van den 

Boomgaard [134], van Run et al. [135], and van den Boomgaard et al. [136] in 

oxygen-containing composites BaTiO3-CoFe2O4. Wood and Austin [137] also studied 

composites and the ME effect. It is thought that the most popular composites are the 

transversely-isotropic ones in which hexagonal piezoelectrics BaTiO3 and hexagonal 

piezomagnetics CoFe2O4 are used [138-142]. Using the Nye notation [143], Schmid 

[144] provides the tensor forms of the 58 point groups permitting the linear 

magnetoelectric effect. Generally, a continuous interest occurs to study the 

magnetoelectric effect in composites for development of smart materials in the 

microwave technology. Some modern researches on the ME effect in composites can 

be also found in Refs. [145-157]. It is thought that the most interesting possible 

applications of magnetoelectric materials are as follows [137, 158]:  

 

 magnetic-electric energy converting components;  

 solid state non-volatile memory;  

 multi-state memory which can find application in quantum computing 

area;  

 electrical/optical polarization components which can find applications in 

communication;  

 light computing;  

 solid state memories based on spintronics.  

 

This work has the purpose to tersely illustrate first theoretical investigations of 

characteristics of the shear-horizontal surface acoustic waves (SH-SAWs) which can 

propagate in cubic piezoelectromagnetic composites. Chapters I and II describe 

thermodynamics, corresponding constitutive relations, and the equations of motion 

for the treated case. Chapter III acquaints the reader with material properties of the 

corresponding piezoelectrics and piezomagnetics, as well as studied 

piezoelectromagnetic composite materials consisting of them. Chapter IV discusses 
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the boundary conditions. After that, Chapters from V to XIII cope with the 

calculations of wave characteristics using different electrical and magnetic boundary 

conditions. Chapter XIV provides some discussions for the reader on the wave 

propagation and the other problems. The conclusive remarks are summarized in that 

following Chapter XIV. After the conclusive words, a wide list of the references 

pertaining to various aspects of theoretical and experimental investigations of 

materials possessing the magnetoelectric effect is finally given.  
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CHAPTER I.  Thermodynamics, Constitutive Relations, and Equations of Motion  

 

 

Complex systems such as piezoelectrics, piezomagnetics, and 

piezoelectromagnetics can be described by means of several thermodynamical 

potentials. For example, eight thermodynamical potentials are currently used for 

description of thermoelectroelastic interactions in piezoelectric crystals. The 

thermodynamical potentials derive the equations of piezoelectric medium [159-161], 

and general equations for adiabatic rather than isothermal conditions may be obtained 

using the thermodynamical potential called the electrical enthalpy Hel. Adiabatic 

processes can be treated with the constant entropy S (S = const giving dS = 0) and 

only linear terms are left in a Taylor series for the electrical enthalpy Hel relative to an 

equilibrium condition Hel(S0) [159].  

For a piezoelectromagnetic solid, energetic terms of the complex system 

described by a thermodynamical potential can be naturally coupled with the 

following sub-systems:  

 

 elastic sub-system (stress σij or strain ηij);  

 electric sub-system (electrical field Ei or electrical induction Di);  

 magnetic sub-system (magnetic field Hi or magnetic flux Bi);  

 thermal sub-system (temperature T or disorder value called entropy S).  

 

For piezoelectromagnetic materials similar to piezoelectrics, the mechanical 

strain tensor ηij defined by the following strain-displacement relation:  
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can be naturally taken as an independent thermodynamic mechanical variable. 

Expression (I.1) represents the well-known dependence of the strain tensor 

components ηij on the corresponding partial first derivatives of the mechanical 

displacement components U1, U2, and U3 with respect to the real space components 

x1, x2, and x3. The indices i and j run from 1 to 3 in equation (I.1). Also, the electrical 

field Ei and the magnetic field Hi can be taken as independent thermodynamic 

electrical and magnetic variables, respectively. The components of the electrical field 

Ei and the magnetic field Hi are also defined by the corresponding partial first 

derivatives of the electrical potential φ and the magnetic potential ψ with respect to 

the x1, x2, and x3, using the quasi-static (irrotational field) approximation:  

 

i
i x

E




       (I.2) 

i
i x

H




       (I.3) 

 

Indeed, propagation directions can exist in piezoelectromagnetic materials where 

both the electrical and magnetic potentials are coupled with propagating elastic waves 

[88, 89].  

Using the independent thermodynamic mechanical, electrical, and magnetic 

variables, the thermodynamic potential G for a three-dimensional 

piezoelectromagnetic solid [89, 142, 162-164] can be written as the following 

function G = G(ηij, Ei, Hi) where Ei and Hi are the components of the electrical field 

vector E and the magnetic field vector H, respectively. As a result, the coupled 

constitutive relations for linearly-piezoelectromagnetic solids [89, 165, 166] read:  

 

kkijkkijklijklij HhEeC       (I.4) 

kikkikklikli HEeD       (I.5) 

kikkikklikli HEhB       (I.6) 
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where the indices k and l also run from 1 to 3. It is clearly seen in equations from (I.4) 

to (I.6) that such a piezoelectromagnetic (composite) material can possess the elastic 

stiffness constants Cijkl, piezoelectric constants ekij, piezomagnetic coefficients hkij, 

dielectric permittivity coefficients εik, magnetic permeability coefficients μik, and 

electromagnetic constants αik.  

In equation (I.4), the elastic stiffness constants Cijkl are thermodynamically 

defined as follows:  

 

const, 
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In equations (I.4) and (I.5), the thermodynamic determination of the piezoelectric 

constants ekij can be written in the following way:  
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In equations (I.4) and (I.6), the thermodynamic definition of the piezomagnetic 

coefficients hkij can be written as follows:  
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In equation (I.5), the dielectric permittivity coefficients εik are thermodynamically 

defined as follows:  
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In equation (I.6), the magnetic permeability coefficients μik are thermodynamically 

determined as follows:  
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In equations (I.5) and (I.6), the electromagnetic constants αik can be written using the 

following thermodynamic relations:  
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It is clearly seen in equation (I.7) that the elastic stiffness constants Cijkl are 

defined at constant electrical and magnetic fields. Symmetry arguments allow some 

simplifications of the quantity of the constants Cijkl. The stress tensor σij and strain 

tensor ηij are symmetric, i.e. σij = σji and ηij = ηji. Thus, the stiffness tensor Cijkl must 

have a corresponding degree of symmetry which leads to the following 

simplifications:  

 

lkjijilklkijijlkkljijiklklijijkl CCCCCCCC    (I.13) 

 

Using the Voigt notation, the constants Cijkl can be written in a compact form as 

(6×6) matrix instead of (3×3×3×3) tensor form [143, 161, 167] which can be 

represented by nine (3×3) matrices. To transform a tensor form into a matrix, the 

following well-known rules are used for the indices: 11 → 1, 22 → 2, 33 → 3, 23 → 

4, 13 → 5, 12 → 6. Therefore, the indices are changed as ijkl → PQ where the new 

indices P and Q run from 1 to 6. Consequently, one can construct the following 

matrix:  
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   




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464544434241

363534333231

262524232221

161514131211

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

CC PQijkl    (I.14) 

 

For the reader, the excellent and classical books concerning the crystal symmetries 

and wave propagation in solids are also cited in Refs. [168-174].  

The symmetry arguments also allow one to simplify the quantities of the 

piezoelectric constants ekij and piezomagnetic coefficients hkij in the similar manner. 

Because σij = σji and ηij = ηji in equations (I.8) and (I.9), the tensors ekij and hkij must 

also have corresponding degrees of symmetry. This results in the following 

equalities:  

 

jikkjiijkkij eeee      (I.15) 

jikkjiijkkij hhhh      (I.16) 

 

Using the Voigt notation for the piezoelectric constants ekij, their (3×3×3) tensor 

form can be represented as the following (6×3) matrix:  
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With the same notation for the piezomagnetic coefficients hkij, their (3×3×3) 

tensor form can be represented as the following (6×3) matrix:  
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The dielectric permittivity coefficients εik, magnetic permeability coefficients μik, 

and electromagnetic constants αik stand for the following symmetric tensors of the 

second rank (matrices):  

 

kiik        (I.19) 

kiik        (I.20) 

kiik        (I.21) 

 

The components εik, μik, and αik of the corresponding material constants can be 

also written as (3×3) matrices. They read  
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Using the definitions of the thermodynamic variables and the material constants, 

it is possible to write equations of motion for such piezoelectromagnetic solids. First 

of all, it is necessary to write some well-known equilibrium equations. Exploiting the 
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Maxwell equations such as divB = 0 and divD = 0, the governing mechanical, 

magnetostatic, and electrostatic equilibriums read:  
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From equation (I.25), the equations of motion of an elastic medium can be written in 

the following well-known form [175-177]:  
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where ρ and t are the mass density of a piezoelectromagnetics and time, respectively. 

In expression (I.28), the second partial derivative of the mechanical displacement 

components Ui with respect to time t represents an acceleration value of a unit 

volume V = M/ρ where M is the mass of the volume. Also, the magnetostatics and 

electrostatics in the quasi-static approximation read:  
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where Bi and Di are defined by equations (I.6) and (I.5), respectively.  

With equations from (I.4) to (I.6) and definitions (I.2) to (I.3) for the electrical 

field Ei and the magnetic field Hi, it is possible to inscribe the following form for the 

coupled equations of motion defined by equations from (I.28) to (I.30) written above:  
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These coupled equations of motion are suitable for a piezoelectromagnetic medium 

which possesses the piezoelectric, piezomagnetic, and piezoelectromagnetic effects.  

Coupled equations from (I.31) to (I.33) mathematically represent homogeneous 

partial differential equations of the second order. Hence, it is well-known that 

solutions for such equations can be written in the following plane wave forms [89, 

176, 177]:  

 

  txkxkxkUU ii  332211
0 jexp    (I.34) 

  txkxkxk   332211
0 jexp    (I.35) 

  txkxkxk   332211
0 jexp    (I.36) 

 

where the index i runs from 1 to 3.  

In equations from (I.34) to (I.36), Ui
0, φ0, and ψ0 are the initial amplitudes which 

should be determined further. Also, j = (–1)1/2 denotes the imaginary unity and ω 

stands for the angular frequency defined by ω = 2πν where ν is the linear frequency. 

The components k1, k2, and k3 of the wavevector K directed towards the wave 

propagation can be written as follows:  

 

   321321 ,,,, nnnkkkk      (I.37) 
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where n1, n2, and n3 are the directional cosines: n1 = 1, n2 = 0 and n3 ≡ n3 for 

convenience. Note that the wavenumber k in the direction of wave propagation is 

defined by k = 2π/λ where λ is the wavelength.  

Utilization of the solutions given by equations from (I.34) to (I.36) and the 

directional cosines (I.37) for corresponding substitutions into coupled equations from 

(I.31) to (I.33) can lead to the following five homogeneous equations:  
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where GLIJ denote the components of the modified tensor (the indices I and J run 

from 1 to 5) in the well-known Green-Christoffel equation [159] and Vph stands for 

the phase velocity defined by  

 

kVph        (I.39) 

 

Also, U4
0 = φ0 and U5

0 = ψ0 are used in equations (I.38). The modified Green-

Christoffel tensor GLIJ is symmetric, i.e. GLIJ = GLJI. Therefore, only 15 tensor 

components are independent. To write below explicit forms for all 15 tensor 

components is not the main purpose of this work. It is thought that the readers 

themselves can obtain all the components GLIJ in the corresponding explicit forms, 

using equations from (I.31) to (I.37).  

Five homogeneous equations (I.38) are frequently written in the following 

compact form which can be met in many research paper and books concerning wave 

propagation in crystals:  

 

  00  IphIJIJ UVGL      (I.40) 
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where the indices I and J also run from 1 to 5 and δIJ is the Kronecker delta-function, 

namely δIJ = 1 for I = J, δIJ = 0 for I ≠ J, and δ44 = δ55 = 0. Equation (I.40) represents 

the coupled equations of motion in the well-known tensor form.  

This work has an interest in research of SH-SAW propagation in cubic 

piezoelectromagnetics. For that reason, some highly symmetric propagation 

directions [175-179] must be studied. When propagation direction is changed, the 

number of independent material constants and their values must be also changed. 

However, new material constants can be obtained from the old ones. In the studied 

case, the material constants such as the dielectric permittivity coefficients εik, 

magnetic permeability coefficients μik, electromagnetic constants αik, piezoelectric 

constants ekij, piezomagnetic coefficients hkij, and elastic stiffness constants Cijkl can 

be transformed using the following formulae for transformations of tensors:  

 

mnjnimij aa         (I.41) 

mnjnimij aa        (I.42) 

mnjnimij aa        (I.43) 

mnpkpjnimijk eaaae       (I.44) 

mnpkpjnimijk haaah       (I.45) 

mnpqlqkpjnimijkl CaaaaC      (I.46) 

 

This hard work of tensor transformations can be carried out numerically. The rules of 

such transformations from an original coordinate system into a new coordinate 

system are perfectly described in the excellent and classical books cited in Refs. [143, 

176].  

Suitable propagation directions on suitable crystal cuts can result in significant 

simplifications of the problem of wave propagation in piezoelectromagnetic materials. 

Indeed, certain propagation directions on certain cuts can lead to such situations when 

some of the GL-tensor components become equal to zero. For some of these cases, 
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the matrix determinant in equation (I.38) can be written in the following simplified 

form:  
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It is clearly seen in equation (I.47) that the following vector from equation (I.38)  
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0
4

0
3

0
2

0
1 ,,,, UUUUU     (I.48) 

 

can be readily rewritten as two vectors with the following components:  

 

 0,0,,0, 0
3

0
1 UU      (I.49) 

 000
2 ,,0,,0 U     (I.50) 

 

Also, it is possible to write equation (I.47) in a more informative form which 

demonstrates that the matrix determinant in equation (I.47) actually splits into two 

independent determinants. This can be demonstrated as follows:  
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Indeed, each of them in equation (I.51) can be separately treated. Note that the 

vectors defined by equations (I.49) and (1.50) relate to the first and second factors in 

equation (I.51), respectively. For cubic piezoelectrics, the cuts and propagation 

directions are schematically shown in excellent works [176, 178]. It is indispensable 

to surely state that the highly symmetrical propagation direction are also exist in 
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cubic piezoelectromagnetics, according to equation (I.51). Expanding the first matrix 

determinant in equation (I.51), a secular equation for determination of characteristics 

of the in-plane polarised surface Rayleigh wave [180, 181] can be obtained. In this 

case, the surface Rayleigh wave represents a purely mechanical wave. Expanding the 

second matrix determinant in equation (I.51), a secular equation for determination of 

characteristics of anti-plane polarized waves coupled with both the electrical potential 

φ and the magnetic potential ψ can be obtained. To study wave characteristics of such 

anti-plane polarized wave is the main purpose of this work.  

Also, certain propagation directions on certain cuts can exist in cubic 

piezoelectrics when the surface Rayleigh wave can be coupled with the electrical 

potential φ [182]. It is thought that cubic and transversely-isotropic 

piezoelectromagnetics can possess some cases when in-plane polarised waves are 

also coupled with both the electrical potential φ and the magnetic potential ψ. In this 

case, the single possible anti-plane polarized wave represents a purely mechanical 

wave, namely the shear-horizontal bulk acoustic wave (SH-BAW). So, the vectors 

which determine the wave polarizations are as follows:  

 

 000
3

0
1 ,,,0, UU     (I.52) 

 0,0,0,,0 0
2U      (I.53) 

 

The vectors in equations (I.52) and (I.53) serve for in-plane polarised waves and the 

anti-plane polarized SH-BAW, respectively.  

The following chapter addresses to the theory of wave propagation in cubic 

piezoelectromagnetics when anti-plane polarized waves are coupled with both the 

electrical potential φ and the magnetic potential ψ. The certain propagation direction 

on the certain cut is also shown for the studied case in the following chapter.  
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CHAPTER II.  Wave Propagation in Cubic Piezoelectromagnetics  

 

 

It is indispensable to introduce the theory of propagation of shear-horizontal (SH) 

acoustic waves in piezoelectromagnetic (composite) materials. In this work, the 

studied piezoelectromagnetics have the cubic symmetry. Nevertheless, theoretical 

description of wave propagation in a cubic piezoelectromagnetics can be given in the 

same way like that in a transversely-isotropic piezoelectromagnetic composite 

material [89]. It was mentioned in the previous chapter that this work has an interest 

in propagation of shear-horizontal surface acoustic waves (SH-SAWs) when the anti-

plane polarized waves are coupled with both the electrical potential φ and the 

magnetic potential ψ. This configuration is shown in figure II.1, in which the vector 

K exhibits the propagation direction for the studied case. Note that the SH-waves are 

coupled with both the potentials when the propagation direction is changed by 

rotation around the x2-axis shown in figure II.1. This is similar to piezoelectrics [103, 

159] and piezomagnetics [14].  

The original coordinates (x'1, x'2, x'3) shown in figure II.1 coincide with the 

crystallographic coordinates (X, Y, Z) shown in figure II.2. For the cubic system of 

class 23, the crystallographic coordinates (X, Y, Z) are directed along the three 

twofold symmetry axes. The work coordinate system (x1, x2, x3), also shown in figure 

II.1, illuminates the propagation direction, in which the SH-waves are polarized 

parallel to the x2-axis and propagate along the x1-axis with damping towards the 

negative values of the x3-axis. This propagation direction is also called direction 

[101] in physical acoustics. Thus, the propagation direction for the SH-waves is 

perpendicular to an even-order symmetry axis. This is a condition of existence of 

surface SH-waves in crystals, which can propagate only in certain propagation 

directions on certain crystal cuts. The direction of the cut normal (see the vector N in 

figure II.1) is also changed with the Euler angles (0o; θ; 0o), with which the 

propagation direction is changed.   
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Figure II.1. The SH-SAW propagation along direction [101] for a cubic 

piezoelectromagnetics, using the rectangular coordinate system. The wavevector K is 

directed towards the wave propagation and N is the vector of surface normal.  

 

 

It is necessary to introduce the cubic system based on crystallography. All the 

cubic crystals are characterized by presence of four threefold symmetry axes. Also, 

all the cubic crystals should possess even-order symmetry axes. They can be twofold 

and or fourfold axes. According to the work in Ref. [107], cubic symmetry materials, 

which can simultaneously possess both piezoelectric and piezomagnetic properties, 

have to relate to the crystallographic cubic classes 23 and 4'3m' because the 

piezoelectric effect can be revealed only in non-centrosymmetric crystals. Note that a 

cubic class is readily distinguished by presence of threefold rotational symmetry axis 

denoted by number “3” on the second place in the basic cubic classes such as 23, m3, 

432, m3m, and 43m.  

In crystallography, the point symmetry transformations include rotations, 

reflections, inversions, rotation-inversions, and rotation-reflections, of which the last 
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category is equivalent to rotation-inversions. Rotation symmetries are defined in 

terms of the smallest rotation under which the crystal lattice is symmetric. For 

instance, a threefold rotation symmetry is defined as an operation with a minimum 

rotation angle 2π/3. A threefold axis is marked with a small triangle as shown in 

figure II.2 and denotes a rotation through 3600/3 = 1200. Also, mirror or reflection 

operations are denoted by the symbol “m” and rotation-inversion operations are 

denoted by the symbol “4” for the cubic system. It is also noted that each crystal 

symmetry group is called a class. The various classes are grouped into systems (for 

example, the cubic system) that have to have certain physical properties in common. 

In general, crystallographic point groups of symmetries are defined by international 

symbols. It is necessary to state that no groups of crystal point symmetries have more 

than three generator operations such as the generator symmetry axes and mirror 

planes. The reader can find fundamentals of crystallography and crystallophysics in 

several classical books cited in Refs. [169, 183, 184].  

 

 

 

Figure II.2. The symmetry elements for the non-centrosymmetric cubic system of 

class 23, according to J.F. Nye [143].  

 

 

Z 
Y 

X 
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In such cubic system, the material constants Cijkl, ekij, hkij, εik, μik, and αik defined 

in the previous chapter are changed as soon as the propagation direction is changed. 

Also, it is assumed that the mass density ρ remains unchanged. In the crystallographic 

coordinate system (X, Y, Z) there are the following independent material constants: 

C11 = C22 = C33, C12 = C13 = C23, C44 = C55 = C66, e14 = e25 = e36, h14 = h25 = h36, ε11 = 

ε22 = ε33, μ11 = μ22 = μ33, and α11 = α22 = α33. The elastic stiffness constants C11 = C22 = 

C33 and C12 = C13 = C23 do not contribute in the SH-wave propagation. This is true 

because the matrix determinant factors in some highly symmetric propagation 

directions. This was demonstrated in equations (I.47) and (I.51) written in the 

previous chapter. For studied propagation direction [101] in a cubic 

piezoelectromagnetics, the transformed coordinate system (x1, x2, x3) gives the 

following material constants:  

 

CCC  6644      (II.1) 

eee  3416     (II.2) 

hhh  3416     (II.3) 

  3311      (II.4) 

  3311      (II.5) 

  3311      (II.6) 

 

The dependences of the non-zero piezoelectric constants ekij and piezomagnetic 

coefficients hkij on the propagation directions are shown in figure II.3. This figure 

shows the successive changes of the constants with change in the propagation 

direction beginning from direction [100] on the Z-cut in the crystallographic 

coordinate system (X, Y, Z).   
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Figure II.3. The dependences of the normalized values of non-zero material 

constants Tijk (T14 = T36, T16, and T34) on the propagation directions with the Euler 

angles {0o, θ, 0o} for a cubic system. Note that here Tijk represent either the 

piezoelectric constants eijk (e14 = e36, e16, and e34) or the piezomagnetic coefficients hijk 

(h14 = h36, h16, and h34).  

 

 

Using the material constants defined by expressions from (II.1) to (II.6), it is 

possible to rewrite the equations of motions introduced by expressions from (I.31) to 

(I.33) in Chapter I. Treating only the SH-wave propagation, they can be reduced to 

the following simplified forms:  
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These equations look like those introduced in the recent book [89] concerning new 

surface SH-wave propagation in the transversely isotropic piezoelectromagnetics of 

class 6 mm. For a cubic piezoelectromagnetics, the main difference from the 6 mm 

material is in the forms of the piezoelectric constants eijk and the piezomagnetic 

coefficients hijk defined by expressions (II.2) and (II.3), respectively. This difference 

can drastically change the wave characteristics for some cases discussed below when 

the mechanical, electrical, and magnetic boundary conditions are applied.  

For the simplified case of the equations of motion which corresponds to the SH-

wave propagation, the solutions for the homogeneous equations from (II.7) to (II.9) 

then read:  

 

  tVxnxnkUU ph 3311
0

5,4,25,4,2 jexp     (II.10) 

 

where the directional cosines n1 = 1 and n3 ≡ n3 are defined by equality (I.37) from 

the previous chapter. Indeed, these solutions can be used instead of those defined by 

equations from (I.34) to (I.36) because the common matrix determinant factors.  

The coupled equations of motion written above in the simplified forms can be 

then written as follows:  
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where the initial amplitudes are U0 = U2
0, φ0 = U4

0, and ψ0 = U5
0, using expression 

(II.10). Also, the phase velocity Vph is defined by expression (I.39) from Chapter I. 

Therefore, the eigenvector given by expression (I.50) in the previous chapter is then 

written as follows:  

 

 000 ,, U      (II.12) 
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The three-component eigenvector in expression (II.12) should be found unequal 

to zero for each eigenvalue n3 = k3/k. Suitable eigenvalues n3 can be obtained when 

the following matrix determinant of the homogeneous system of equations (II.11) 

becomes equal to zero:  
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It is useful to rewrite the characteristic determinant in equation (II.13) in the 

following simplified form for the case:  
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where  

 
2
31 nm       (II.15) 

 

A dispersion relation can be then obtained by setting the characteristic 

determinant in equation (II.14) equal to zero. As the result, one can get the following 

secular equation:  

 

   041 222  emtem KmBmKm     (II.16) 

 

where  
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In equations (II.16) and (II.17), the velocity Vt4 corresponds to the speed of the shear-

horizontal bulk acoustic wave (SH-BAW) in the case when the SH-BAW is 

uncoupled with both the electrical potential φ and the magnetic potential ψ:  

 

CVt 4      (II.18) 

 

and the coefficient of the magnetoelectromechanical coupling (CMEMC) is defined 

by the following expression:  
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It is clearly seen in definition (II.19) that the CMEMC depends on all the material 

constants, but the mass density ρ. It is possible to say that the electromagnetic 

constant α couples the other material constants forming the CMEMC and in the case 

of α = 0 the CMEMC reduces to the following formula:  

 
222

1 meem KKK      (II.20) 

 

It is blatant that the reduced CMEMC in expression (II.20) represents a sum of 

two terms. The first term is the well-known coefficient of the electromechanical 

coupling (CEMC) for a purely piezoelectric material:  
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The second term in expression (II.20) is called the coefficient of the 

magnetomechanical coupling (CMMC) for a purely piezomagnetic crystal:  

 

C
hKm 

2
2       (II.22) 

 

Also, it is thought that it is convenient to write down expression (II.17) in the 

following form, in order to introduce the very important wave attribute denoted by 

Vtem below:  
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In expression (II.23), the velocity Vtem is the speed of the SH-BAW coupled with both 

the electrical potential φ and the magnetic potential ψ:  

 

  2/12
44 1 emtKttem KVAVV      (II.24) 

 

Let’s return to equation (II.16) to continue the analysis in order to get all the 

polynomial roots in explicit forms. It is clearly seen that equation (II.16) factors. 

Therefore, equation (II.16) equals to zero when either the first factor or the second 

one zeros it. The first factor gives the following simple equation m(1) = 0 that 

decisively exhibits two purely imaginary polynomial roots:  

 

j)1(
3 n  and j)2(

3 n    (II.25) 

 

because m is defined by expression (II.15). It is worth noting that for the transversely-

isotropic piezoelectromagnetics there always occurs the second pair of the same 

polynomial roots given by expression (II.25), according to the recent results of book 

[89]. This is not true for cubic piezoelectromagnetics. However, the situation when 
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there are two identical pairs of purely imaginary polynomial roots is possible for 

cubic piezoelectromagnetics. This will be further discussed.  

It is also worth noticing that only such polynomial roots as those with negative 

sign for imaginary parts are suitable for further considerations. This choice of a 

negative sign for the root imaginary parts is caused by the necessary condition of 

damping of surface SH-wave towards the depth of the cubic crystals, namely towards 

the negative values of the x3-axis shown in figure II.1. Therefore, the first eigenvector 

in expression (II.15) provides the following likely eigenvector:  
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because m = 0 results in the following:  
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The second factor in equation (II.16) leads to the following solutions of the 

quadratic equation:  
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where B is defined by expression (II.17) or (II.23). Consequently, equations (II.15) 

and (II.28) give the rest four polynomial roots of equation (II.16) in the following 

explicit forms:  
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It is stated that the forms of the polynomial roots in equations (II.28) and (II.29) are 

exactly the same to those recently obtained for cubic piezoelectrics [103, 159] and 

cubic piezomagnetics [14]. Indeed, the found values of the eigenvalues in expression 

(II.29) must be either imaginary or complex for the phase velocity Vph situated below 

the SH-BAW velocity Vtem defined by expression (II.24), because this work has an 

interest in the finding of SH-SAW. According to the recent works in Refs. [103, 159], 

this is not always true because the polynomial roots in equation (II.29) can be real 

just below the velocity Vtem. This unique feature also distinguishes the cubic 

piezoelectromagnetics from the transversely isotropic piezoelectromagnetics.  

First of all, it is possible to find the situation when m(2) = m(3) in expression 

(II.28). It is obvious that they are expressed as follows:  
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giving  
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when the following expression under square root in formula (II.28) is equal to zero:  

 

  0116 222  ememt KKB     (II.33) 

 

This equality (II.33) fulfills for some phase velocity Vph that can be denoted by 

VK. The value of VK can be obtained from equation (II.33) and is defined as follows:  

 

4tKK VaV       (II.34) 
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where  

 

  22/1212 emememK KKKa      (II.35) 

 

For comparison, the factors AK and aK versus the CMEMC Kem
2 are shown in figure 

II.4. It is noted that the two equal eigenvalues in expression (II.31) surely give two 

equal eigenvectors. All suitable eigenvalues in common forms are given in this 

chapter below.  

 

 

 

Figure II.4. The dependences of the non-dimensional factors AK, aK, and MK defined 

by equations (II.24), (II.35), and (II.46), respectively, on the non-dimensional value 

of the CMEMC Kem
2. 
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roots in the common forms given by formulae (II.28) and (II.29). Indeed, one can 

check that these four eigenvalues in expression (II.29) are complex for the phase 

velocity Vph > 0 situated below the value of VK for any value of the CMEMC Kem
2 > 0. 

Sample calculations of these four eigenvalues for the cubic piezoelectrics Bi12SiO20 

were executed in Ref. [159]. Therefore, these complex eigenvalues can be written as 

follows:  
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where  
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In formula (II.41), the absolute value for the odd function such as sine was applied 

because it can change its sign. This was done in order that the eigenvalues in 

formulae (II.36) and (II.38) remain with a negative sign for the imaginary part. In 

formulas (II.40) and (II.41), the well-known formulae from the reference-book [185] 

on mathematics were used for the exponential and trigonometric representations of 

complex numbers such as  
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where  
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2
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2
1 zz   and  12arctan zz    (II.43) 

 

Further, it is possible to investigate these four eigenvalues in the following range 

for the phase velocity Vph: VK < Vph < Vtem. In this Vph-range they are not complex, 

namely they can be imaginary or real in dependence on the CMEMC value. However, 

in this Vph-range one peculiarity such as VK = Vtem occurs. It is possible to calculate 

the CMEMC value denoted by K0
2 for the case of VK = Vtem, using expressions (II.24) 

and (II.34) (see also figure II.4):  

 

  312
0

2  KVVVK temKphem     (II.44) 

 

For Kem
2 < 1/3, one can find that all the eigenvalues given by formula (II.29) are 

imaginary for VK < Vph < Vtem. For Kem
2 < 1/3, two of these four eigenvalues can 

become real in the Vph-range.  

To completely understand the complicated problem, it is possible to calculate the 

CMEMC value denoted by Kt4
2 for the case of VK = Vt4 (see also figure II.4):  

 

  812
44

2  ttKphem KVVVK     (II.45) 

 

Also, it is very interesting to treat the case of VK = VBGM where the velocity VBGM 

stands for the surface Bleustein-Gulyaev-Melkumyan (BGM) wave [89]. The well-

known SH-SAW velocity VBGM can be expressed as follows:  
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Therefore, the calculated CMEMC value denoted by KBGM
2 for the case of VK = VBGM 

reads: 
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  120.20710678
2

1222 


 BGMBGMKphem KVVVK   (II.47) 

 

The non-dimensional factor MK defined by expression (II.46) is shown by the gray 

line in figure II.4 for comparison with the other non-dimensional factors AK and aK.  

It is central to state that the existence of the SH-SAWs propagating with the 

velocity VBGM in cubic piezoelectromagnetics will be demonstrated in Chapter V. 

However, it is thought that there is a problem of interpretation of the theoretical result 

given by formula (II.47). It is still uncertain that the surface BGM-wave can 

propagate in cubic piezoelectromagnetics with VK = VBGM. For this case, if the BGM-

wave can propagate, it is possible to conclude that the value of VK represents a true 

velocity and the second SH-SAW characterized by the velocity VK can always exist in 

a cubic crystal for 0 < Kem
2 < K0

2, but Kem
2 = KBGM

2 for VK = VBGM. It is noted that the 

existence of the solution VK in a cubic system does not depend on applied electrical 

and or magnetic boundary conditions. This is a unique natural case for a cubic system. 

Hence, this conclusion can be also true for the corresponding velocity VK in cubic 

piezoelectrics and cubic piezomagnetics.  

Indeed, this is an additional problem for experimentalists to verify the SH-SAW 

existence for the corresponding cases of VK = VBGpe, VK = VBGpm, or VK = VBGM in 

cubic piezoelectrics, piezomagnetics, or piezoelectromagnetics. For this problem, 

suitable cubic crystals must be studied. They must have the corresponding values of 

the CEMC, CMMC, or CMEMC obtained in this work and given by formula (II.47). 

One of the suitable cubic piezoelectrics is the Chalcogenide Tl3VS4. It belongs to the 

cubic class 43m and has very close value of the CEMC Ke
2 ~ 0.2089. This 

Chalcogenide was also studied in recent paper [186] concerning interfacial wave 

propagation along the common interface between cubic piezoelectrics. Ref. [186] 

also graphically shows that the velocity VK is very close to the interfacial SH-wave 

solution for Tl3VS4. The material constants for Tl3VS4 are listed in the following 
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chapter because this piezoelectrics is also used in this work as the piezoelectric phase 

for some piezoelectromagnetic two-phase materials.  

Note that the classical surface Bleustein-Gulyaev (BG) waves in piezoelectrics 

and piezomagnetics can propagate with the following corresponding velocities:  
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where the velocity VBGEC corresponds to the electrically closed surface (φ = 0) of the 

piezoelectrics and the velocity VBGMO corresponds to the magnetically open surface (ψ 

= 0) of the piezomagnetics. In expressions (II.48) and (II.49), the SH-BAW velocity 

Vte coupled with the electrical potential φ in a piezoelectrics and the SH-BAW 

velocity Vtm coupled with the magnetic potential ψ in a piezomagnetics are 

correspondingly defined as follows:  

 

  2/12
4 1 ette KVV      (II.50) 

  2/12
4 1 mttm KVV      (II.51) 

 

In expressions (II.50) and (II.51), the SH-BAW velocity Vt4 uncoupled with both the 

potentials is defined by expression (II.18) and the CEMC Ke
2 and CMMC Km

2 are 

given by formulae (II.21) and (II.22), respectively.  

It is worth noting that the surface BGM-wave in transversely isotropic 

piezoelectromagnetics exponentially decays from the crystal surface towards the 

depth of the crystal. This occurs due to all imaginary eigenvalues. This type of wave 

decay is also true for cubic piezoelectromagnetics with the CMEMC Kem
2 < KBGM

2 

(all imaginary eigenvalues). However, it is clear that sine-like oscillations can be 

added to the exponential decay for cubic piezoelectromagnetics with the CMEMC 
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Kem
2 > KBGM

2, because there are two complex eigenvalues. This is also true for the 

classical surface BG-wave in cubic piezoelectrics or cubic piezomagnetics.  

Also, it is expected that the SH-waves propagating with the velocity VBGM can 

exist when they are guided by the interface between two transversely isotropic 

piezoelectromagnetics or two cubic piezoelectromagnetics. This assumption can be 

true because the interfacial SH-waves propagating with the velocity VBGEC between 

two transversely isotropic piezoelectrics were discovered by Maerfeld and Tournois 

[187] in 1971. Also, they in Ref. [187] have discovered the new interfacial wave 

called the interfacial Maerfeld-Tournois (MT) wave. It is noted that both the classical 

surface BG-wave and interfacial electro-acoustic MT-wave [187] may be caused by 

interfacial crack propagation between two dissimilar piezoelectrics. However, the 

interfacial MT-waves cannot exist in cubic piezoelectrics (hence, in cubic 

piezomagnetics).  

Ref. [186] has coped with a study of interfacial SH-wave propagation in cubic 

piezoelectrics and also discovered a new interfacial SH-wave guided by the interface 

between two dissimilar cubic piezoelectrics Bi12SiO20 and Bi12GeO20. It was also 

found in Ref. [186] that in such two-layer cubic systems, the interfacial SH-waves 

propagating with the velocity VBGEC can also exist. Ref. [103] has discovered the 

ultrasonic surface Zakharenko wave (USZW), a new SH-SAW guided by the free 

surface of a cubic piezoelectrics and also found that the surface SH-waves 

propagating with the velocity VBGEC can also exist on the metalized surface. Also, Ref. 

[14] has demonstrated the existence of the USZW and the surface SH-waves 

propagating with the velocity VBGMO in cubic piezomagnetics. This means that the 

BG-wave velocity VBGEC or VBGMO can be found when different acoustic systems are 

treated. This fact demonstrates some similarity among different problems of SH-wave 

propagation.  

Finally, it is necessary to write down some useful relations for m(2,3) defined by 

expression (II.28) and n3
(3,5) defined by expression (II.29). They are as follows:  
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It is possible to resolve the main problem for this chapter, namely the finding of 

the suitable eigenvectors in explicit forms. For this purpose, the first equation of the 

system of three homogeneous equations (II.11) reveals the following dependence of 

the eigenvector component U0 on the other components φ0 and ψ0, using equation 

(II.14):  
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where γK can be determined using the boundary conditions and can be defined as 

follows:  
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In formula (II.59), relation (II.24) between the SH-BAW velocities Vt4 and Vtem is 

taken into account. Note that γK = aK for the case of two equal eigenvalues given by 

formulae (II.30) and (II.31).  
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Indeed, it is possible to exclude the eigenvector component U0 from the system 

of three homogeneous equations (II.11), for which the matrix determinant is given by 

equation (II.14) in the explicit form. Thus, the resulting system of two homogeneous 

equations can be then written as follows:  
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Using expression (II.58) and the first equation of two equations (II.60), it is 

possible to demonstrate the first set of the eigenvectors which also contains the 

previously found eigenvector given by expression (II.26):  
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So, the first set of the eigenvectors is defined by expressions (II.26), (II.61), and 

(II.62) for the eigenvalues defined by corresponding expressions (II.25) and (II.29).  

Exploiting expression (II.58) and the second equation of two equations (II.60), it 

is possible to express the second set of the eigenvectors which also contains the 

common eigenvector (II.26):  
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Accordingly, the second set of the eigenvectors is defined by expressions (II.26), 

(II.63), and (II.64) for the same eigenvalues (II.25) and (II.29).  

It is blatant that it is more convenient to use m(2,3) instead of n3
(3,5) for further 

mathematical analysis to simplify the complicated problem of finding of SH-SAWs 

in cubic piezoelectromagnetics. This is true because the explicit forms of these two 

eigenvectors given by expression (II.26) and corresponding expressions from (II.61) 

to (II.64) are significantly more problematic than the corresponding simple forms for 

the transversely isotropic piezoelectromagnetics [89]. Notice that for the transversely 

isotropic piezoelectromagnetics [89], the first set of the eigenvector components 

combines ε and α, but the second set links μ and α.  

It is also noted that for the case of two equal eigenvalues in expression (II.31), 

one can get the following two equal eigenvectors:  

 

   )5(0)5(0)5(0)3(0)3(0)3(0 ,,,,  UU     (II.65) 

 

These equal eigenvalues and eigenvectors should give the additional solution for the 

phase velocity Vph such as Vph = VK. This solution is always present and does not 

depend on the different electrical and magnetic boundary conditions treated in 

Chapters from V to XIII. The following chapter introduces the piezoelectromagnetic 

two-phase materials which can be engineered using cubic piezoelectrics and cubic 

piezomagnetics.  
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CHAPTER III.  Piezoelectrics, Piezomagnetics, and Piezoelectromagnetic 

Composite Materials  

 

 

This chapter acquaints the reader with some piezoelectric and piezomagnetic 

materials which can be used for creation of piezoelectromagnetic composite materials. 

It is obvious that it is necessary to treat materials with the strong piezoelectric effect 

as suitable candidates for coupling with piezomagnetic phase materials. Therefore, 

table III.1 lists the piezoelectric materials. The cubic crystals Bi12SiO20 and 

Bi12GeO20 of class 23 are well-known and commercially available. The other cubic 

structure materials such as ternary thallium Chalcogenides Tl3VS4 and Tl3TaSe4 of 

class 43m are also listed in the table because they are stronger piezoelectrics. 

However, they are commercial availability is significantly smaller than that of the 

other piezoelectrics listed in the table, probably due to their mechanical softness and 

fabrication difficulties. Also, it is well-known that many transversely-isotropic 

piezoelectric materials such as different Lead Zirconate Titanates (PZTs) can possess 

very strong piezoelectric effect compared with cubic piezoelectrics. One hexagonal 

piezoelectric material of Lead Zirconate Titanates called PZT-5H is also given in 

table III.1. It is seen in the table that this PZT-5H has doubled coefficient of the 

electromechanical coupling (CEMC Ke
2) compared with the strongest cubic 

piezoelectrics Tl3TaSe4.  

The second group of materials is introduced in table III.2. They are 

piezomagnetics. It is stated that these materials represent ferrites of cubic class m3m. 

The literature about the properties of the piezoelectrics listed in table III.1 and 

piezomagnetics listed in table III.2 is given in the introduction of this book. 

According to the table, these cubic piezomagnetics possess large coefficients of the 

magnetomechanical coupling (CMMC Km
2). However, this is not obligatory and the 

well-known ferrite called Alfenol has the CMMC Km
2 only by about 0.08. This value 

is very small compared with the other ferrites from the table and even an order 
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smaller than that for Metglas. Indeed, the Metglas CMMC Km
2 ~ 0.80 is very larger 

and even significantly larger than those of Terfenol-D and Galfenol. Note that the 

structure of Terfenol-D can be both the cubic and the transversely-isotropic. It is 

thought that it is natural to treat the cubic structure Terfenol-D together with the other 

cubic piezomagnetics listed in table III.2.  

 

 

Table III.1. The strongly piezoelectric cubic crystals including the Chalcogenides 

Tl3VS4 and Tl3TaSe4, and the transversely-isotropic material PZT.  

Crystal  Class  ρ, kg/m3  C, 1010 N/m2  e, C/m2  ε, 10–10 F/m Ke
2  

Cubic system  

Tl3VS4  43m  6140 0.470 0.550 3.0812 0.2089 

Tl3TaSe4  43m  7280 0.410 0.320 0.8943 0.2793 

Bi12SiO20  23  9070 2.451 1.122 3.6390 0.1412 

Bi12GeO20  23  9200 2.562 0.983 3.3380 0.1131 

Hexagonal system  

PZT-5H  6 mm 7750 2.300 17.00 150.40 0.5458 

 

 

Table III.2. The piezomagnetic ferrites such as cubic Terfenol-D, Galfenol, Alfenol, 

and Metglas. It is noted that T stands for Tesla units and [T] = [N/(A×m)].  

Name  Class  ρ, kg/m3 C, 1010 N/m2 h, T  µ, 10–6 N/A2  Km
2  

Terfenol-D m3m  7800 0.6100 97.1190 2.74889 0.562498 

Galfenol  m3m  7973 12.700 3331.34 206.830 0.422494 

Alfenol  m3m  7848 12.300 824.627 66.85795 0.082691 

Metglas  m3m  7180 10.447 28367.248 9550.00 0.806565 

 

 

As a result, it is possible to have attempts to experimentally obtain some 

piezoelectromagnetic composite materials consisting of the piezoelectrics and 

piezomagnetics listed in corresponding tables III.1 and III.2. This work has an 
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interest in study of cubic piezoelectromagnetics. Therefore, the material constants for 

several cubic piezoelectromagnetics (PEMs) are listed in table III.3. This is the first 

attempt to theoretically predict some wave properties of the piezoelectromagnetic 

composites listed in the table. Indeed, the material constants of the formed 

piezoelectromagnetics must have the average material properties borrowed from the 

corresponding piezoelectric and piezomagnetic phases. However, the very important 

parameter such as the electromagnetic constants α can be experimentally determined 

for each piezoelectromagnetic composite. To theoretically predict possible values of 

this material constant, it is possible to treat several values of the constant α in order to 

find out an influence of the value of the parameter α on some wave properties of the 

piezoelectromagnetics. Therefore, three different values of the parameter α were 

introduced in the table for each piezoelectromagnetics.  

 

 

Table III.3. The piezoelectromagnetic composite materials consisting of the 

piezoelectrics and piezomagnetics listed in tables III.1 and III.2, respectively. For the 

piezoelectromagnetic composite materials, the values of the corresponding 

electromagnetic constants α are as follows: α2 = 0.01εµ, 0.0001εµ, and 0.000001εµ × 

10–16 [s2/m2] for (Kem
2)1, (Kem

2)2, and (Kem
2)3, respectively.  

PEM ρ, kg/m3 C, 1010 N/m2 e, C/m2 h, T ε, 10–10 F/m 

Metglas–PZT-5H  7465.0 6.3735 8.500 14183.624 75.2000 

Tl3TaSe4–Terfenol-D 7540.0 0.5100 0.160 48.55950 0.44715 

Galfenol–Tl3VS4  7056.5 6.5850 0.275 1665.670 1.54060 

Galfenol–Tl3TaSe4  7626.5 6.5550 0.160 1665.670 0.44715 

Alfenol–Tl3VS4  6994.0 6.3850 0.275 412.3135 1.54060 

PEM µ, 10–6 N/A2 εµ, 10–16 (Kem
2)1 (Kem

2)2 (Kem
2)3 

Metglas–PZT-5H  4775.00 359080.0 0.756205726 0.805544722 0.811147029 

Tl3TaSe4–Terfenol-D 1.374445 0.614583 0.413927670 0.444811780 0.448265638 

Galfenol–Tl3VS4  103.415 159.3211 0.407928334 0.413810203 0.414761214 

Galfenol–Tl3TaSe4  103.415 46.24202 0.410159006 0.416861038 0.417895963 

Alfenol–Tl3VS4  33.428975 51.50068 0.083218461 0.086849117 0.087285935 
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It is clearly seen in table III.3 that these different values of the α do not 

significantly change the very important parameter Kem
2 called the coefficient of the 

magnetoelectromechanical coupling (CMEMC). The first value of α is one order 

larger than the second and the second value is one order larger than the third. As a 

result, the first value of Kem
2 denoted by (Kem

2)1 is larger than the second and the 

second value denoted by (Kem
2)2 is slightly larger than the third, (Kem

2)3. It is noted 

that the wave properties of the transversely isotropic piezoelectromagnetics studied in 

book [89] depend on both the parameters Kem
2 and α. Therefore, it is expected that 

this can be true for any cubic piezoelectromagnetics. Also, it is necessary to state that 

only the composite material Alfenol–Tl3VS4 has the CMEMC values of Kem
2 < 1/3 

and the rest cubic composites have the values of Kem
2 > 1/3. The highest value of Kem

2 

was calculated for Metglas–PZT-5H, Kem
2 ~ 0.81. This value is already very large, 

but significantly less than unity.  

Also, it is necessary to briefly discuss the cubic piezoelectromagnetic 

composites listed in table III.3. The first composite consists of cubic piezomagnetics 

Metglas and the transversely isotropic piezoelectrics PZT-5H. However, it is 

expected that the resulting piezoelectromagnetic composite must relate to the cubic 

structure of class 23. The transversely isotropic Lead Zirconate Titanate Pb(Zr,Ti)O3 

such as PZT-5H was used because its properties are well-known. Lead-based 

ceramics have excellent dielectric and piezoelectric properties and are currently the 

dominant material system for sensors, actuators, and resonators. However, there is the 

problem of toxicity of lead-based composite materials [188]. Indeed, the recent paper 

[188] by Bichurin et al. discussed this problem and conducted experimental results 

with Pb-free piezoelectric compositions. They presented results on the 

magnetoelectric performance of Ni-NKN, Ni-NBTBT and NZFO-NKN, NZFO-

NBTBT systems, where NKN = (Na,K)NbO3, NBTBT = Na0.5Bi0.5TiO3-BaTiO3, and 

NZFO = Ni1−xZnxFe2O4 and discussed their importance as an environmentally 

friendly alternative. Possible alternatives can be the following solid solutions: NKN-

LiNbO3 [189], NKN-LiTaO3 [190], NKN-LiSbO3 [191], NKN-Li(Nb,Ta,Sb)O3 [192], 

NKN-BaTiO3 [193], NKN-SrTiO3 [194, 195], and NKN-CaTiO3 [196]. They have 
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received considerable attention mainly for two reasons: piezoelectric properties exist 

over a wide range of temperature, and several possibilities can be used for 

substitutions and additions. Ref. [188] also described the magnetostrictive phase by 

the way when it has a cubic symmetry. It was also mentioned in Ref. [188] that an 

interesting possibility for one can be the problem of finding of lead-free ceramics 

with a high piezoelectric performance in order to combine it with magnetostrictive 

material with high piezomagnetic coefficient. To obtain environment-friendly 

magnetoelectric composite materials with desired sensitivity is a problem for the last 

two decades.   

According to Ref. [8], piezoelectromagnetic composite materials still need some 

important issues addressed when fabricating the sintered or in situ magnetoelectric 

particulate composites to obtain superior magnetoelectric response.  

 

 no chemical reaction should occur between the magnetostrictive and 

piezoelectric materials during the sintering process. The chemical reaction 

may cause decrease in the magnetostrictive or piezoelectric properties of 

either phase;  

 the resistivity of the magnetostrictive phase should be as large as possible. 

If the resistivity of the magnetostrictive phase is low, the leakage current 

causes significant difficulties for the electric poling process and reduces 

the magnetoelectric properties of the composites. The ferrite particles can 

form connected chains, and the electric resistivity of the composites is 

significantly reduced due to the lower resistivity of the ferrite. Therefore, 

good dispersion of the ferrite particles in the matrix is required. This can 

allow one to sustain sufficient electric resistivity of the composite;  

 for good mechanical coupling, pores as mechanical defects at the interface 

between the two phases should not exist in the composite.  

 

There are many problems of fundamental importance in a theoretical study of 

piezoelectric-piezomagnetic composite materials. The obtained solutions can be 
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complex functions of the shape of inclusions, phase properties, and volume fraction 

of the inclusions of one phase into the second for two-phase composites. For example, 

the theoretical work [197] treated a number of problems which cover a range from 

the derivation of the analytical expressions for the magneto-electro-elastic Eshelby 

tensors to the analysis of the magnetoelectric coupling effect which is a new property 

exhibited in the piezoelectric-piezomagnetic composite. However, only the 

transversely isotropic cases for the matrix and inclusions with different magneto-

electro-elastic moduli were used for simplicity. The possible shapes of inclusions are 

of elliptic cylinder, circular cylinder, disk, and ribbon. Also, closed-form solutions 

for the magnetoelectric coupling coefficients are compactly presented. The obtained 

results of the theoretical investigations in Ref. [197] can be helpful in understanding 

the magnetoelectroelastic behaviour of the composite material with inclusions.  

The magnetoelectroelastic inclusions and inhomogeneity problems are also 

discussed in Ref. [198]. This work also developed a numerical algorithm to evaluate 

the magnetoelectroelastic Eshelby tensors for the general material symmetry and 

ellipsoidal inclusion shape. Li [198] has theoretically studied the average 

magnetoelectroelastic field in a multi-inclusion or inhomogeneity embedded in an 

infinite matrix. Li has shown that the average field in an annulus surrounding an 

inclusion embedded in an infinite magnetoelectroelastic medium only depends on the 

shapes and orientations of two ellipsoids, which generalizes observation in elasticity 

by Tanaka and Mori. The average field in a multi-inclusion can be determined 

exactly. Using the equivalent-inclusion concept, the average field in a multi-

inhomogeneity can be also obtained. The obtained solutions of multi-inclusion and 

inhomogeneity problems can serve as basis for an averaging scheme to model the 

effective magnetoelectroelastic moduli of heterogeneous materials. This generalizes 

Nemat-Nasser and Hori's multi-inclusion model in elasticity. It is noted that Li [197] 

proposed model which recovers Mori-Tanaka and self-consistent approaches as 

special cases. Finally, he provided some numerical results to demonstrate the 

applicability of the model and discussed the potential techniques to enhance the 

magnetoelectric effect in practical composites are also discussed.  
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The purpose of this book is not to treat all possible influences of different 

inclusions of one phase into the matrix of the second phase. It is possible that this 

influence can be significant or not. It is expected that the value of the electromagnetic 

constant α can be sensitive to the problems. However, the significant sensitivity of 

the CMEMC Kem
2 on the dramatic change in the constant α (see table III.3) is 

questionable. Therefore, it is expected that any dramatic change in the constant α can 

slightly change the propagation velocity of the shear-horizontal bulk acoustic wave 

(SH-BAW) in a bulk piezoelectromagnetics. As the result, any found SH-SAW 

velocity will follow the SH-BAW velocity because it should be situated slightly 

below the SH-BAW velocity. Also, the second set of the theoretical problem is to use 

different boundary conditions. Therefore, the next chapter describes the electrical, 

magnetic, and mechanical boundary conditions which can strongly influence on the 

propagation characteristics of the surface acoustic waves.  
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CHAPTER IV.  Mechanical, Electrical, and Magnetic Boundary Conditions  

 

 

The previous chapter provided material constants for piezoelectromagnetic 

solids. However, figure II.1 from Chapter II showed the configuration when there is a 

contact of the corresponding surface of a cubic piezoelectromagnetics with a vacuum. 

Therefore, it is also necessary to introduce the vacuum material constants and the 

corresponding expressions. For a vacuum (free space), the elastic constant C0 is as 

follows: C0 = 0.001 Pa [199]. This value of C0 is thirteen orders smaller than that for 

a condensed matter (solid). Thus, it is too negligible to account this value in 

calculations. Also, the vacuum dielectric permittivity constant has the following 

value: ε0 = 10–7/(4πCL
2) = 8.854187817×10–12 [F/m] where CL = 2.99782458×108 

[m/s] is the speed of light in a vacuum. Also, the Laplace equation of type φf = 0 can 

be written as follows:  

 

  00
2
3

2
1  fkk      (IV.1) 

 

The electrical potential φf0 can be expressed in the following form:  

 

    txkxkF E
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Also, the vacuum magnetic permeability constant μ0 must be used, μ0 = 4π×10–7 

[H/m] = 12.5663706144×10–7 [H/m]. The Laplace equation of type ψf = 0 is written 

in the following form:  
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The magnetic potential in a vacuum reads:  
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    txkxkF M
f   1131

)0(
0 jexpexp   (IV.4) 

 

According to the configuration shown in figure II.1, the electrical and magnetic 

potentials in expressions (IV.2) and (IV.4) must exponentially decrease for k1 > 0 

with increase in the coordinate x3 > 0.  

In equations (IV.2) and (IV.4), the weight factors F(E0) and F(M0) serve for 

determination of the electrical and magnetic potentials. These potentials can be also 

determined in a solid. For this purpose, complete mechanical, electrical, and magnetic 

characteristics are utilized. For a solid piezoelectromagnetics, the complete 

mechanical displacement UΣ, complete electrical potential φΣ, and complete magnetic 

potential ψΣ can be written in the plane wave forms as follows:  
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These weight factors F(1), F(3), and F(5) in expressions from (IV.5) to (IV.7) can be 

determined from equations in which suitable boundary conditions are accounted. 

These forms of the complete characteristics in expressions from (IV.5) to (IV.7) can 

be used in the boundary conditions described below.   

For a studied cubic piezoelectromagnetics, the mechanically free surface is used 

as one of the possible mechanical boundary conditions at the interface x3 = 0 shown 

in figure II.1. Also, the electrical and magnetic boundary conditions at the interface x3 

= 0 between a vacuum and the piezoelectromagnetic half-space must be satisfied. In 

1992, the realization of the mechanical, electrical, and magnetic boundary conditions 

is described by V.I. Al’shits, A.N. Darinskii, and J. Lothe in Ref. [106]. It is well-

known that the electrical boundary conditions must satisfy the cases of the 
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electrically closed surface (the electrical potential φ = 0) and electrically open surface 

(the electrical displacement component D3 = 0). For example, the electrically closed 

surface can be realized by surface metallization. Also, the well-known magnetic 

boundary conditions of the magnetically closed surface (the magnetic flux component 

B3 = 0) and magnetically open surface (the magnetic potential ψ = 0) can occur. 

According to Ref. [106], the case of ψ = 0 can be realized when a crystal surface 

contacts with a ferromagnetic covering characterized by a relative magnetic 

susceptibility μr >> 1.  

Concerning the mechanically free surface, the mechanical boundary condition 

for the normal component of the stress tensor σ32(x3 = 0) = 0 at the interface x3 = 0 

between the crystal surface and a vacuum can be written as follows:  
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where F1 = F(1), F2 = F(3), and F3 = F(5).  

The electrical boundary conditions at the interface x3 = 0 can be described as 

follows:  

  Continuity of the electrical displacement normal component D3 at the interface 

x3 = 0, namely  

 
fDD 33       (IV.9) 
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and the vacuum characteristics D3
f can be defined by  
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 Continuity of the electrical potential φ at the interface:  
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where  
)5(0

3
)3(0

2
)1(0

1  FFF      (IV.13) 

 

In condition (IV.12), the electrical potential φ f in a vacuum is  

 
f

E
f F 0       (IV.14) 

 

Also, the magnetic boundary conditions can be expressed as follows:  

 Continuity of the magnetic flux normal component B3 at x3 = 0, namely  
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In expression (IV.15), the value of B3
f for a vacuum is expressed as follows:  
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 Continuity of the magnetic potential ψ at x3 = 0:  
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The magnetic potential ψ f in a vacuum used in equation (IV.18) is defined by  
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f

M
f F 0       (IV.20) 

 

This brief review of the different boundary conditions introduced in this chapter 

can allow the reader to grasp the following chapters. The following chapters study the 

influence of different electrical and magnetic boundary conditions applied at the 

interface between the cubic piezoelectromagnetics and a vacuum. It is thought that 

the case of the electrically closed surface (the electrical potential φ = 0) and the 

magnetically open surface (the magnetic potential ψ = 0) is a common realization of 

the boundary conditions to commence the analysis. This is the case of study for 

Chapter V.  
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CHAPTER V.  The Case of σ32 = 0, φ = 0, and ψ = 0 at x3 = 0  

 

 

The main purpose of this chapter is a demonstration of some similarity between 

problems of SH-SAW propagation in the transversely isotropic 

piezoelectromagnetics studied in the book cited in Ref. [89] and cubic ones studied in 

this work. Certainly, it is thought that the surface Bleustein-Gulyaev-Melkumyan 

(BGM) wave [88, 89] can propagate in piezoelectromagnetics revealing the cubic 

symmetry. Note that the theoretical publication [88] in which the surface BGM-wave 

propagation was first demonstrated relates to the beginning of this millennium. 

However, the classical surface Bleustein-Gulyaev (BG) wave propagation [90, 91] in 

transversely isotropic piezoelectrics was theoretically demonstrated significantly 

earlier, namely about forty years ago. This quite large difference in time between 

these two very important events is caused by serious difficulties in theoretical 

analysis when a piezoelectromagnetic system is treated. Indeed, more parameters 

must be accounted for transversely isotropic piezoelectromagnetics compared with 

piezoelectrics or piezomagnetics of the same symmetry system.  

To analytically treat a cubic piezoelectromagnetics concerning the existence of 

SH-SAW propagation is very complicated theoretical problem. This is true because 

the theoretical description of SH-SAW propagation is problematic even in the case of 

significantly more simple system such as a cubic piezoelectrics (hence, cubic 

piezomagnetics). Therefore, one can find that transversely isotropic materials are 

researched more widely compared with cubic ones. Consequently, experimentalists 

prefer to deal with transversely isotropic materials (piezoelectrics, piezomagnetics, 

and piezoelectromagnetics). Moreover, it is thought that this work dealing with cubic 

piezoelectromagnetics is the first one. Therefore, it also has the purpose to pave the 

way for theoreticians and experimentalists in the direction of investigations of SH-

SAW propagation in cubic piezoelectromagnetics.  
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In 2007, Arman Melkumyan [88] has theoretically treated a problem of SH-wave 

propagation guided by the interface between the transversely isotropic 

piezoelectromagnetic solid of class 6 mm and a vacuum. Ref. [89] has graphically 

shown the propagation direction perpendicular to the sixfold symmetry axis. In Refs. 

[88, 89], it was used the mechanical boundary condition such as the normal 

component of the stress tensor at the interface must vanish, namely σ32(x3 = 0) = 0. 

Besides the mechanical boundary condition, different electrical and magnetic 

boundary conditions were applied at the interface x3 = 0. He has found that the SH-

SAW called the surface BGM-wave can propagate along the electrically closed 

surface (electrical boundary condition of φ = 0) when the surface is also magnetically 

open (magnetic boundary condition of ψ = 0).  

The interface x3 = 0 for the case of cubic piezoelectromagnetics is shown in 

figure II.1 of Chapter II. It is a key point to mention here that in this work, the SH-

waves propagate in direction [101]. In this work, utilization of the same mechanical, 

electrical, and magnetic boundary conditions (namely, σ32 = 0, φ = 0, and ψ = 0) at 

the surface x3 = 0 of a cubic piezoelectromagnetics leads to the following system of 

three homogeneous equations also used in Ref. [89]:  
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  (V.1) 

 

For this set of the boundary conditions, relatively simple system of three 

homogeneous equations (V.1) can provide explicit forms for the suitable SH-SAW 

velocity and the weight factors F1, F2, and F3. However, all of them must be obtained 

in this chapter below.  

In three-equation system (V.1), the third-order boundary-condition determinant 

(BCD3) of the coefficient matrix can be then written in more explicit form. For this 
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purpose, it is possible to use the first set of three eigenvectors with the components 

defined by expressions (II.26), (II.61), and (II.62) for the eigenvalues defined by 

corresponding expressions (II.25) and (II.29) in Chapter II. In order to find the weight 

factors F1, F2, and F3 for suitable SH-SAW phase velocity Vph, the BCD3 must vanish. 

After some transformations, the matrix BCD3 can be then led to the following 

simplified form:  
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Expanding the BCD3 in expression (V.2), a quite complicated secular equation 

can be then obtained. However, this secular equation can be significantly simplified 

and the final form of it can be given as follows:  
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Using definition (II.15) for m from Chapter II, it is possible to write equation 

(V.3) without m. The secular equation can be then written only with the eigenvalues 

n3 defined by (II.29) from Chapter II. It now reads:  

 

      011 22)3(
3

)5(
3

22)5(
3

)3(
3  KK nnnn      (V.4) 

 

It is clearly seen in equation (V.4) that some rearrangement of the terms can 

further simplify it. Therefore, the final form of the secular equation is as follows:  
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Utilizing the useful relation in expression (II.55) for the eigenvalues and 

definition (II.59) for the value of γK, one can obtain the following equation which 

already openly contains the phase velocity Vph:  
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At the following step for simplification of equation (V.6), it is possible to use the 

velocity Vtem expressed by relation (II.24) instead of the velocity Vt4 defined by 

expression (II.18) in Chapter II.  
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Therefore, it is possible to write the following well-known form for the velocity 

of the surface Bleustein-Gulyaev-Melkumyan (BGM) wave [88, 89, 200]:  
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In equations (V.7) and (V.8), the coefficient of the magnetoelectromechanical 

coupling (CMEMC) Kem
2 is given in the well-known compact form written in 

expression (II.19) in Chapter II.  

For some further analytical investigations done in Ref. [200], it is thought that 

the form of equation (V.8) can be conveniently written in the following form:  
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where  
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Also, it is necessary to mention that formula (V.8) for the velocity VBGM can be 

readily reduced to the well-known velocity of the classical surface Bleustein-Gulyaev 

(BG) waves [90, 91] defined by corresponding equations (II.48) and (II.49) from 

Chapter II. This is true when Kem
2 → Ke

2 (h = 0 and α = 0 for a piezoelectrics) or Kem
2 

→ Km
2 (e = 0 and α = 0 for a piezomagntics).  

Using equations (V.1) and (V.2), tree equations for determination of the weight 

factors F1, F2, and F3 can be then written as follows:  
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It is noted that the explicit forms of the weight factors F1, F2, and F3 in equation (V.1) 

can be very complicated. Using expression (V.11), it is possible to get the factors F2 

and F3 from the first equation in three-equation system (V.11). Using them for the 

second or third equation in (V.1), it is possible to obtain the weight factor F1. 

Therefore, all the weight factors for this case can be written in compact forms as 

follows:  
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It is thought that these compact forms of the weight factors F1, F2, and F3 in 

equations (V.12), (V.13), and (V.14) are convenient for calculations. It is noted that 

these factors depend on the values explicitly defined in Chapter II. Also, they look 
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like significantly complicated characteristics compared with those for the surface 

BGM wave propagation in the transversely isotropic piezoelectromagnetics [89].  

Also, it is necessary here to state that when the reader will use the second set of 

three eigenvectors with the components defined by expressions (II.26), (II.63), and 

(II.64) for the same eigenvalues defined by corresponding expressions (II.25) and 

(II.29) in Chapter II, the obtained explicit form for the propagation wave velocity will 

be exactly the same SH-SAW velocity defined by relation (V.8). Indeed, in this case 

of the boundary conditions, the use of the both sets of the eigenvectors leads to the 

same result. This is like the case of SH-SAW propagation in the transversely 

isotropic piezoelectromagnetics.  

For a solid piezoelectromagnetics, the complete mechanical displacement UΣ, 

complete electrical potential φΣ, and complete magnetic potential ψΣ are given in the 

plane wave forms written in expressions from (IV.5) to (IV.7) in the previous chapter. 

Using findings obtained in this chapter, the complete displacement and potentials can 

be then introduced as follows:  
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where x3 < 0 (see figure II.1 in Chapter II) and VBGM is defined by relation (V.8).   

Because this chapter solidly obtained the explicit form for the SH-SAW velocity 

VBGM, it is already possible to give sample calculations for the cubic piezoelectric 

composite materials listed in table III.3 introduced in Chapter III. Indeed, these 

calculations of the velocity VBGM can be done utilizing formula (V.8). Table V.1 lists 

the calculated wave characteristics for the cubic piezoelectromagnetics introduced in 

Chapter III. In the table, the three different values of VK, Vtem, and VBGM are given due 

to three different values of the CMEMC Kem
2 given in table III.3. It is obvious that the 

value of the SH-BAW velocity Vt4 defined by relation (II.18) does not depend on the 
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value of the CMEMC Kem
2 defined by relation (II.19) in Chapter II. These three 

values of the CMEMC Kem
2 correspond to three various values of the electromagnetic 

constant α which dramatically differ from each other. However, the corresponding 

functions Kem
2(α) in table III.3 do not differ dramatically. As a result, the calculated 

three values of the velocity VBGM listed in table V.1 do not differ dramatically. This is 

also true for the values of VK and Vtem. The results of calculations given in table V.2 

support this statement.  

 

 

Table V.1. The wave characteristics (all in m/s) such as the SH-BAW velocities 

Vt4 and Vtem, as well as the solution VK and the SH-SAW velocity VBGM.  

PEM  

composite  

 (VK)1 (Vtem)1 (VBGM)1 

Vt4  (VK)2 (Vtem)2 (VBGM)2 

  (VK)3 (Vtem)3 (VBGM)3 

Metglas– 

PZT-5H  

 3678.447975787 3872.235689401 3494.876043793 

2921.958806791 3698.141918114 3926.252392852 3513.830745572 

  3700.266095928 3932.338930933 3515.911465808 

Tl3TaSe4–

Terfenol-D  

 974.6381134971 977.9418053774 935.0971412344 

822.4308925036 982.5964255669 988.5645944468 940.5489993757 

  983.4411632428 989.7454829681 941.1423281090 

Tl3VS4– 

Galfenol  

 3614.077804857 3624.711880315 3469.235044605 

3054.803058243 3620.037327927 3632.275425946 3473.206940663 

  3620.990544603 3633.496860330 3473.845611497 

Tl3TaSe4– 

Galfenol  

 3470.652006748 3481.430690090 3330.913090240 

2931.728242148 3477.114881325 3489.693942470 3335.238062880 

  3478.100810794 3490.968207627 3335.901782658 

Tl3VS4– 

Alfenol  

 2815.130797809 3144.674241233 3135.380401976 

3021.465479859 2836.855262613 3149.939882162 3139.866866103 

  2839.407562615 3150.572818213 3140.404200088 
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Table V.2. The differences (all in m/s) between the corresponding values for the 

SH-BAW velocity Vtem and those for the SH-SAW velocity VBGM. They correspond to 

three various values of the CMEMC (Kem
2)1, (Kem

2)2, and (Kem
2)3 listed in table III.3.  

PEM  

composite  
(Vtem)2 – (Vtem)1 (Vtem)3 – (Vtem)2 (VBGM)2 – (VBGM)1 (VBGM)3 – (VBGM)2 

Metglas– 

PZT-5H  
54.02 6.09 18.95 2.08 

Tl3TaSe4–

Terfenol-D  
10.62 1.18 5.45 0.59 

Tl3VS4– 

Galfenol  
7.56 1.22 3.97 0.64 

Tl3TaSe4– 

Galfenol  
8.26 1.27 4.32 0.66 

Tl3VS4– 

Alfenol  
5.27 0.63 4.49 0.54 

     

 

 

Table V.2 lists the calculated differences between the corresponding values of 

the SH-BAW velocity Vtem and between the corresponding values of the SH-SAW 

velocity VBGM. The reader can calculate the corresponding differences such as (VK)2 – 

(VK)1 and (VK)3 – (VK)2 in order to compare the obtained results with those obtained in 

table V.2. The calculations for the VK are not given in the table, because this chapter 

has in interest in comparison of the corresponding values of the velocities Vtem and 

VBGM. Over the all composites listed in table V.2, it is clearly seen that the 

dependencies of the velocities Vtem and VBGM on the electromagnetic constant α are 

very complicated. The values of (Vtem)2 – (Vtem)1 are significantly larger than the 

values of (VBGM)2 – (VBGM)1. Also, the values of (Vtem)3 – (Vtem)2 are significantly 

larger than those of (VBGM)3 – (VBGM)2. This fact can mean that the sensitivity, i.e. the 

change of the SH-SAW velocity VBGM with a dramatic change in the electromagnetic 

constant α is smaller than that for the SH-BAW velocity Vtem. This can mean that 

when researchers will experimentally investigate different piezoelectromagnetic 
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composite materials (or the same composite under some different conditions) and 

their results will reveal an order change in the constant α and no significant change in 

the other material constants, it is possible that they can find only a slight change in 

the values of the velocities Vtem and VBGM.  

This chapter has obtained the analytical formula for the SH-SAW velocity 

concerning the case of SH-SAW propagation in cubic piezoelectromagnetics. Also, it 

was demonstrated in both the cases of the first and second sets of the eigenvector 

components that the obtained velocity represents the velocity VBGM of the SH-SAW 

which also propagates in the transversely isotropic composite materials. It is also 

worth noting that the utilization of the first and second sets of the eigenvector 

components does not always lead to the same SH-SAW velocity like that obtained in 

this chapter. The following chapters treat the other possible electrical and magnetic 

boundary conditions. They serve for demonstration that the two different sets of the 

eigenvector components can lead to possible solutions for new SH-SAWs for the case 

of cubic piezoelectromagnetics.  
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CHAPTER VI.  The Case of D3 = 0 and B3 = 0 at x3 = 0  

 

 

According to the theoretical results of recent book [89] obtained by the author of 

this work and paper [88] by A. Melkumyan for this case of the mechanically free, 

electrically open (D3 = 0) and magnetically closed (B3 = 0) surface, any SH-SAW 

solution cannot be found for both the sets of the eigenvector components in the case 

of SH-SAW propagation in the transversely isotropic piezoelectromagnetic 

(composite) materials. This is true because the single solution for the transversely 

isotropic case represents the SH-BAW velocity Vtem.  

In order to obtain some results for the case of wave propagation in the cubic 

piezoelectromagnetics, it is necessary to analytically describe this case. Indeed, the 

following three homogeneous equations can be written in the matrix form as follows, 

using equation (V.1):  
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  (VI.1) 

 

It is clearly seen in equation (VI.1) that all the parameters k3
(1,3,5) = kn3

(1,3,5) can be 

excluded for further analytical considerations.  

Applying some transformations for equation (VI.1) and using equation (V.2), the 

third-order boundary-condition determinant called BCD3 for the coefficient matrix in 

equation (VI.1) can be reduced to the following form:  
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In relation (VI.2), it is used the first set of the eigenvector components defined by 

relations (II.26), (II.61), and (II.62) for the eigenvalues defined by corresponding 

expressions (II.25) and (II.29) from Chapter II.  

Expanding the matrix BCD3, the secular equation can be obtained in the 

following form:  
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 (VI.3) 

 

It is obvious that the secular equation written above should be simplified. This 

mathematical procedure of simplification results in the following equation:  
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It is clearly seen that modified secular equation (VI.4) can be formed by two 

factors. The first factor is simple and can be written as follows, using relation (II.52) 

from Chapter II:  
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Using definition (II.19) for the CMEMC Kem
2, equation (VI.5) leads to the 

following solution:  

 

  02
2

22
2 


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
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C
ehheKem     (VI.6) 

 

Equation (VI.6) overtly gives the following possible solution:  

 

0222  ehhe       (VI.7) 

 

However, this solution defined by equations (VI.6) and (VI.7) does not depend 

on the SH-SAW phase velocity Vph. This means that in this case one can choose any 

value for the phase velocity Vph (Vph < Vtem) because only suitable unique values of 

the material constants in equation (VI.7) can cause the case. So, this solution is 

inappropriate. It is possible to discuss the second factor in equation (VI.4).  

It is obvious that the second factor in equation (VI.4) can be readily simplified. 

Therefore, it can be introduced in the following form:  

 

    01 2)2()3(  emKmm     (VI.8) 

 

Using definition (II.28) from Chapter II for the parameters m(2) and m(3) in 

equation (VI.8), it is feasible to receive equation (II.33). The latter equation soundly 

leads to the solution denoted by VK in expression (II.34). This was discussed in 

Chapter II.  

Using the second set of the eigenvector components defined by relations (II.26), 

(II.63), and (II.64) for equation (VI.1), the matrix BCD3 can be also reduced to the 

following form:  
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Therefore, the second secular equation can be written in the following form:  
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Indeed, secular equation (VI.10) can be then written in the simplified forms of 

two factors obtained earlier in equations (VI.5) and (VI.8). Therefore, in these two 

cases of two different sets of the eigenvector components, one can obtain the same 

solutions for both the sets. The first solution represents an inappropriate one defined 

by equation (VI.7) and the second solution represents the well-known solution 

denoted by VK in expression (II.34) of Chapter II (see also the calculated values of VK 

for all the cubic piezoelectromagnetics listed in table V.1). As a result, it is possible 

to state that any new SH-SAW velocities do not exist for this set of the electrical and 

magnetic boundary conditions. So, it is crucial to state that it is undoubting that the 

results of this chapter and the previous chapter for the cubic piezoelectromagnetics 

coincide with the results obtained in Refs. [88, 89] in which the transversely isotropic 

piezoelectromagnetic composite materials were theoretically investigated. It is 

expected that this excellent result can be true for the other sets of the electrical and 

magnetic boundary conditions that are treated in the following chapters.  
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CHAPTER VII.  The Case of B3 = 0 and φ = 0 at x3 = 0  

 

 

This chapter gives a theoretical study of SH-SAW propagation in cubic 

piezoelectromagnetics when the electrical boundary condition from Chapter V for the 

electrical potential such as φ = 0 is used together with the magnetic boundary 

condition from Chapter VI, namely B3 = 0. The mechanical boundary condition is the 

mechanically free interface at x3 = 0 between the solid surface and a vacuum. 

According to the theoretical results of the recent book cited in Ref. [89] concerning 

the study of the transversely isotropic piezoelectromagnetics, two different solutions 

for SH-SAWs can be found for the two different sets of the eigenvector components, 

namely one unique solution for either set. In the case of the transversely isotropic 

piezoelectromagnetics, one unique SH-SAW was discovered in 2007 by Arman 

Melkumyan in Ref. [88] and the second SH-SAW was discovered in 2010 by the 

author of this work in Ref. [89]. Their velocities are given by formulae (173) and 

(163) in book [89], respectively. It is expected that in the case of cubic 

piezoelectromagnetics, at least one SH-SAW solution can be also revealed because 

there are also two different sets of the eigenvector components.  

According to the boundary conditions for the case of this chapter, the following 

three equations can be written down in the matrix form:  
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where k3
(1,3,5) = kn3

(1,3,5) is also used.  
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Using the first set of the eigenvector components defined by expressions (II.26), 

(II.61), and (II.62) for the eigenvalues defined by corresponding expressions (II.25) 

and (II.29), one can readily write the following corresponding determinant (BCD3) of 

the third order for the coefficient matrix in equation (VII.1):  
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Using the well-known triangle rule for such determinants, it is feasible to 

transform determinant (VII.2) into a form of secular equation. Therefore, the 

following secular equation emerges as soon as determinant (VII.2) is expanded:  
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Utilizing expression (II.52) for m(2)m(3) from Chapter II, equation (VII.3) can be 

led to the following simplified form:  
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where the non-dimensional parameters Kem
2 and γK

2 are defined by expressions (II.19) 

and (II.59) from Chapter II, respectively. Also, the non-dimensional parameter Ke0
2 in 

equation (VII.4) is defined as follows:  
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For the second set of the eigenvector components, one can also get the following 

form for the third-order BCD3 of the coefficient matrix in equation (VII.1):  
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Therefore, the case of the second set of the eigenvector components provides the 

second secular equation written in the following form:  
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Using expression (II.52) from Chapter II again, equation (VII.7) can be 

transformed into the following form:  
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where the non-dimensional parameters Km
2, Kem

2, and γK
2 are defined by expressions 

(II.22), (II.19), and (II.59) from Chapter II, respectively. Also, it is clearly seen in 
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equations (VII.4) and (VII.8) that when m(2) = m(3) and n3
(3) = n3

(5) is fulfilled, the case 

of the solution denoted by the VK in expression (II.34) from Chapter II is realized.  

In formulae (VII.4) and (VII.8), the parameters m(2) and m(3) defined by relation 

(II.28) depend on the parameter Bt defined by relation (II.23) in Chapter II. Thus, it is 

possible to utilize the following substitutions, using relation (II.55) from Chapter II:  

 

Xnn  1)5(
3

)3(
3      (VII.9) 

  2222 414 emememKt KXKKB      (VII.10) 

 

In expressions (VII.9) and (VII.10), the suitable phase velocity Vph, which should be 

numerically found, is coupled with the parameter X defined below:  
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Indeed, it is possible to use recursive formulae in equations (VII.4) and (VII.8) 

for determination of suitable phase velocities Vc1new = Vph1(X1) and Vc2new = Vph2(X2) of 

new SH-SAWs. First of all, it is possible to write equations (VII.4) and (VII.8) by the 

following ways:  
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where X1 and X2 correspond to Vph1 and Vph2 in relation (VII.11).  

It is clearly seen in equations (VII.12) and (VII.13) that these equations represent 

corresponding recursive formulae, in which the functions f1 and f2 can be obtained 

from equations (VII.4) and (VII.8), respectively. It is thought that it is necessary to 

introduce the obtained recursive solution in some used form which is also utilized in 

formula (V.9) for the SH-SAW velocity VBGM (see Chapter V) as well as in all the 
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explicit formulae for the SH-SAW velocities discovered in the recent book [89] by 

the author. It is obvious that either of equations (VII.12) and (VII.13) can give unique 

value of the SH-SAW phase velocity denoted by Vc1new. Note that it was numerically 

checked that either of equations (VII.4) and (VII.8) give the same value of the Vc1new. 

The calculated values of the new SH-SAW velocity Vc1new are listed in table VII.1 

(see below) for several cubic piezoelectromagnetics.  

The formula for the new SH-SAW velocity Vc1new can be then written in the 

following convenient and relatively simple form, following the other forms 

introduced in Ref. [89]:  

 

  2111 1 XbVV ctemnewc      (VII.14) 

 

where the parameter bc1 depends on the phase velocity Vc1new of the new SH-SAW 

and represents very complicated function for recursive calculations. One can have 

attempts to obtain the solutions for the SH-SAW velocities in corresponding 

complicated analytical forms. However, it is thought that these analytical solutions 

can be more complicated than recursive formula (VII.14). Therefore, it is possible to 

state that to obtain SH-SAW solution in the case of cubic piezoelectromagnetics 

represents a significantly more complicated problem compared with the obtained 

explicit forms of the SH-SAW solutions in the case of the transversely isotropic 

piezoelectromagnetic materials [89].  

It is flagrant that if the solution for the new velocity Vc1new for the SH-SAW 

propagating in the cubic piezoelectromagnetics exists, it should satisfy the following 

conditions:  

 

temnewc VV  10     (VII.15) 

10 1  X      (VII.16) 
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It is critical to state that conditions (VII.15) and (VII.16) are true for the following 

CMEMC: Kem
2 < 1/3. For Kem

2 > 1/3, it is natural to apply the following conditions:  

 

Knewc VV  10     (VII.17) 

temK VVX  10    (VII.18) 

 

where VK < Vtem.  

 

 

Table VII.1. The calculated values of the new SH-SAW velocity Vc1new [m/s].  

PEM composite  
(Vc1new)1 

(Vc1new)2 

 (Vc1new)3 

Metglas–PZT-5H  
3676.0613782111013 

3693.6457478849274 

 3695.5206157506539 

Tl3TaSe4–Terfenol-D  
969.6324936892347 

975.6663281671238 

 976.3080337919884 

Tl3VS4–Galfenol  
3614.0759713109963 

3619.7803934618422 

 3620.6579725071904 

Tl3TaSe4–Galfenol  
3470.6470451921421 

3476.7874762369843 

 3477.6865581211105 

Tl3VS4–Alfenol  
3144.6500708329990 

3149.8423675715336 

 3150.4632207288199 
  

 

 

Table VII.1 lists the calculated values of the new SH-SAW velocity Vc1new which 

can be obtained using either of equations (VII.4) and (VII.8). Three values of the 
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velocity Vc1new were calculated because three values of the CMEMC Kem
2 

corresponding to three values of the electromagnetic constant α exist for each cubic 

piezoelectromagnetics listed in table III.3, see Chapter III. It is clearly seen in table 

VII.1 that the values of the velocity Vc1new increase with the increase in the CMEMC 

Kem
2, i.e. with the decrease in the constant α. This is like the results for the velocity 

VBGM. For Tl3VS4–Alfenol with Kem
2 < 1/3 in table VII.1, all the values of the velocity 

Vc1new are situated just below the value of the SH-BAW velocity Vtem. For the other 

cubic piezoelectromagnetics with Kem
2 > 1/3 in table VII.1, all the values of the 

velocity Vc1new lie just below the corresponding values of the solution symbolized as 

VK < Vtem. Note that the values of VBGM, Vtem, and VK for all the cubic 

piezoelectromagnetics are listed in table V.1 from Chapter V. It is worth noticing that 

these calculations can be completed with a six-core processor (twelve ways) laptop.  

Also, it is possible to use the found fact that both equations (VII.4) and (VII.8) 

reveal the same result, namely the new SH-SAW velocity Vc1new. This allows one to 

carry out some simplification. It is blatant that it is natural to subtract equation (VII.4) 

from equation (VII.8) (or vice versa) in order to cope with three terms instead of four 

terms. Therefore, the transformed equation reads:  
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Three-term equation (VII.19) can be further regrouped to deal with only two 

terms for convenience. Consequently, one can get the following relatively compact 

form for the secular equation to calculate the new SH-SAW velocity Vc1new:  
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This compact form can be used for numerical calculations of the velocity Vc1new 

instead of either of equations (VII.4) and (VII.8). It is also thought that the two-term 

form in equation (VII.20) is convenient to represent a compact form for the parameter 

bc1 introduced in equation (VII.14):  
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Also, it is possible to transform equation (VII.20) into a quadratic equation with 

the unknown variable such as n3
(3)n3

(5). Indeed, it is realistic to write two-term 

equation (VII.20) as an equality between the first and the second terms and then to 

square the terms. Afterwards, the quadratic equation can be expressed as follows:  
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Finally, it is possible to move the second term with a negative sign in equation 

(VII.22) from the left side to the right side and to square both the sides. This is 

necessary procedure to have a polynomial with no square root. This will be a sixth-

degree polynomial. Note that the author has read papers [201, 202] concerning the 

problems to express some solutions for quintic, sextic, and octic equations. Indeed, 

the analytical solutions are too complicated. It is thought that to obtain numerical 

solutions can be more suitable in this case.  

The same analysis done in this chapter can be carried out in the following 

chapters. Chapter VIII describes the wave propagation in the cubic 

piezoelectromagnetics when the other set of the electrical and magnetic boundary 

conditions is exploited.  
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CHAPTER VIII.  The Case of D3 = 0 and ψ = 0 at x3 = 0  

 

 

This chapter provides the case of the electrically open surface (D3 = 0) and the 

magnetically open surface (ψ = 0) of the corresponding boundary conditions at the 

suitable interface (x3 = 0 in figure II.1 of Chapter II) between the surface of the cubic 

piezoelectromagnetics and a vacuum. It is necessary to mention that for the 

transversely isotropic piezoelectromagnetics and this set of the boundary conditions, 

only single independent solution for the SH-SAW velocity can be obtained in the 

explicit form given in Refs. [88, 89]. This SH-SAW velocity was also obtained by 

Arman Melkumyan in his recent theoretical work [88] and is defined by the explicit 

form in expression (156) written in book [89]. The second solution is not independent 

because it represents the SH-SAW velocity defined by equation (163) for the set of 

the boundary conditions relevant to the previous chapter. For the case of the study of 

cubic piezoelectromagnetics, it is necessary to show that one can also obtain some 

SH-SAW solution for this set of the boundary conditions.  

Utilization of this set of the electrical (D3 = 0) and magnetic (ψ = 0) boundary 

conditions gives the following three equations written in the matrix form:  
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  (VIII.1) 

 

For the first set of the eigenvector components, one can obtain the following 

BCD3 of the coefficient matrix in equation (VIII.1):  
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It is noted that any boundary-condition determinant represents a number. In this 

case, the BCD3 in equation (VIII.2) must vanish. It is natural to introduce the 

following secular equation obtained by the expansion of determinant (VIII.2):  
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It is worth noting that it is convenient to use in equation (VIII.3) such parameters 

from Chapter II as the CMEMC Kem
2 and the CEMC Ke

2 defined by expressions 

(II.19) and (II.21), respectively, in order to cope with non-dimensional values. Also, 

the non-dimensional value of γK
2 is defined by relation (II.59).  

Equation (VIII.3) for the first set of the eigenvector components looks like 

equation (VII.8) for the second set of the eigenvector components from the previous 

chapter. However, there is the significant difference. It is as follows: the CEMC Ke
2 is 

used instead of the CMMC Km
2. Therefore, the calculated two new SH-SAW 

velocities for equations (VIII.3) and (VII.8) cannot coincide. In the transversely 

isotropic case, they coincide. Therefore, it is possible to state that this fact 

demonstrates some dissimilarity of wave propagation in the transversely isotropic and 

cubic piezoelectromagnetics. Indeed, to study cubic piezoelectromagnetics is more 

complicated busyness.  

For the second set of the eigenvector components, it is doable to demonstrate the 

following simplified BCD3 of the coefficient matrix in equation (VIII.1):  
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The following secular equation can be readily written after expansion of the 

determinant in equation (VIII.4):  
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Indeed, secular equation (VIII.5) can be also simplified. After some 

transformations, it is natural to write down the simplified equation in the following 

convenient form:  
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where the non-dimensional parameters Kα
2, Kem

2, and γK
2 are defined by expressions 

(VII.5), (II.19), and (II.59), respectively. Note that the form of equation (VIII.6) is 

convenient for comparison with those in equations (VIII.3), (VII.4), and (VII.8).  

Equation (VIII.6) for the second set of the eigenvector components looks like 

equation (VII.4) from the previous chapter for the first set. However, there is the 
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significant difference only in the first terms of equations (VIII.6) and (VII.4). The 

difference is as follows: the first factor of the first term in equation (VIII.6), namely 

e(eµ – hα)/[h(eα – hε)], is reverse to that in equation (VII.4). Also, it is clearly seen in 

equations (VIII.3) and (VIII.6) that the solution denoted by VK (see the calculated 

values of VK in table V.1 from Chapter V) exists as soon as n3
(5) = n3

(3) and m(3) = m(2).   

Following the form in expression (VII.14) from the previous chapter, it is natural 

to write the expression for the new SH-SAW velocity denoted by Vc2new. It reads:   

 

  2
222 1 XbVV ctemnewc      (VIII.7) 

 

Equation (VIII.7) also represents the recursive formula obtained from expression 

(VIII.3) or (VIII.6). The reader must read the previous chapter to obtain the 

complicated form of the parameter bc2(X2) in expression (VIII.7). Indeed, it can be 

obtained from equation (VIII.3) or (VIII.6).  

The calculated values of the second new SH-SAW velocity Vc2new for the case of 

the wave propagation in the cubic piezoelectromagnetics are listed in table VIII.1. 

They can be obtained using either of equations (VIII.3) and (VIII.6). Three values of 

the velocity Vc2new correspond to three values of the CMEMC Kem
2 (three values of 

the electromagnetic constant α) for each cubic piezoelectromagnetics listed in table 

III.3, see Chapter III. Table VIII.1 demonstrates the natural results that the values of 

the velocity Vc2new increase with the increase in the CMEMC Kem
2 that is to say with 

the decrease in α. This is like the results for the other SH-SAW velocities such as 

VBGM and Vc1new. For the single composite with the small value of the CMEMC (Kem
2 

< 1/3) listed in table VIII.1 such as Tl3VS4–Alfenol, one can find that there occurs the 

following: Vc2new < Vtem. For the other cubic piezoelectromagnetics with Kem
2 > 1/3 

listed in table VIII.1, the values of the velocity Vc2new are positioned just below the 

corresponding values of VK, where VK < Vtem. It is also noted that the values of VBGM, 

Vtem, and VK for all the studied cubic piezoelectromagnetic composite materials are 

listed in table V.1, see Chapter V.  
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Table VIII.1. The calculated values of the new SH-SAW velocity Vc2new [m/s].  

PEM composite  
(Vc2new)1 

(Vc2new)2 

 (Vc2new)3 

Metglas–PZT-5H  
3554.3878716718497 

3572.6821740374885 

 3574.6835747917829 

Tl3TaSe4–Terfenol-D  
947.6264163156739 

953.2374174241880 

 953.8455078350671 

Tl3VS4–Galfenol  
3472.4265705829890 

3476.4066678095341 

 3477.0466261355771 

Tl3TaSe4–Galfenol  
3334.5037870085563 

3338.8390415231202 

 3339.5042963396260 

Tl3VS4–Alfenol  
3136.8115385787345 

3141.3468370027921 

 3141.8899674581957 
  

 

 

Following the simplifications carried out in the previous chapter, it is convenient 

to cope with a two-term secular equation instead of either of four-term equations 

(VIII.3) and (VIII.6). First of all, it is natural to receive a three-term equation from 

one of two four-term equations by subtraction of equation (VIII.3) from equation 

(VIII.6), or vice versa. This procedure excludes the third term in one of the four-term 

equations. Next, the second and third terms in the resulting three-term equation can 

be regrouped to form only one term of them. So, the following two-term equation can 

be obtained to compare with that from the previous chapter:  
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This relatively compact form in equation (VIII.8) already allows demonstration 

of the following compact form for the parameter bc2 introduced in equation (VIII.7):  
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Indeed, equation (VIII.8) can be also transformed into the form of the sixth-degree 

polynomial. However, to compare complicated forms of sixth-degree polynomials 

with each other can be less informative than to compare the two-term compact forms 

given in equations (VII.20) and (VIII.8). Therefore, these two-term compact forms 

can be also compared with those obtained in the following chapters for the other 

possible sets of the electrical and magnetic boundary conditions.  

This chapter and the previous three chapters coped with the theoretical 

investigations of SH-SAW propagation characteristics in cubic piezoelectromagnetics 

when there is no dependence on the material constants of the free space (vacuum) 

such as ε0 and µ0. The following five chapters use the electrical and magnetic 

boundary conditions, with which the vacuum material constants can be accounted in 

formulae for the calculations of new SH-SAW velocities.  
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CHAPTER IX.  The Case of B3 = 0 and Continuity of D3 at x3 = 0  

 

 

In the case of magnetically closed surface (B3 = 0 at x3 = 0) and the continuity of 

the electrical displacement component D3, one can also investigate wave propagation 

in cubic piezoelectromagnetics. It is also possible to compare this case of the cubic 

piezoelectromagnetics with the case of the transversely isotropic ones. According to 

the results of book [89] for the transversely isotropic piezoelectromagnetics, the 

discovered first SH-SAW velocity is defined by equation (163) for the first set of the 

eigenvector components and the discovered second one is defined by equation (194) 

for the second set of the components. Indeed, two possible sets of the eigenvector 

components are also used below for the case of the cubic piezoelectromagnetics.  

Applying this set of the electrical and magnetic boundary condition, three 

equations for determination of the weight factors F1, F2, and F3 can be written as 

follows:  
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   (IX.1) 

 

Choosing the first set of the eigenvector components defined by expressions 

(II.26), (II.61), and (II.62) for the eigenvalues defined by corresponding expressions 

(II.25) and (II.29) from Chapter II, one can get the following BCD3 of the coefficient 

matrix in equation (IX.1):   

 



 96

 
 

 
  

 
 

  
   

   
   

   
   
   

0

2

2

2

2
2

j

4

2

j

4

0

2)3(

2)3()3(2

)3()3()5(
3

2)2(

2)2()2(2

)2()2()3(
3

2)3(

2)3()3(
0

)5(
3

2)2(

2)2()2(
0

)3(
3

0

)3()5(
3

)2()3(
3































mhee

mmC
mmhehn

mhee

mmC
mmhehn

he

meh

mmC

nhee

meh

mmC

nhee

he

mnmn

KK

KK























    (IX.2) 

 

This boundary-condition determinant (BCD3) of the coefficient matrix in 

equation (IX.2) looks like a very complicated one compared with those from the 

previous chapters for the other electrical and magnetic boundary conditions. However, 

the reader can have attempts to transform it. First of all, it is necessary to expand it. 

Exploiting the well-known triangle rule for such determinants, the mathematical 

procedure of expansion of the BCD3 in equation (IX.2) results in the following 

complicated secular equation:  
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All the terms of this complicated secular equation can be readily regrouped with 

the purpose of simplification. As a result, one can get the following form of secular 

equation (IX.3):  
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In equation (IX.4), the parameters such as Kα
2, Kem

2, Km
2, and γK

2 are those used in 

equations (VII.4), (VII.8), and (VIII.6). These equations (IX.4), (VII.4), and (VIII.6) 

are represented in such convenient mathematical forms that one can compare them 

with each other. One can soundly find that each of these three obtained equations for 

determination of the corresponding phase velocities of the new SH-SAWs has its own 

unique first term. The other three terms are the same in the equations. Indeed, the first 

term in each equation has its own unique factor. These unique factors solidly 

demonstrate that the solutions for the SH-SAWs are independent.   

The selection of the second set of the components defined by expressions (II.26), 

(II.63), and (II.64) for the same eigenvalues allows one to introduce the second 

BCD3 of the coefficient matrix in equation (IX.1). This BCD3 reads:  
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The result of the expansion of this matrix BCD3 can be inscribed as follows:  
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Indeed, the second secular equation given above in expression (IX.6) can be also 

transformed. The transformed form already consists of four terms. The final secular 

equation is as follows:  
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where the non-dimensional parameters Km
2, Kem

2, and γK
2 are those used in expression 

(VII.8) and defined by expressions (II.22), (II.19), and (II.59) from Chapter II, 

respectively. Comparing the first term in equations (IX.7) with that in equation 

(VII.8), one can find the additional factor for the first term in equations (IX.7). This 

factor is always larger than unity for Kem
2 > 1.  

Following the main purpose of the theoretical investigations described in the 

previous chapters, either of two secular equations (IX.4) and (IX.7) can reveal the 

new SH-SAW velocity, Vc3new. It can be written in the following recursive form:  

 

  2
333 1 XbVV ctemnewc      (IX.8) 

 



 99

where the complicated form of the parameter bc3 is written using equation (IX.4) or 

(IX.7). This form is also significantly complicated when corresponding definitions 

for n3
(3), n3

(5), m(2), and m(3) in expressions (II.28) and (II.29) from the second chapter 

are substituted.  

The theoretical study of wave propagation in the cubic piezoelectromagnetics 

carried out in this chapter provides the calculated values of the third new SH-SAW 

velocity Vc3new. The results of the computation are listed in table IX.1. These values of 

the velocity Vc3new can be calculated utilizing equation (IX.4) or (IX.7). In the table, 

three values of the velocity Vc3new correspond to three values of the CMEMC Kem
2. 

The values of Kem
2 in dependence on the electromagnetic constant α for each cubic 

piezoelectromagnetics are listed in table III.3 from the third chapter.  

 

 

Table IX.1. The calculated values of the new SH-SAW velocity Vc3new [m/s].  

PEM composite  
(Vc3new)1 

(Vc3new)2 

 (Vc3new)3 

Metglas–PZT-5H  
3678.4479731124811 

3698.1419136252568 

 3700.2660912402382 

Tl3TaSe4–Terfenol-D  
974.3649294881972 

982.2704558628170 

 983.1103176265559 

Tl3VS4–Galfenol  
3614.0777993502521 

3620.0365742033507 

 3620.9895675434407 

Tl3TaSe4–Galfenol  
3470.6518693370964 

3477.1059650032712 

 3478.0895042154676 

Tl3VS4–Alfenol  
3144.6741670471829 

3149.9395825708184 

 3150.5724807593158 
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According to the results given in table IX.1, the value of Vc3new increases as soon 

as the value of Kem
2 increases. This is likely the results for the other SH-SAW 

velocities VBGM , Vc1new, and Vc2new. In table IX.1, Tl3VS4–Alfenol with Kem
2 < 1/3 has 

the values of the velocity Vc3new < Vtem and the others have the following condition for 

the SH-SAW velocity: Vc3new < VK < Vtem. The reader can find the values of VBGM, Vtem, 

and VK in table V.1 (Chapter V) calculated for all the cubic composites.  

It is also practicable to simplify equations (IX.4) and (IX.7). For this purpose, it 

is indispensable to exploit the mathematical procedures from the previous two 

chapters. Indeed, a subtraction of equation (IX.7) from equation (IX.4) can give a 

three-term equation which can be then reduced to the following two-term equation:  
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This compact form is convenient for comparison with those given in equations 

(VII.20) and (VIII.8).  

Equation (IX.9) can be readily used for demonstration of the following compact 

form for the parameter bc3 originated in expression (IX.8):  
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The following chapter also provides the theory for wave propagation in the cubic 

piezoelectromagnetics. It treats the case of the other set of the electrical and magnetic 

boundary conditions such as the electrically open surface (D3 = 0) and the continuity 

of the magnetic flux component B3.  
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CHAPTER X.  The Case of D3 = 0 and Continuity of B3 at x3 = 0  

 

 

This chapter describes the wave propagation in the cubic piezoelectromagnetics 

in the case of the electrically open surface (D3 = 0) and the continuity of the magnetic 

flux component B3 above the crystal surface toward the free space, see figure II.1 

from Chapter II. For the transversely isotropic piezoelectromagnetics studied in book 

[89], the discovered two SH-SAW velocities for the first and second sets of the 

eigenvector components are defined by expressions (180) and (163), respectively. For 

the case of the cubic piezoelectromagnetics studied in this chapter, two different sets 

of the eigenvector components defined by expression (II.26) and expressions from 

(II.61) to (II.64) also exist. They will be also used below. However, it is not possible 

to surely say that employment of these two sets can lead to two different solutions. In 

order to verify it, these two sets will be used below.  

The utilisation of the electrically open surface (D3 = 0) and the continuity of the 

component B3 results in the following homogeneous equations written in a matrix 

form for convenience:  
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Therefore, the coefficient matrix in equation (X.1) possesses its own boundary-

condition determinant (BCD3) which can be written as follows, using the first set of 

the eigenvector components:  
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To expand the BCD3 in equation (X.2), it is essential to use the well-known 

triangle rule for such determinants. Therefore, the following complicated secular 

equation can be obtained after expansion of this BCD3 in equation (X.2):  
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It is necessary to state that this complicated equation needs to be simplified. 

After, some transformation, it is possible to give a relatively simple form for the 

secular equation. This simplified form is written below in equation (X.4). Indeed, the 

following form is ideal for comparison with equation (VIII.3 from Chapter VIII:  
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where all the parameters such as Ke
2, Kem

2, and γK
2 are defined by expressions (II.21), 

(II.19), and (II.59) from Chapter II, respectively, and represent the non-dimensional 

values for convenience.  

It is also possible to discuss the comparison of equation (X.4) with equation 

(VIII.3) from Chapter VIII. It is clearly seen that equation (X.4) looks like equation 

(VIII.3). However, the single difference occurs. The first term in equation (X.4) has 

the additional factor which is deficient in the first term of equation (VIII.3). It is 

obvious that this factor must always be larger than unity for the CMEMC Kem
2 > 0. 

However, the situation when Kem
2 = 0 can also occur. This is the particular and very 

interesting case when Vtem = Vt4.  

Exploiting the second set of the eigenvector components for equation (X.1), the 

corresponding BCD3 reads: 

 

   
   
   

   
   
   

 
 

 
  

 
 

  

0

2

j

4

2

j

4
2

2

2

2

0

2)3(

2)3()3(
0

)5(
3

2)2(

2)2()2(
0

)3(
3

0

2)3(

2)3()3(2

)3()3()5(
3

2)2(

2)2()2(2

)2()2()3(
3

)3()5(
3

)2()3(
3































meh

mmC

nheh

meh

mmC

nheh

he

mheh

mmC

mmheen

mheh

mmC

mmheen

he

mnmn

KK

KK























    (X.5) 

 

This BCD3 written above can be also expanded by the same way using the well-

known triangle rule. As the result, one can obtain the second possible secular 
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equation for this case of the electrical and magnetic boundary conditions. This secular 

equation reads:  
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Several suitable transformations applied to complicated equation (X.6) can lead 

to the following simplified and convenient form:  
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where the non-dimensional parameters Kem
2, Ke

2, and γK
2 are those used in equation 

(X.4). Also, the non-dimensional parameter Kα
2 is defined by relation (VII.5) from 

Chapter VII.  

Comparing the results of this chapter given in equations (X.4) and (X.7) with the 

results obtained in Chapters from VII to IX, the reader can find that two secular 

equations (IX.4) and (IX.7) can also reveal the new SH-SAW velocity, Vc4new. Indeed, 

it can be also written in the recursive form given below:  

 

  2
444 1 XbVV ctemnewc      (X.8) 
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where the complicated parameter bc4 can be found, for instance, from equation (X.4) 

or (X.7).  

Utilizing equation (X.4) or (X.7), it is possible to compute the values of the 

fourth new SH-SAW velocity Vc4new. These values are listed in table X.1 for all the 

studied cubic piezoelectromagnetics. Similar to the results obtained in the previous 

chapters, the application of both the sets of the eigenvector components leads to the 

same phase velocity denoted by Vc4new. It was already mentioned that this fact is the 

main difference between the wave propagation in the cubic piezoelectromagnetics 

and that in the transversely isotropic composite materials. In table X.1, three values 

of the velocity Vc4new correspond to three values of Kem
2 which depend on the different 

values of the electromagnetic constant α, see table III.3 from the third chapter.  

 

 

Table X.1. The calculated values of the new SH-SAW velocity Vc4new [m/s].  

PEM composite  
(Vc4new)1 

(Vc4new)2 

 (Vc4new)3 

Metglas–PZT-5H  
3678.4479703684924 

3698.1419135014436 

 3700.2660913871003 

Tl3TaSe4–Terfenol-D  
963.5122839970316 

971.0154599165743 

 971.8214867922123 

Tl3VS4–Galfenol  
3613.9118960143485 

3619.8874296985671 

 3620.8425795290979 

Tl3TaSe4–Galfenol  
3470.4987153452582 

3476.9776066953124 

 3477.9654008755682 

Tl3VS4–Alfenol  
3144.6597055299464 

3149.9240289840432 

 3150.5567694878639 
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Table X.1 soundly demonstrates that the values of the fourth new SH-SAW 

velocity Vc4new are increased as soon as any increase in the value of the CMEMC Kem
2 

occurs. This behavior is analogical to those of the other SH-SAW velocities VBGM , 

Vc1new, Vc2new, and Vc3new, for which the values can be found in the previous chapters. It 

is worth noticing that the single cubic piezoelectromagnetics with Kem
2 < 1/3 in table 

X.1 such as Tl3VS4–Alfenol possesses the values of the velocity Vc4new positioned just 

below the corresponding values of the SH-BAW velocity Vtem. The other cubic 

piezoelectromagnetics listed in the table possess their corresponding values of the 

velocity Vc4new < VK < Vtem. Table V.1 from Chapter V lists all the values of VBGM, Vtem, 

and VK calculated for all the cubic piezoelectromagnetics.  

The two-term secular equation can be also received in this case by the same 

transformations described in the previous chapters. A subtraction of equation (X.4) 

from equation (X.7) and then regrouping the last terms can result in the following 

expression:  
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Equation (X.9) is also convenient for comparison with the compact forms of the other 

secular equations given in expressions (VII.20), (VIII.8), and (IX.9) from the 

previous three chapters.  

The parameter bc4 from expression (X.8) can be expressed using equation (X.9). 

For this set of the electrical and magnetic boundary conditions, it reads as follows:  
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It is thought that the last three chapters can reveal more complicated solutions. 

However, they can be represented following the results obtained in this chapter and 

the previous several chapters.  
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CHAPTER XI.  The Case of ψ = 0 and Continuity of D3 at x3 = 0  

 

 

It is natural to also treat the case of the magnetically open surface (ψ = 0) and the 

continuity of the electrical displacement component D3 when the wave propagation in 

the cubic piezoelectromagnetics is studied. First of all, it is indispensable to give the 

results of the study concerning the wave propagation in the transversely isotropic 

piezoelectromagnetics when the same boundary conditions were applied in book [89]. 

This recently published book cited in Ref. [89] provides two SH-SAW velocities 

defined by expressions (148) and (120) for the first and second sets of the eigenvector 

components, respectively. It is thought that exploitation of two possible sets of the 

eigenvector components in the case of the cubic piezoelectromagnetics can also 

reveal some new result.  

Focusing of attention on the boundary conditions such as σ23 = 0, the continuity 

of the component D3, and ψ = 0 leads to the following three equations written in the 

matrix form which must be resolved:  
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In order to resolve the system of three homogeneous equations written above, it 

is necessary to find such solution for the phase velocity Vph which changes the sign of 

the determinant BCD3 of the coefficient matrix in equation (XI.1). Therefore, it is 

necessary to require for the BCD3 corresponding to the first set of the eigenvector 

components to satisfy the following equality:  
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This equality can be written in the form of secular equation by means of 

expansion of the BCD3 in equation (XI.2). Therefore, it is possible to obtain the 

following complex secular equation for the first set of the eigenvector components:  
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Secular equation (XI.3) can be also led to the mathematical form consisting of 

four terms. This four-term form is used in this work for the case of cubic 

piezoelectromagnetics, because such form is convenient for comparison of all the 

obtained solutions with each other. Therefore, the ninth four-term form which 

represents the unique equation is as follows:  
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where the non-dimensional parameters such as the CMEMC Kem
2, CEMC Ke

2, and γK
2 

are those used in equations (X.4) and (X.7).  

As soon as the second set of the eigenvector components is used instead of the 

first one, the following BCD3 must also equal to zero:  
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Note that a determinant represents a number and the BCD3 in equation (XI.5) 

must vanish because expression (XI.1) corresponds to three homogeneous equations. 

Expanding the boundary-condition determinant (BCD3) in equation (XI.5), one can 

obtain the following secular equation:  
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The terms in equation (XI.6) can be also regrouped. After regrouping and some 

simplifications, secular equation (XI.6) transforms into the following non-

dimensional expression formed by four terms:  
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where the non-dimensional parameters such as Kem
2, Ke

2, and γK
2 are those used in 

equations (XI.4), (X.4), and (X.7). Also, the parameter Kα
2 is defined by relation 

(VII.5) from Chapter VII.  

It is obvious that equations (XI.4) and (XI.7) are also unique. Therefore, either 

of them can numerically reveal the fifth new SH-SAW velocity for the case of wave 

propagation in the cubic piezoelectromagnetics. It is natural to denote the velocity by 

Vc5new. Following the forms for the other new SH-SAW velocities obtained in the 

previous chapters, it is possible to write the following recursive relation for 

determination of this new velocity denoted by Vc5new:  

 

  2555 1 XbVV ctemnewc      (XI.8) 

 

where the complicated parameter bc5 under the square root is found from equation 

(XI.4) or (XI.7).  

For this set of the electrical and magnetic boundary conditions applied to the free 

surface of the cubic piezoelectromagnetics, the values of the fifth new SH-SAW 

velocity, Vc5new, were computed and they are listed in table XI.1. Indeed, it is also 

possible to compare the values of the velocity Vc5new with those of the following SH-
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SAW velocities (see the previous chapters): VBGM , Vc1new, Vc2new, Vc3new, and Vc4new. It 

is natural that the values of the velocity Vc5new are located below either the SH-BAW 

velocity Vtem for the cubic piezoelectromagnetics with Kem
2 < 1/3 or the solution VK 

for the ones with Kem
2 > 1/3. In table XI.1, three values of the velocity Vc5new 

correspond to three values of Kem
2 (see table III.3 in Chapter III). Also, it is necessary 

to mention that table V.1 from Chapter V lists all the values of VBGM, Vtem, and VK 

calculated for all the cubic piezoelectromagnetics.  

 

 

Table XI.1. The calculated values of the new SH-SAW velocity Vc5new [m/s].  

PEM composite  
(Vc5new)1 

(Vc5new)2 

 (Vc5new)3 

Metglas–PZT-5H  
3554.3222801970332 

3572.6175241654119 

 3574.6190358400683 

Tl3TaSe4–Terfenol-D  
945.6208035378705 

951.2038035564396 

 951.8093548193600 

Tl3VS4–Galfenol  
3472.2535215223269 

3476.2331705701350 

 3476.8730585515777 

Tl3TaSe4–Galfenol  
3333.9117323014363 

3338.2452779669583 

 3338.9102777224558 

Tl3VS4–Alfenol  
3136.7360251425249 

3141.2685996043768 

 3141.8114067959477 
  

 

 

A subtraction of equation (XI.4) from equation (XI.7) and then regrouping the 

last terms can result in the convenient simplifications. As a result, the two-term 
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secular equation can be also obtained for this set of the boundary conditions. After 

the applied simplifications, the resulting two-term expression reads:  
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Equation (XI.9) is written in the convenient compact form which is actually suitable 

for comparison with those given in expressions (VII.20), (VIII.8), (IX.9), and (X.9) 

from the previous chapters.  

Using equation (XI.9), the parameter bc5 from expression (XI.8) can be also 

expressed in the following compact form:  
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The study of the cubic piezoelectromagnetics is continued in the following 

chapter. Chapter XII uses the case of the electrically closed surface (φ = 0) and the 

continuity of the magnetic flux component B3 of the boundary conditions. Therefore, 

it is expected that the reader can find in the following chapter that the wave 

characteristics, namely the SH-SAW velocity can be also different from those 

discovered in this chapter and the previous chapters.  
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CHAPTER XII.  The Case of φ = 0 and Continuity of B3 at x3 = 0  

 

 

For the case of the electrically closed surface (φ = 0 at x3 = 0) and the continuity 

of the magnetic flux component B3, the acoustic waves guided by the free surface 

shown in figure II.1 can also propagate along direction [101] in the cubic 

piezoelectromagnetics. Utilizing the same boundary conditions for the problem of 

wave propagation in the transversely isotropic piezoelectromagnetics, two SH-SAW 

velocities can exist. They are defined by the explicit forms of equations (108) and 

(133) obtained in Ref. [89], respectively. These forms correspond to the first and 

second sets of the eigenvector components. Indeed, it is fundamental to treat the both 

sets of the corresponding eigenvector components for the problem of wave 

propagation in the cubic piezoelectromagnetics.  

So, it is essential to write down three equations which correspond to three 

boundary conditions: one mechanical such as σ23 = 0, one electrical (φ = 0), and one 

magnetic (continuity of the component B3) conditions. Indeed, they can be written in 

the following matrix form:  
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To resolve these three homogeneous equations in expression (XII.1), one also 

has to deal with the boundary-condition determinant (BCD3) of the coefficient matrix. 

This means that the following equation can be introduced by means of the use of the 

first set of the eigenvector components:  
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For these electrical and magnetic boundary conditions and the first set of the 

eigenvector components, one has to deal with the following complex secular equation 

obtained after expansion of the BCD3 in equation (XII.2):  
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To simplify equation (XII.3), it is possible to regroup all the terms in the 

equation. The result of this complicated procedure can be readily written in the 
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following four-term final form which can be used for determination of the phase 

velocity Vph of propagating waves:  
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where the parameters such as Kem
2, Km

2, Kα
2, and γK

2 are defined by relations (II.19), 

(II.22), (VII.5), and (II.59), respectively.  

Next, it is also possible to exploit the second set of the eigenvector components. 

As the result, here the following BCD3 equals to zero:  
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The result of expansion of the BCD3 in equation (XII.5) can reveal a secular 

equation. This secular equation must be further transformed in order to get an 

appropriate form. Utilizing the well-known triangle rule for such determinant, the 

original form for the secular equation is as follows:  
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The final non-dimensional form for secular equation (XII.6) can be also 

introduced as the following four terms:  
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where the parameters such as Kem
2, Km

2, and γK
2 are those used in formula (XII.4).  

Formulae (XII.4) and (XII.7) can be utilized for determinations of the phase 

velocity of the new SH-SAW. The velocity represents already the sixth new SH-

SAWs which can propagate in the cubic piezoelectromagnetics. It can be denoted by 

Vc6new. Therefore, the recursive formula can be given in the following form, following 

the results of the previous chapters:  

 

  2666 1 XbVV ctemnewc      (XII.8) 

 

where the form for the complicated parameter bc6 under the square root can be 

obtained from equation (XII.4) or (XII.7).  

Table XII.1 lists the values of the sixth new SH-SAW velocity denoted by Vc6new. 

These values were calculated using equation (XII.4) for the first set of the 

eigenvector components. Using the second set of the components, the second four-

term expression (XII.7) reveals the same SH-SAW velocity Vc6new. Note that the 

values of the velocity Vc6new were calculated with a high precision (see table XII.1) in 
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order to solidly demonstrate that both equations (XII.4) and (XII.7) give the same 

result. Indeed, these two different secular equations reveal the same result given in 

table XII.1 and to give the second values which will duplicate the values of the 

velocity Vc6new is not suitable here. The reader can readily check it.  

 

 

Table XII.1. The calculated values of the new SH-SAW velocity Vc6new [m/s].  

PEM composite  
(Vc6new)1 

(Vc6new)2 

 (Vc6new)3 

Metglas–PZT-5H  
3676.0517581168012 

3693.6334035320207 

 3695.5080278692763 

Tl3TaSe4–Terfenol-D  
954.2906962032965 

960.0035674321671 

 960.6206352126536 

Tl3VS4–Galfenol  
3613.8726250313773 

3619.2533363340318 

 3620.0887165010403 

Tl3TaSe4–Galfenol  
3470.4353273590005 

3476.2441457548700 

 3477.1029658424587 

Tl3VS4–Alfenol  
3144.5964923241957 

3149.7515911845775 

 3150.3680586102008 
  

 

 

Also, the high precision calculations are suitable in the case of study of surface 

acoustic waves. This is true due to the fact that the SH-SAWs represent the 

corresponding instabilities of the SH-BAW characterised by the velocity Vtem under 

application of the different electrical and magnetic boundary conditions. Therefore, 

the values of the SH-SAW velocities should be situated below or in many cases just 
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below the value of the velocity Vtem. This is the condition for all the transversely 

isotropic piezoelectromagnetics as well as for the cubic piezoelectromagnetics with 

Kem
2 < 1/3, see the results for Tl3VS4–Alfenol listed in table XII.1. For the other cubic 

piezoelectromagnetics with Kem
2 > 1/3 listed in table XII.1, the values of the velocity 

Vc6new lie below the value of the solution VK. It is thought that this solution denoted by 

VK must be unstable. Also, this solution was never studied and experimentally 

checked. However, it is very important parameter for cubic piezoelectromagnetics. 

The calculated values of the sixth new SH-SAW velocity denoted by Vc6new can be 

compares with the values of VBGM, Vtem, and VK (see table V.1 from Chapter V for the 

purpose).  

The number of the terms in four-term secular equation (XII.4) or (XII.7) can be 

also reduced. It is clearly seen that these two equations have the same thir term. 

Hence, it is natural to subtract one equation from the other to get a three-term secular 

equation. The terms of the latter equation can be further regrouped, and one can 

express the following simplified two-term equation:  
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Using secular equation (XII.9), all the values of the new SH-SAW velocity Vc6new can 

be readily calculated.  

The definition of the parameter bc6 introduced in equation (XII.8) can be also 

written using equation (XII.9). This parameter is convenient to compare the 

theoretical results obtained in this work for the cubic piezoelectromagnetics with 

those for the transversely-isotropic composite materials described in book [89]. So, 

the parameter bc6 reads:  
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The following chapter describes the case of the last possible set of the electrical 

and magnetic boundary conditions. It is thought that this is the most complicated case 

compared with the obtained results in this chapter and in the previous chapter. 

However, the results can be also represented in some convenient forms in order to 

compare them with those obtained in this work and in book [89].  
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CHAPTER XIII.  The Case of Continuity of both D3 and B3 at x3 = 0  

 

 

This chapter describes the wave propagation in the cubic piezoelectromagnetics 

when the last possible set of the boundary conditions is used. This case represents the 

continuity of both the electrical displacement component D3 and the magnetic flux 

component B3 for the mechanically free surface, σ23 = 0. The wave propagation in the 

transversely isotropic piezoelectromagnetics was also theoretically investigated in 

book [89]. The SH-SAW velocities for the transversely isotropic case are expressed 

by formulae (110) and (120) in the explicit forms for the first and second sets of the 

eigenvector components, respectively. Concerning the cubic piezoelectromagnetics, it 

is thought that two sets of the eigenvector components can also make known at least 

one new SH-SAW velocity. This is the main purpose for this chapter.  

Therefore, based on the boundary conditions, one can write the following matrix 

form of three equations:  
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The determinant BCD3 of the coefficient matrix in equation (XIII.1) must vanish 

because one copes here with the homogeneous equations. Using the first set of the 

eigenvector components, it is possible to write the matrix BCD3 in the following 

convenient form:   
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It is thought that this is the most complicated case comparing with the studies 

carried out in the previous chapters from Chapter V. However, the simplifications 

must be also applied for secular equations in the case. Expanding the boundary-

condition determinant (BCD3) in equation (XIII.2), the reader can find that the most 

complicated secular equation for the first set of the eigenvector components is as 

follows:  
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Using the same transformations to regroup all the terms in equation (XIII.3), the 

final form of the secular equation can be also written as the following equation, in 

which the left side consists of four terms:  
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where all the material constants for a cubic piezoelectromagnetics and the free space 

(vacuum) are combined in such ways in order to deal with the non-dimensional 

expression. In equation (XIII.4), the value of the speed of light in a vacuum, CL = 

1/sqrt(ε0µ0), is given in the beginning of Chapter IV. Also, the speed of the 

electromagnetic waves in a solid is defined by the following formula: VL = 1/sqrt(εµ). 

The other non-dimensional parameters such as Kem
2, Ke

2, Km
2, Kα

2, and γK
2 are defined 

by relations (II.19), (II.21), (II.22), (VII.5), and (II.59), respectively. It is clearly seen 

in equation (XIII.4) that the following relation e(eµ – hα)/[h(eα – hε)] = – e(eµ – 

hα)/[h(hε – eα)] is also non-dimensional and looks like the relation of the 

corresponding terms of the CMEMC Kem
2. Indeed, the CMEMC Kem

2 can be 

represented as a sum of four terms, see the definition of Kem
2 in relation (II.19).  

To complete the mathematical analysis, the final step is the utilization of the 

second set of the eigenvector components. This allows formation of the second 

boundary-condition determinant (BCD3). After some useful simplifications and 

transformations, it can be then introduced as follows:   
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For the second set of the eigenvector components, it is also expected that the 

second secular equation will be different from the first one, for which the final 

simplified form is given in expression (XIII.4). Expanding the second BCD3 in 

equation (XIII.5), the reader can also obtain the following secular equation in the 

original form which can be further transformed:  
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Finally, application of the simplification procedure results in the following last 

secular equation written in the convenient form consisting of four terms:  
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The new SH-SAW velocity can be calculated with formula (XIII.4) or (XIII.7). 

It is obvious that these formulae are the most complicated. This velocity denoted by 

Vc7new represents already the seventh new SH-SAW velocity. For the cubic 

piezoelectromagnetics, the value of the velocity Vc7new can be obtained using the 

following recursive formula:  

 

  2777 1 XbVV ctemnewc      (XIII.8) 

 

where the parameter bc7 is defined below.  

Using this set of the electrical and magnetic boundary conditions, one can also 

calculate the values of the seventh new SH-SAW velocity Vc7new for the studied cubic 

piezoelectromagnetics. The results of the calculations are listed in table XIII.1. Like 

for the other new SH-SAW velocities calculated in the previous chapters, three values 

of Vc7new are calculated with a high precision for each studied material listed in the 

table. One can compare the calculated values of Vc7new with those of the other six new 

SH-SAW velocities and velocity VBGM. For the cubic piezoelectromagnetics with Kem
2 

< 1/3, the values of all the seven new SH-SAW velocities lie in the phase velocity 

range between the values of the SH-SAW velocity VBGM and the value of the SH-
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BAW velocity Vtem given in table V.1 from Chapter V. For those with Kem
2 > 1/3, it is 

apt to use the value of the solution VK instead of that of the SH-BAW velocity Vtem.  

 

 

Table XIII.1. The calculated values of the new SH-SAW velocity Vc7new [m/s].  

PEM composite  
(Vc7new)1 

(Vc7new)2 

 (Vc7new)3 

Metglas–PZT-5H  
3678.4479600723056 

3698.1418999052634 

 3700.2660774646043 

Tl3TaSe4–Terfenol-D  
962.0331923300526 

969.2665702898084 

 970.0440338220781 

Tl3VS4–Galfenol  
3613.9098468606157 

3619.8653101138586 

 3620.8174665209454 

Tl3TaSe4–Galfenol  
3470.4888929721035 

3476.8984274315751 

 3477.8756515991725 

Tl3VS4–Alfenol  
3144.6575150817353 

3149.9194411326577 

 3150.5518653562942 
  

 

 

The complicated four-term formulae given in expressions (XIII.4) and (XIII.7) 

can be also transformed into the form of two-term expression. It is clearly seen in the 

equations that their first terms are equal. However, these equations have to be 

transformed to the suitable forms when they should have equal third terms, but not 

the first ones, to apply the subtraction procedure. After this procedure, one can obtain 

a three-term expression which can be then written in the following compact form 
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used in this work for all the cases of the wave propagation in the cubic 

piezoelectromagnetics:  
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where the complicated parameters A and B are defined as follows:  
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and  
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The parameters A and B are quite complicated. Using them, the parameter bc7 

introduced in expression (XIII.8) can be defined as follows:  
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This chapter finalizes the theoretical analysis of the problem of wave 

propagation in the cubic piezoelectromagnetics. The ninth set of the possible 
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electrical and magnetic boundary conditions was used here, and the values of the 

seventh new SH-SAW velocity Vc7new were calculated. However, it is thought that it 

also is indispensable to discuss this problem and to do some conclusive notes in the 

following chapters.  
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CHAPTER XIV.  Discussion  

 

 

All the solutions for the SH-SAWs obtained in this work can be naturally 

divided into two groups. The first group is for those without the material constants of 

the free space (vacuum), namely the dielectric permittivity constant ε0 and the 

magnetic permeability constant μ0. The obtained new SH-SAW velocities such as 

Vc1new and Vc2new studied in Chapters VII and VIII, respectively, pertain to the first 

group. Also, it was soundly shown in Chapter V that the SH-SAW with the velocity 

VBGM can also propagate in the cubic piezoelectromagnetics. This SH-SAW velocity 

is also valid for the first group. The second group is for those with the vacuum 

material constants. The new SH-SAW velocities such as Vc3new, Vc4new, Vc5new, Vc6new, 

and Vc7new studied in Chapters from IX to XIII relate to this second group.  

It is thought that it can be convenient for the reader to analyse some results 

combined together. This is realised in table XIV.1. This table lists all the velocity 

values for the SH-SAWs which can propagate in the cubic piezoelectromagnetics. In 

the table, Tl3TaSe4–Galfenol is the material with Kem
2 > 1/3 and Tl3VS4–Alfenol is 

that with Kem
2 < 1/3. The values of the SH-BAW velocities Vt4 and Vtem and the 

solution VK are also given in the table for comparison. It is clearly seen in the table 

that all the values of the new SH-SAW velocities are positioned between the values 

of VBGM and VK for Tl3TaSe4–Galfenol with Kem
2 > 1/3. For Tl3VS4–Alfenol with Kem

2 

< 1/3, they are situated between the values of VBGM and Vtem. Also, it is possible to 

focus the attention to the values of the velocity Vc3new, for which the values are very 

close to the value of Vtem for Tl3VS4–Alfenol and quite close to the value of VK for 

Tl3TaSe4–Galfenol. One can also found that all the values of the seven new SH-SAW 

velocities are different from the other SH-SAW velocities obtained for the 

transversely isotropic piezoelectromagnetic composite materials [88, 89]. In order to 

compare, one can treat the transversely isotropic symmetry for the studied 

piezoelectromagnetics instead of the cubic symmetry. However, this difference is 
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blatant because the transversely isotropic piezoelectromagnetics have no such very 

important wave characteristic as the solution VK.  

 

 

Table XIV.1. The calculated values of all the new SH-SAW velocities from Vc1new to 

Vc7new as well as the velocities Vt4, Vtem, and VBGM [all only for (Kem
2)3] for two cubic 

piezoelectromagnetics.  

   

Velocity [m/s] Tl3TaSe4–Galfenol Tl3VS4–Alfenol 

   

Vt4 2931.7282421476365 3021.4654798594457 

VK 3478.1008107942868 2839.4075626150029 

Vtem 3490.9682076269390 3150.5728182133777 

VBGM 3335.9017826581493 3140.4042000875146 

Vc1new 3477.6865581211105 3150.4632207288199 

Vc2new 3339.5042963396260 3141.8899674581957 

Vc3new 3478.0895042154676 3150.5724807593158 

Vc4new 3477.9654008755682 3150.5567694878639 

Vc5new 3338.9102777224558 3141.8114067959477 

Vc6new 3477.1029658424587 3150.3680586102008 

Vc7new 3477.8756515991725 3150.5518653562942 
   

 

 

It is also possible to compare the seven forms of the secular equations which can 

be used for the calculations of the seven new SH-SAW velocities listed in table 

XIV.1. It is natural to compare the corresponding two-term forms. Indeed, each of the 

seven two-term forms can be written in the common form given in formula (XIII.9) 

from the previous chapter. This common form is convenient because it allows one to 

compare only the differences in the material parameters such as A and B. These 

parameters explicitly depend on the material constants of the cubic 

piezoelectromagnetics. Note that each case of the boundary conditions has its own set 
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of the parameters A and B and any difference in these parameters solidly defines the 

uniqueness of each new SH-SAW velocity. These unique parameters A and B are 

listed in table XIV.2 for each of the seven new SH-SAWs which can propagate in the 

cubic piezoelectromagnetics. The explicit forms of the parameters A and B are 

relatively simple, but the forms for the last case studied in the previous chapter. 

Formulae (XIII.10) and (XIII.11) for the A and B are quite complicated because both 

the vacuum constants such as ε0 and μ0 are here coupled with all the material 

constants of the cubic piezoelectromagnetics. This is the most complicated case 

because in the other cases either the vacuum constant ε0 or μ0, or none is coupled with 

those.  

It is thought that the theoretical results obtained in this work can be also useful 

for the other very interesting studies concerning the wave propagation in cubic 

piezoelectromagnetics. For example, there is a great current interest in various 

investigations of left-handed artificial materials called the metamaterials. It is 

expected that some of the piezoelectromagnetic metamaterials can possess the 

transversely isotropic symmetry and some of them can have the cubic symmetry. 

These solid metamaterials are characterized by the dielectric permittivity constant ε 

and the magnetic permeability constant μ with negative signs. So, ε < 0 and μ < 0 

surely give εμ > 0. However, the opposite sign of the material constants ε and μ can 

always result in the following condition for the CMEMC defined by expression (II.19) 

in Chapter II: Kem
2 < 0. It is expected that the negative sign of Kem

2 can be true for the 

following cases: (1) ε < 0, μ < 0, and α < 0 as well as (2) ε < 0, μ < 0, and α > 0. This 

can be true because the value of the electromagnetic constant α is very small in the 

main for almost all piezoelectromagnetic composites. Also, this unique situation 

when Kem
2 < 0 results in unusual correlation between the SH-BAW velocities such as 

Vtem and Vt4, see formulae (II.24) and (II.18) from Chapter II, namely Vtem < Vt4. For 

usual materials, one has to have Vtem > Vt4. The problem is that no answer can be 

received on the following question: Vtem < Vt4 is true for the metamaterials or not? 

This problem exists due to absence of any experimental data on SH-BAW 

propagation in bulk metamaterials. It is still not clear about the preference for 
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experimentalists to cope with bulk metamaterials or thin-film ones. It is thought that 

as soon as one can measure the SH-BAW velocities Vtem and Vt4 for metamaterials, 

one can state that the metamaterials with the bulk acoustic wave (BAW) properties 

were fabricated.  

 

 

Table XIV.2. The explicit forms of the material parameters A and B in dependence 

on the electrical and magnetic boundary conditions.  
   

Boundary conditions Material parameter A Material parameter B 

(Chapter)   
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It is possible to review some recent papers concerning various investigations of 

the metamaterials. Refs. [203, 204] reported their studies of left-handed artificial 

materials (metamaterials) in the frequency region from 1 THz to 100 THz, and even 

above [203]. The main problem of the experimental reports in Refs. [203, 204, 205] 

is that they do not provide the complete set of material constants for investigated 

unique composites. Ref. [206] reported a study of piezoelectric-piezomagnetic 

multilayer with ε < 0 and μ < 0 in which dielectric polariton and magnetic polariton 

can be simultaneously created. Also, it was recently stated that phonon-polaritons in a 

form of a band-like structure can exist in piezomagnetic superlattices (PMSL) with 

periodically up and down polarized domain structures [207] in which the 

piezomagnetic coefficients are periodically modulated. It is worth noticing that some 

theoretical approaches exist which use complex material constants to describe wave 

propagation in multi-layered structures [208]. Some latterly works concerning the 

investigations of different metamaterials can be also found in Refs. [209-218], of 

which Ref. [210] copes with three-dimensional bulk metamaterial.  

This work is written for seasoned theoreticians and experimentalists in the 

research arena of the wave propagation in solids. However, it is thought that young 

researchers can also grasp the problems of wave propagation studied in this work. 

Indeed, it is thought that undergraduate, graduate, and postgraduate students can 

improve their skills when they additionally study the well-known classical books 

about the wave propagation and wave phenomena in crystals cited in Refs. [167-177]. 

It is also recommended for the reader to read the recent review papers concerning 

magnetoelectric materials cited in Refs. [219-226]. The additional literature is cited in 

Refs. [227-231] which also study the coupling between magnetic and ferroelectric 

properties. Indeed, outside the problem of wave propagation in the cubic and 

transversely isotropic piezoelectromagnetics there exist many others which are of a 

great interest for practical devices.  

Also, the recent Nobel lectures on spintronics, its origin, and development for 

the future can be found in Refs. [232, 233] written by A. Fert. Also, Chappert and 

Kim [234] discussed developments of electronics in the future (metal spintronics) 
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which will be free of charges. It is well-known that the magnetoelectric materials sre 

used to resolve problems of spintronics and magnetic recording. The future of the 

magnetic memory is coupled with the computer memory called magnetic random 

access memory (MRAM) which will be as fast as the modern random access memory 

(RAM) and energetically independent in contrast to RAM. According to work [235] 

by Bibes and Barthélémy, creative studies of multiferroics are also directed towards 

creation of magnetoelectric memories.  

It is also possible to mention about a promising proposal for a novel storage-

class memory described in some the United States patents, for instance, see Refs. 

[236, 237]. In the novel memory, magnetic domains are used to store information in a 

“magnetic race-track”. The magnetic race-track technology promises a solid state 

memory with storage capacities and low cost comparable with those of magnetic disk 

drives, but with much improved performance and reliability. This can be called as 

follows: ”hard disk on a chip”. The current induced resonant excitation and motion of 

domain walls in permalloy nanowires were discussed in papers [238, 239]. According 

to work [240], the injection of spin polarized current below a threshold value through 

a domain wall confined to a pinning potential results in its precessional motion within 

the potential well. Using a short train of current pulses, whose length and spacing are 

tuned to this precession frequency and oscillations of the domain walls can be 

resonantly amplified [241]. As a result, the motion of domain walls can be feasible 

with much reduced spin polarized currents, more than five times smaller than in the 

absence of resonant amplification.   

It is also well-known that different dispersive SH-SAWs guided by the suitable 

surfaces of piezoelectrics, piezomagnetics, and piezoelectromagnetics are multi-

promising candidates for non-destructive testing and sensor applications. It is 

expected that using some apt piezoelectromagnetic materials, it is possible to create 

various sensors. They can be quite cheap and revolutionize our life. For example, 

modern dwellings can be built with smart electronics interacting with thousands 

cheap sensors working at room temperatures. Indeed, a room-temperature 

magnetoelectric sensor as cheap as one cent has already been proposed by Israel, 
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Mathur, and Scott [242]. The utilization of magnetoelectric materials for sensors is 

also discussed in Refs. [243, 244]. Also, Srinivasan and Fetisov [245] have written 

their collaborative work concerning signal processing devices and microwave 

magnetoelectric effects. It is worth stating that theoretical investigations of dispersive 

SH-SAWs propagating in layered systems, when one piezoelectromagnetic material 

is in a solid contact with the other, are very complicated and, therefore, are still not 

carried out. It is possible that they can be analytically performed for the transversely 

isotropic layered structures. It is thought that any analytical analysis is very impotent 

for complete understanding of wave processes in very complicated layered systems.  

There are many interesting applications of the magnetoelectric effect. For 

instance, magnetized liquid crystals and electronic paper (e-paper) are some of them. 

In 2008, Lin et al. [246] studied the composite consisting of liquid crystals and 

ferromagnetic nanorods and the possibility of electrical manipulation of magnetic 

anisotropy in it. It is not possible to mention about all applications of two-phase 

(composite) materials possessing the magnetoelectric effect. It is also necessary to 

include much work concerning creation and characterization of new composites 

possessing the magnetoelectric effect. One can find thousand works on the subjects 

and the number of applications increases from year to year. The reader can find them, 

for example, in Internet. To help the reader, it is possible to give some additional 

works [247-255] which can be also read to receive some broaden knowledges in these 

subjects.   
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CONCLUSION  

 

 

To perform numerical calculations of the SH-SAW characteristics, several 

piezoelectromagnetic composite materials possessing both the piezoelectric and 

piezomagnetic phases were propounded in this theoretical work. It was also assumed 

that they can have the cubic symmetry. The piezomagnetic phase in the proposed 

piezoelectromagnetic composites can be formed by the following very popular 

piezomagnetics: Metglas, Terfenol-D, Galfenol, and Alfenol. These piezomagnetics 

have the cubic symmetry and only Terfenol-D can also have the hexagonal symmetry. 

The piezoelectric phase can be obtained with the following strongly piezoelectric 

materials: Tl3TaSe4, Tl3VS4, PZT. The first two of them possess the cubic symmetry 

and the third is the transversely isotropic material (hexagonal symmetry). Indeed, for 

the resulting cubic piezoelectromagnetics, the average material properties were used. 

Also, it was discussed that some lead-free piezoelectrics can be utilized instead of 

any of the PZT-family.  

This theoretical work predicted the existence of the seven new SH-SAWs 

propagating in the cubic piezoelectromagnetics with both the CMEMC Kem
2 < 1/3 and 

Kem
2 > 1/3. These new SH-SAWs can propagate in direction [101] on the surface of 

cubic piezoelectromagnetic (composite) material. These seven new SH-SAWs 

correspond to the seven sets of the electrical and magnetic boundary conditions. The 

solutions for the seven new SH-SAW velocities were given in the convenient forms 

for comparison with each other. It was also shown in this work that the eighth SH-

SAW called the surface Bleustein-Gulyaev-Melkumyan (BGM) wave can propagate 

in the cubic piezoelectromagnetics. Therefore, in the cubic piezoelectromagnetics, 

only eight SH-SAWs including the surface BGM-wave can exist. This number of the 

SH-SAWs is smaller than that for the transversely isotropic materials in which as 

many as ten SH-SAWs including the surface BGM-wave can propagate.  
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Only eight SH-SAWs can exist in the cubic piezoelectromagnetics due to the 

found fact that only single SH-SAW solution can be revealed in each case of eight for 

both the sets of the eigenvector components. This is true for both groups of the cubic 

piezoelectromagnetics, namely for those with the CMEMC Kem
2 < 1/3 and Kem

2 > 1/3. 

This is one of the main differences between the problems of wave propagation in the 

cubic piezoelectromagnetics and the transversely isotropic composite materials. For 

the cubic piezoelectromagnetics with Kem
2 < 1/3, the SH-SAWs can propagate with 

the velocities higher than the SH-SAW velocity VBGM and slower than the SH-BAW 

velocity Vtem. For those with Kem
2 > 1/3, the SH-SAWs can propagate with the 

velocities when their values are situated above the value of the SH-SAW velocity 

VBGM and just below the value of VK. Note that the existence of the solution denoted 

by VK, which always presents and does not depend on the boundary conditions, also 

represents the feature of cubic piezoelectromagnetics which does not exist foe the 

transversely isotropic piezoelectromagnetics.   

Like the transversely isotropic materials, the dependence on the speed of light in 

a vacuum was also revealed in the cubic piezoelectromagnetics for the suitable 

boundary conditions. It is flagrant that the obtained results can be useful for complete 

grasping of the problem of wave propagation in two-phase and laminated composite 

materials with both the cubic and hexagonal symmetries. This can be relevant to the 

following quite wide subjects: acoustoelectronics, acoustooptics, and optoelectronics. 

It is expected that the obtained results can be utilized in fabricating smart materials in 

the microwave technology. It is thought that employment of the electromagnetic 

acoustic transducers (EMATs) can allow one to carry out measurements of all the 

new SH-SAW velocities for the cubic piezoelectromagnetics and the transversely 

isotropic piezoelectromagnetic composites.  
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