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The anisotropy term C 2 ¼ [(C11 2 C44)
2 2 (C12 þ C44)

2]/(C11C44) for cubic crystals of the classes m3
and m3m, as well as the threshold velocity Vth, were calculated. It was found that the surface two-partial
Rayleigh type waves (RTW2) cannot exist in propagation directions with values of the C 2 , 24. It was
also found that for the cubic crystals, such as RbCl, RbBr, RbI, Li2O and KCN, there is a corresponding
great positive C 2 . 5. The cubic crystal NaCN (m3m class) possesses the gigantic anisotropy term
C 2 ¼ 48.71. It was discussed that crystals with C 2 .. 1 could be suitable for investigation of possible
existence of new supersonic surface waves with the phase velocity V . Vl, because the velocity
V th , Vl of the bulk longitudinal wave: Vl(RbI) ¼ 1.077Vth and Vl(Li2O) ¼ 1.07Vth. The supersonic
surface waves with V . Vl are promising, for example, for mobile communication to increase work
frequency in GHz-devices, such as surface acoustical wave (SAW) filters, etc. Also, the existence
condition V . Vl for the new supersonic SAW possessing the Rayleigh polarization does not obey the
existence condition V , Vt for the Rayleigh SAW. The phase velocity range V . Vl, in which the new
SAW can be found, is separated from the one 0 , V , Vt for the Rayleigh SAW by the one Vt , V , Vl

for leaky type waves. The universal existence condition C 2 . 212 C11=C33 2 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11=C33

p
for the

RTW2-waves in both cubic and non-cubic crystals was also introduced. Possible applications are also

discussed.

Keywords: Cubic crystal; Polarization; Rayleigh type waves (RTW2); Anisotropy

PACs: 43.35.Cg; 43.35.-c;

1. Introduction

Surface acoustical waves (SAW) polarized in the sagittal plane can propagate on the

surface of a bulk isotropic medium that was initially discovered by Rayleigh (1885). The

sagittal plane is formed by the vector N showing the propagation direction and the normal

to the free surface directed along the Z-axis as shown in figure 1. The other unique wave

type can propagate in a plate, consisting of an isotropic material, which represents the

Lamb wave (Lamb 1917). The Lamb waves have polarization, like the one of the surface

Rayleigh type waves. Both symmetric and anti-symmetric modes of the Lamb (type) waves

can exist.
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However, most of the materials are anisotropic, which represent crystals. Both two-partial

Rayleigh type waves (RTW2) and two-partial Lamb type waves (LbTW2) can propagate in

anisotropic media, too, only in the so-called highly-symmetric propagation directions,

according to Lardat et al. (1971) and Farnell and Adler (1972). For instance, they can

propagate in cases when the sagittal plane coincides with a symmetry plane of a crystal that

was also discussed in Farnell (1978). The so-called “pure” RTW2-waves can propagate in

these cases. Many known crystals have one of cubic symmetries, such as m3, 432, m3m, 23

and 43m. For the non-centrosymmetrical cubic classes 23 and 43m, both four-partial

Rayleigh (RTW4) and Lamb (LbTW4) type waves can propagate, if the piezoelectric effect

is taken into account. However, there are such propagation directions in the piezoelectric

crystals, in which both RTW2 and LbTW2 waves can propagate in the corresponding

systems. For example, this occurs in (001)-[100]-propagation direction for a cubic crystal. In

Kadota et al. (1999), the attention was paid to studying the anisotropy influence on the

RTW2-wave existence in cubic crystals.

Rayleigh (1885) has discovered that SAW polarized in the sagittal plane can exist in

isotropic media with the condition for the phase velocity V such as 0 , V , Vt, where Vt is

the speed of the bulk transverse wave. He has treated only isotropic materials. After that, the

Rayleigh SAW existence with the condition 0 , V , Vt was found in anisotropic and

piezoelectric crystals. However, for mobile communication there is a requirement to increase

work frequency for electronic devices. Therefore, attention was paid to the phase velocity

range V . Vt, where different leaky type waves, such as leaky, leaky pseudo, leaky surface

and second leaky waves can be found, see for example, Kadota et al. (1999). The LSAWs

allow usage of GHz and higher frequency range devices for mobile communication. The

present work deals with some characteristics of cubic crystals, which differ cubic crystals

from isotropic media and show similarity between cubic and non-cubic crystals. In particular,

the present work is aimed to find some interesting cubic crystals, which can possess unique

anisotropy properties resulting in SAW existence possibility with the other condition V . Vl,

where Vl is the speed of the bulk longitudinal wave. It is noted that the present crystal

anisotropy investigation represents an original work highlighting a problem of Rayleigh-

polarized supersonic surface wave existence with the phase velocity V . Vl.

Figure 1. The coordinate system with two commonly used propagation directions shown by the vector N.
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2. Theory and the anisotropy term

The influence of cubic crystal anisotropy on the Rayleigh type wave existence was studied in

many works, see for example, Gazis et al. (1960), Tursunov (1967) and Farnell (1970), of

which Farnell (1970) is the most famous. In order to characterize the cubic crystal anisotropy,

which makes difference between cubic crystals and isotropic media, the anisotropy factor h

for cubic crystals was introduced, see Gazis et al. (1960) and Farnell (1970):

h ¼
2C44

C11 2 C12

: ð1Þ

The anisotropy factor h can be both h . 1 and h , 1 for a cubic crystal, but there is h ¼ 1

for an isotropic medium. There are three independent elastic constants C11, C12 and C44 in

equation (1) for cubic crystals, see also Nye (1989). For an isotropic medium there is the

well-known dependence:

C44 ¼ ðC11 2 C12Þ=2: ð2Þ

The anisotropy factor h is suitable for studying wave propagation in cubic crystals only in

the case of C33 ¼ C11. Probably, it is more convenient to evaluate other anisotropy

characteristics studying SAW propagation in crystals, which will be further discussed.

The SAW propagation treatment in a cubic crystal requires one to find both eigenvalues

(the corresponding normal components kðnÞ3 of the wavevector k) and eigenvectors (the

corresponding displacements uðnÞ1 and uðnÞ3 for such waves polarised in the sagittal plane). For

the coordinate system shown in figure 1, surface waves propagate along the X-axis damping

towards negative values of the Z-axis. For waves polarized in the sagittal plane there

are the following no-zero components of the Green-Christoffel tensor: GL11, GL33 and

GL13 ¼ GL31. Determinant for finding non-dimensional complex components m3 ¼ k3/k

with m1 ¼ 1 and m2 ¼ 0 can be written in the following view:

C44m
2
3 þ C11A

2
l ðC12 þ C44Þm3

ðC12 þ C44Þm3 C11m
2
3 þ C44A

2
t

������
������ ¼ 0; ð3Þ

where C11 ¼ C22 ¼ C33, C44 ¼ C55 ¼ C66 and C12 ¼ C21 ¼ C13 ¼ C31 are the correspond-

ing non-zero components of the stress tensor Cijkl. In equation (3) there are non-dimensional

functions of the phase velocity V ¼ v/k, such as A2
l ¼ 12 ðV=VlÞ

2 and A2
t ¼ 12 ðV=V tÞ

2

with Vl ¼ [C11/r ]
1/2 and Vt ¼ [C44/r ]

1/2 representing the bulk longitudinal and transverse

waves, respectively. Expanding the equality (3), the secular equation appears after some

transformations (Zakharenko 2005) in the following view:

m4
3 þ A2

l þ A2
t þ C 2

� �
m2

3 þ A2
l A

2
t ¼ 0: ð4Þ

The fourth-order polynomial equation (4) gives the following four eigenvalues

(polynomial roots m3):

m
1;2;3;4
3 ¼ ^ 2

1

2
A2
l þ A2

t þ C 2
� �

^
1

2
A2
l þ A2

t þ C 2
� �2

24A2
l A

2
t

h i1=2� �1=2
: ð5Þ

In the roots (5), the anisotropy term C 2 is equal to the following:

C 2 ¼
ðC11 2 C44Þ

2 2 ðC12 þ C44Þ
2

� �
C11C44

: ð6Þ

It is noted that the anisotropy term C 2 represents non-dimensional crystal characteristics,

like the commonly used non-dimensional quantity, such as anisotropy factor h in equation (1)

Cubic crystal anisotropy 63



for cubic crystals. The anisotropy term C 2 depends on the values of C2
l ¼ ðC11 2 C44Þ

2 and

C2
t ¼ ðC12 þ C44Þ

2. Indeed, it is possible to suggest that C2
l and C2

t relate to A2
l and A2

t ,

respectively. Therefore, the usage of the symbol C 2(C2
l , C2

t ) manifests such square

dependence on the elastic constants in contrast to the usual dependence of the h equation (1)

on the elastic constants of cubic crystals. The C 2 with some modifications is suitable for the

other propagation directions, for example in [110] direction, where so-called “pure” waves

with polarization in the sagittal plane can propagate. Therefore, the anisotropy termC 2 can be

an universal characteristics for cubic crystals, while the anisotropy factor equation (1) is

suitable only in [100] propagation direction, where there is the equalityC11 ¼ C33. In addition,

Al and At in equation (5), as well as the roots m3, are non-dimensional that is convenient. It is

clearly seen in equations (6) and (2) that there isC 2 ¼ 0 for isotropic materials. Therefore, the

C 2 manifests all difference between isotropic materials and cubic crystals, which results in

wave characteristics.

The condition of the RTW2-wave existence for the coordinate system shown in figure 1

requires existence of all complex/imaginary roots (5), which is full-filled for the phase

velocity V below the speed Vt. Only two roots with negative imaginary parts are suitable for

the coordinate system, in order to have amplitude damping towards the depth of a bulk

material giving surface wave solutions. However, there are no requirements for roots (5)

studying Lamb (type) waves, which can be both real and complex/imaginary in the phase

velocity range 0 , V , þ1. The roots (5) are completely imaginary for the zero anisotropy

term C 2, as well as for classical surface RW2 wave in an isotropic medium with the

condition for the phase velocity 0 , V , Vt:

m
1;2
3 ¼ ^i

ffiffiffiffiffiffiffiffiffi
þA2

l

q
for V , Vl; but m

1;2
3 ¼ ^

ffiffiffiffiffiffiffiffiffi
2A2

l

q
for V . V l;

m
3;4
3 ¼ ^i

ffiffiffiffiffiffiffiffiffi
þA2

t

q
for V , V t; but m

3;4
3 ¼ ^

ffiffiffiffiffiffiffiffiffi
2A2

t

q
for V . V t;

ð7Þ

where i ¼ (21)1/2 is the imaginary unity.

By analyzing the roots (5), it can be found that all roots (5) can be complex for the phase

velocities V , Vt. Therefore, the surface RTW2-waves can there exist. On the other hand,

all roots (5) could be complex for V . Vl that allows the existence of new supersonic

surface waves polarized in the sagittal plane. This can be the unique property of some

suitable cubic crystals. This can also be shown by treating the possible case in equation (5)

under square root:

A2
l þ A2

t þ C 2 ¼ 0; ð8Þ

which gives either all complex or only two complex roots in equation (5) depending on

the C 2:

m
1;2;3;4
3 ¼ ^½^iAl At�

1=2: ð9Þ

The roots (9) should all be complex for SAW existence. Square root from the imaginary

unity in equation (9) gives a complex number, using the well-known De Moivre’s formula:

½Rðcoswþ i sinwÞ�p ¼ Rp½cosðpwÞ þ i sinðpwÞ�: ð10Þ

Equality (8) is full-filled for the threshold phase velocity V th (Zakharenko 2005):

V th ¼ V tVl

ð2þ C 2Þ

V2
t þ V2

l

� �
" #1=2

: ð11Þ
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It is clearly seen in equation (11) that the anisotropy term (6) should be C 2 . 22, in order

to have a real velocity V th. For the anisotropy term C 2 , 22, the velocity V th in Equation

(11) is imaginary.

There can be C11 – C33 in the highly-symmetric propagation direction in cubic and non-

cubic crystals. For instance, in [110] propagation direction for cubic crystals in figure 1 there

is C11 ¼ C55 þ (C33 þ C13)/2, according to Stoneley (1955) and Tursunov (1967).

Therefore, in this case, the roots (5), the anisotropy term C 2 (6) and the velocity V th (11)

are as follows, respectively:

m
1;2;3;4
3 ¼ ^ 2

1

2

C11

C33

A2
l þ A2

t þ C 2

	 

^

1

2

C11

C33

A2
l þ A2

t þ C 2

	 
2

24
C11

C33

A2
l A

2
t

" #1=2
2
4

3
5
1=2

;

ð12Þ

C 2 ¼
ðC11 2 C55ÞðC33 2 C55Þ2 ðC13 þ C55Þ

2
� �

C33C55

; ð13Þ

V th ¼ V tVl

1þ C11=C33 þ C 2

ðC11=C33ÞV
2
t þ V2

l

� �1=2
: ð14Þ

It is convenient to have all non-dimensional values in equation (3), because the elastic

constants have dimension (N/m2) with power 1010 (table 1). However, it is possible to omit

the power in the constants for further calculations, because the velocity V will depend on a

non-dimensional term, in which the constants will finally be combined. Two equations for

determination of two mechanical displacement components u1 and u3 are written from

equation (3) as follows:

C44m
2
3 þ C11A

2
l

� �
u1 þ ðC12 þ C44Þm3u3 ¼ 0;

ðC12 þ C44Þm3u1 þ C11m
2
3 þ C44A

2
t

� �
u3 ¼ 0:

ð15Þ

The complete two displacements U1 and U3 are written in the following view for plane

waves:

U1 ¼
X
N

f ðnÞuðnÞ1 exp ik m1X þ mðnÞ
3 Z 2 Vt

� �� �
;

U3 ¼
X
N

f ðnÞuðnÞ3 exp ik m1X þ mðnÞ
3 Z 2 Vt

� �� �
;

ð16Þ

where f (n) are the so-called weight factors, X and Z are two real space coordinates from figure

1, and t is time. Also, in equation (16) there are the corresponding two eigenvectors uðnÞ1 and

uðnÞ3 as follows:

uðnÞ1 ¼ ^ C11ðm
ðnÞ
3 Þ2 þ C44A

2
t

� �1=2
¼ 2

ðC12 þ C44Þm
ðnÞ
3

uðnÞ3

;

uðnÞ3 ¼ 7 C44ðm
ðnÞ
3 Þ2 þ C11A

2
l

� �1=2
¼ 2

ðC12 þ C44Þm
ðnÞ
3

uðnÞ1

:

ð17Þ

The eigenvector components uðnÞ1 and uðnÞ3 in the view (17) are readily obtained using the

determinant equation (3) formed from the corresponding components of the GL-tensor.

Also, equation (17) shows the relationship between the components uðnÞ1 and uðnÞ3 that is
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Table 1. Dependence of both the non-dimensional anisotropy term C 2 and the velocities Vt, Vl and V th on the material constants of the cubic crystals in [100] propagation direction for
(001)-cut.

No Cubic crystal Structure type
Density r
(kg/m3)

Elastic constants
Cij, 10

10 (N/m2) Anisotropy factor
h

Anisotropy term
C2

Velocity Vt

(m/s)
Velocity Vl

(m/s)
Velocity V th

(m/s)
C11 C44 C12

Non-piezoelectric class m3m
1. Ge Diamond 5327 13.000 6.700 4.900 1.65 21.09 3547 4940 2749
2. Si Diamond 2328 16.570 7.960 6.390 1.56 21.00 5847 8437 4806
3. Diamond Diamond 3507 107.600 57.500 12.500 1.21 20.39 12804 17516 13116
4. Pb fcc 11381 4.660 1.443 3.920 3.90 22.74 1126 2024 i846
5. Cu fcc 8936 16.840 7.520 12.140 3.20 22.37 2901 4341 i1467
6. Ag fcc 10534 12.400 4.610 9.340 3.01 22.34 2092 3431 i1042
7. Au fcc 19754 20.200 4.600 16.970 2.85 22.39 1526 3198 i860
8. Pt fcc 21400 42.300 8.500 26.700 1.09 20.27 1993 4446 2392
9. Pd fcc 12000 23.410 7.120 17.610 2.46 22.08 2436 4417 i603
10. Ni fcc 8914 26.100 13.090 15.100 2.38 21.83 3832 5411 1289
11. Al fcc 2700 10.730 2.830 6.090 1.22 20.57 3238 6304 3444
12. W bcc 18711 51.300 15.273 20.600 0.995 20.014 2857 5236 3534
13. Mo bcc 10204 46.000 11.005 17.600 0.78 0.80 3284 6714 4936
14. Fe bcc 7848 24.300 12.170 13.810 2.32 21.79 3938 5565 1473
15. Na bcc 970 0.740 0.420 0.620 7.00 23.15 2080 2762 i1782
16. Li bcc 530 1.381 1.013 1.216 12.28 23.46 4372 5105 i4012
17. K bcc 860 0.366 0.277 0.307 9.39 23.29 1795 2063 i1538
18. Rb bcc 1530 0.332 0.245 0.271 8.03 23.18 1265 1473 i1043
19. NaCl NaCl 2168 4.911 1.284 1.285 0.71 1.04 2434 4759 3778
20. NaF NaCl 2809 9.710 2.800 2.430 0.77 0.75 3157 5879 4612
21. NaI NaCl 3655 3.040 0.720 0.900 0.67 1.26 1404 2884 2279
22. NaBr NaCl 3200 4.010 1.143 0.697 0.69 1.06 1890 3540 2917
23. NaCN NaCl 1599 2.534 0.033 1.444 0.06 48.71 454 3980 3212
24. KCN NaCl 1553 1.916 0.141 1.197 0.39 5.07 951 3513 2441
25. LiCl NaCl 2070 4.940 2.460 2.280 1.85 21.34 3447 4885 2288
26. LiF NaCl 2640 11.200 6.320 4.560 1.99 21.34 4893 6513 3178
27. LiBr NaCl 3640 4.721 2.052 1.590 1.31 20.63 2374 3601 2320
28. KCl NaCl 1989 4.070 0.630 0.690 0.37 3.94 1780 4524 4037
29. KBr NaCl 2750 3.460 0.515 0.560 0.36 4.28 1369 3547 3201
30. KI NaCl 3129 2.750 0.369 0.450 0.32 4.91 1086 2965 2681
31. KF NaCl 2525 6.580 1.280 1.490 0.50 2.42 2252 5105 4334
32. AgCl NaCl 5571 6.010 0.625 3.620 0.52 2.92 1059 3285 2236
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Table 1 – continued

No Cubic crystal Structure type Density r
(kg/m3)

Elastic constants
Cij, 10

10 (N/m2)
Anisotropy factor

h
Anisotropy term

C2
Velocity Vt

(m/s)
Velocity Vl

(m/s)
Velocity V th

(m/s)

C11 C44 C12

33. AgBr NaCl 6476 5.630 0.720 3.300 0.62 1.96 1054 2949 1975
34. RbCl NaCl 2800 3.640 0.470 0.630 0.31 5.17 1296 3606 3266
35. RbBr NaCl 3350 3.150 0.382 0.480 0.29 5.75 1068 3066 2808
36. RbI NaCl 2550 2.760 0.279 0.370 0.23 7.45 913 2788 2667
37. RbF NaCl 3200 5.530 0.930 1.400 0.45 3.06 1705 4157 3548
38. MgO NaCl 3576 29.590 15.390 9.540 1.54 20.92 6560 9097 5530
39. NaO NaCl 2805 13.890 4.030 4.050 0.82 20.57 3790 7037 3990
40. CaO NaCl 3300 22.350 9.870 9.870 1.58 21.06 5469 8230 4508
41. SrO NaCl 4900 17.400 5.600 4.700 0.88 0.34 3381 5959 4498
42. BaO NaCl 5720 19.400 6.440 6.440 0.99 0.02 3355 5824 4132
43. NiO NaCl 6700 27.000 10.500 12.500 1.45 20.91 3959 6348 3507
44. CoO NaCl 6400 25.600 8.000 14.400 1.43 20.94 3536 6325 3178
45. MnO NaCl 5390 22.300 7.900 12.000 1.53 21.07 3828 6432 3172
46. PbS NaCl 7470 12.690 2.469 2.970 0.51 2.39 1818 4122 3485
47. CsCl CsCl 3988 3.640 0.800 0.920 0.59 1.75 1416 3021 2483
48. CsBr CsCl 4455 3.072 0.725 0.800 0.64 1.43 1276 2626 2126
49. CsI CsCl 4537 2.457 0.629 0.647 0.70 1.11 1178 2327 1853
50. CsCN CsCl 3410 1.880 0.300 1.080 0.75 1.05 938 2348 1521
51. TlCl CsCl 7000 4.010 0.760 1.530 0.61 1.75 1042 2393 1850
52. TlBr CsCl 7560 3.783 0.758 1.521 0.67 1.37 1001 2237 1676
53. NH4Cl CsCl 1530 3.795 0.838 0.955 0.59 1.34 2340 4980 4096
54. NH4Br CsCl 2440 3.413 0.697 0.879 0.55 2.06 1690 3740 3103
55. TlBr–TlI, KRS-5 CsCl 7371 3.600 0.555 1.500 0.53 2.53 868 2210 1720
56. TlBr–TlCl, KRS-6 CsCl 7192 4.200 0.760 1.350 0.53 2.31 1028 2417 1964
57. b-brass CsCl 8590 12.410 8.090 10.420 8.13 23.23 3069 3801 i2648
58. SrTiO3 Perovskite 5122 31.760 12.350 10.250 1.15 20.34 4910 7875 5368
59. RbMnF3 Perovskite 4317 11.740 3.190 4.210 0.85 0.49 2718 5215 3803
60. Er2O3 – 8640 25.640 7.520 14.680 1.37 20.86 2950 5448 2770
61. Y3Al5O12 YAG 4552 33.320 11.500 11.070 1.03 20.09 5026 8556 5989
62. Y3Fe5O12 YIG 5188 26.900 7.640 10.800 0.95 0.15 3838 7201 4966
63. Y3Ga5O12 YGG 5790 29.030 9.547 11.730 1.10 20.27 4061 7081 4634
64. CaF2 Fluorite 3180 16.420 3.370 4.398 0.56 1.99 3255 7186 5923
65. BaF2 Fluorite 4893 9.040 2.530 4.060 1.02 20.05 2274 4298 2807
66. SrF2 Fluorite 4240 12.500 3.200 4.500 0.80 0.68 2747 5430 4013
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Table 1 – continued

No Cubic crystal Structure type Density r
(kg/m3)

Elastic constants
Cij, 10

10 (N/m2)
Anisotropy factor

h
Anisotropy term

C2
Velocity Vt

(m/s)
Velocity Vl

(m/s)
Velocity V th

(m/s)

C11 C44 C12

67. Cu2O Antifluorite 6140 12.610 1.360 10.680 1.41 21.07 1488 4532 1363
68. Li2O Antifluorite 2013 26.450 2.180 4.180 0.20 9.51 3291 11463 10734
69. K2O Antifluorite 2350 8.450 2.870 3.250 1.10 20.26 3495 5997 3983
70. MgAl2O4 Spinel 3585 28.131 15.459 15.544 2.46 21.84 6567 8858 2110
71. FeAl2O4 Spinel 4280 26.600 13.350 18.250 3.20 22.32 5585 7884 i2578
72. FeCr2O4 Spinel 4450 32.200 11.700 14.400 1.32 20.69 5128 8506 5027
73. MnFe2O4 Spinel 5000 21.300 8.600 13.500 2.21 21.79 4147 6527 1604
74. g-Mg2SiO4 Spinel 3559 32.700 13.100 11.400 1.23 20.50 6067 9585 6279
75. Fe2TiO4 Antispinel 4836 13.900 3.960 11.200 2.93 22.38 2862 5361 i1556
76. Fe3O4 Antispinel 5163 26.760 9.530 10.560 1.18 20.42 4296 7199 4637
77. Ca3Al2Si3O12 Garnet 3594 31.700 10.200 9.500 0.92 0.23 5327 9392 6919
78. Ca3Cr2Si3O12 Garnet 3850 30.400 8.400 9.100 0.79 0.70 4671 8886 6794
79. Fe3Al2Si3O12 Garnet 4318 30.900 9.700 10.900 0.97 0.08 4740 8518 5969
80. Mn3Al2Si3O12 Garnet 4190 30.400 9.400 11.200 0.98 0.06 4737 8518 5942
81 Mg3Al2Si3O12 Garnet 3582 29.400 9.100 11.600 1.02 20.06 5040 9060 6135

Non-piezoelectric class m3
82. FeS2 Pyrite 4890 34.480 10.810 3.120 0.69 0.98 4702 8397 7082
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clearly seen:

uðnÞ1 uðnÞ3 ¼ 2ðC12 þ C44Þm
ðnÞ
3 : ð18Þ

It is natural that the displacements components from equation (18) could be taken in the

following view uðnÞ1 ¼ 1 and uðnÞ3 ¼ 2ðC12 þ C44Þm
ðnÞ
3 =uðnÞ1 for convenience. However, taking

uðnÞ1 ¼ 1 or uðnÞ3 ¼ 1 in equation (18) is not suitable for equation (15). Indeed, for uðnÞ1 ¼ 1

there is suitable value of uðnÞ3 ¼ 2½C44ðm
ðnÞ
3 Þ2 þ C11A

2
l �=½ðC12 þ C44Þm

ðnÞ
3 �. There is also one

useful function A2
t ðA

2
l Þ from Zakharenko (2005):

C44A
2
t ; C11A

2
l þ ðC44 2 C11Þ; ð19Þ

Two boundary conditions at Z ¼ 0 (figure 1) for stress tensor components, such as

ST31 ¼ 0 and ST33 ¼ 0, give the following second-order boundary conditions determinant

(BCD2) for two-partial waves:

uð1Þ3 þ mð1Þ
3 uð1Þ1 uð2Þ3 þ mð2Þ

3 uð2Þ1

C12u
ð1Þ
1 þ C11m

ð1Þ
3 uð1Þ3 C12u

ð2Þ
1 þ C11m

ð2Þ
3 uð2Þ3

������
������ ¼ 0: ð20Þ

Applying some transformations to both the first and second columns separately, such as the

relationship in equation (17) between uðnÞ1 and uðnÞ3 , it is possible to obtain a more convenient

BCD2 for further simplifications. For the first and second columns in equation (20), taking

the corresponding normalized displacement components uð1Þ3 ¼ 2ðC12 þ C44Þm
ð1Þ
3 =uð1Þ1 with

mð1Þ
3 ¼ ðAlAt=2Þ

1=2ð12 iÞ and uð2Þ3 ¼ 2ðC12 þ C44Þm
ð2Þ
3 =uð2Þ1 with mð2Þ

3 ¼ ðAlAt=2Þ
1=2

ð212 iÞ, according to equations (9), (10) and (18), one gets:

uð1Þ3

� �2
2ðC12þC44Þ m

ð1Þ
3

� �2
uð2Þ3

� �2
2ðC12þC44Þ m

ð2Þ
3

� �2
2C12ðC12þC44Þm

ð1Þ
3 þC11m

ð1Þ
3 uð1Þ3

� �2
2C12ðC12þC44Þm

ð2Þ
3 þC11m

ð2Þ
3 uð2Þ3

� �2
�������

�������¼ 0: ð21Þ

The further transformations include corresponding expression choice under square roots in

(17) for both uð1Þ3 and uð2Þ3 and multiplying the last row in equation (21) by the root mð1Þ
3 for

convenience. That results in the following intermediate state of the BCD2:

C11A
2
l 2C12 mð1Þ

3

� �2
C11A

2
l þC12 mð1Þ

3

� �2
mð1Þ

3

� �2
2aþC2

11A
2
l þC11C44 mð1Þ

3

� �2� �
mð1Þ

3 mð2Þ
3 2aþC2

11A
2
l 2C11C44½m

ð1Þ
3 �2

� �
�������

�������¼0; ð22Þ

where the following useful relationship ½mð1Þ
3 �2¼2½mð2Þ

3 �2 was used for complex roots in

view (9) and the constant a ¼ C12(C12 þ C44) was introduced. The following root property is

also applicable for both roots (5) and (9), as well as for the roots (7) in the case of C 2 ; 0:

mð1Þ
3 mð2Þ

3 ;2AlAt: ð23Þ

Finally, using the root property (23) and the roots (9), the BCD2 in equation (22)

transforms into the BCD:

2C12At þ iC11Al 2iC12At þ C11Al

aþ iC11C44AlAt 2 C2
11A

2
l 2aþ iC11C44AlAt þ C2

11A
2
l

�����
����� ¼ 0; ð24Þ
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which already shows clear dependence on both Al and At. Expanding the equation (24), a

secular equation appears as the result, which consists of both imaginary and real parts,

Abs{Re(BCD2)} ¼ Abs{Im(BCD2)}. Therefore, it is possible to treat only one real part for

simplicity. Hence, for evaluation of the phase velocity below the speed Vt, one can obtain:

aC12At 2 aC11Al 2 ðC12 þ C44ÞAtC
2
11A

2
l 2 C12C44A

2
t C11Al þ C3

11A
3
l ¼ 0: ð25Þ

Probably, the sixth-order polynomial (25) for the phase velocity V , Vt represents the

exact dependence VR ¼ F(Vt, Vl, C11, C12, C44) for Rayleigh SAW in the velocity range

0 , VR , Vt. It is noted that there is the phase velocity V ! 0 for C 2 ! 2 4 þ dc with

dc ! þ 0. It was found that there can be V , 100ms21 for C 2 , 2 3.9999, but such

crystals do not exist, see table 1. The same there is for the threshold velocity V th with

C 2 , 2 2. The slowest real velocity V th there is for Cu2O on line 67 in table 1 with

V th , 1363ms21. For the case of V th ! Vt 2 d (d ! Vt) there are suitable cubic crystals in

the table, such as LiBr on line 37 with V th , 2320ms21 and Vt , 2374ms21 and FeCr2O4

on line 72 with V th , 5027ms21 and Vt , 5128ms21. It is noted that there are relatively

the same values of negative C 2 , 2 0.63 and C 2 , 2 0.69 for LiBr and FeCr2O4,

respectively. This shows that they are alike. Cubic crystals in table 1 will be further discussed

in the next Sections. It is noted that for the case of C 2 ; 0 there is Vt , V th , Vl. The

crystals W and BaO with C 2 ! 0 on lines 12 and 42 of table 1 support this.

Now it is possible to leave the case of 0 , V , Vt for Rayleigh SAW, as well as the case

of Vt , V , Vl for leaky type waves, and to teat the possible case of V . Vl for possible

existence of new surface wave caused by unique anisotropy properties of some

suitable crystals with C 2 @ 0. In this case, it is convenient to use B2
l ¼ ðV=Vl Þ

2 2 1 and

B2
t ¼ ðV=V tÞ

2 2 1 instead of A2
l ¼ 12 ðV=Vl Þ

2 and A2
t ¼ 12 ðV=V tÞ

2, respectively. It is

noted that there can be readily done Al ! iBl and At ! iBt in the secular equation (25) that

results in the other secular equation for the surface waves with V . Vl:

aC12Bt 2 aC11Bl þ ðC12 þ C44ÞBtC
2
11B

2
l þ C12C44B

2
t C11Bl 2 C3

11B
3
l ¼ 0: ð26Þ

Also, there is the following useful relationship between Bl and Bt from equation (19):

C44B
2
t ; C11B

2
l þ ðC11 2 C44Þ: ð27Þ

It is noted that for leaky type waves confined in the phase velocity range Vt , V , Vl, the

relationship (27), using equation (19), becomes as 2C11A
2
l ; C44B

2
t þ ðC44 2 C11Þ. In this

case of V . Vl, the root property (23) for such surface waves transforms into the following

view:

mð1Þ
3 mð2Þ

3 ; 2BlBt ð28Þ

for the suitable roots mð1Þ
3 ¼ ðBlBt=2Þ

1=2ð12 iÞ and mð2Þ
3 ¼ ðBlBt=2Þ

1=2ð212 iÞ. Comparis-

ing equations (19), (23) and (25) with equations (26)–(28), it is obvious to do a statement that

such the problem to find the phase velocity for new SAWs in the V-range V . Vl is different

from the problem to find the one for Rayleigh SAWs in the V-range 0 , V , Vt.

There are no cubic crystals in table 1 with the condition V th . Vl for a great C 2 @ 0.

However, it is thought that such systems will be found (synthesized) in the future. On the

other hand, there are cubic crystals, such as NaCN, RbI and Li2O (see lines 23, 36 and 68 in

the table), with a great C 2 @ 0, for which the velocity V th is several percents less than the

speed Vl. Also, it is possible to take into account temperature dependence of the elastic
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constants C11(T), C44(T) and C12(T). It is natural to assume that there will be V th < V, in

general. Therefore, it is possible to write that the existence V-range for such surface waves

will be as follows Vl , V , Vl þ 2(V th 2 Vl) for V
th . Vl. It is also possible to introduce

the case of Bl ! Bt at V ¼ Vl þ d with d ! Vl (d ! Vt). Moreover, it is necessary to require

the following C44Bt @ C11Bl for safety. Hence, the secular equation (26) can be rewritten

in the following view:

aC12Bt ¼ ða2 C12C44B
2
t ÞC11Bl þ d0ðB

2
l ;B

3
l Þ ð29Þ

with d0ðB
2
l ;B

3
l Þ ¼ 2ðC12 þ C44ÞBtC

2
11B

2
l þ C3

11B
3
l ! C11Bl. Applying the expression (27)

for C44B
2
t and leaving only terms with Bl and Bt, one can get the following dependence

Bt(Bl): aC12Bt ¼ ½a2 C12ðC11 2 C44Þ�C11Bl þ d01ðB
2
l ;B

3
l Þ with d01ðB

2
l ;B

3
l Þ ¼ d0ðB

2
l ;B

3
l Þ2

C12C
2
11B

3
l . Indeed, it is natural that the further mathematical step will be as follows:

a2C44B
2
t ¼ C44½C11 2 2C44 2 C12�

2C2
11B

2
l þ d02 B3

l ;B
4
l ;B

5
l ;B

6
l

� �
: ð30Þ

Finally, using the relationship (27) again and neglecting the term d02ðB
3
l ;B

4
l ;B

5
l ;B

6
l Þ, the

phase velocity for the surface waves with the case V th ¼ Vl þ d (d ! Vl and d ! Vt), can be

calculated with the following approximate formula:

Vn , Vl 1þ
a2ðC11 2 C44Þ

½C11 2 2C44 2 C12�
2C44C

2
11 2 a2C11

� �1=2
: ð31Þ

It is natural that the phase velocity Vn of the new SAWs is introduced as the function

Vn(Vl), because there is V th , Vl. Probably, this formula (31) could be used as a first

approximation of the phase velocity for new supersonic surface waves even in piezoelectric

and other possible cases. The formula (31) can be also simplified for the case of

C11Bl ! C44Bt. The conditions C11 @ C44 and C11 @ C12 allow doing neglections, such as

(C11 2 C44) ! C11 and (C11 2 2C44 2 C12) ! C11. It is obvious that the case C44C
3
11 @ a2

gives:

V 0
n , Vl 1þ

C2
12ðC12 þ C44Þ

2

C44C
3
11

� �1=2
: ð32Þ

If C12 , C44 is taken into account in equation (32), the phase velocity can be written as

V 0
n , Vl½1þ 4ðC44=C11Þ

3�1=2: ð33Þ

The cubic crystals, such as RbI{C11 ¼ 2.760, C44 ¼ 0.279, C12 ¼ 0.370} with C 2 , 7.45

on line 36 of table 1 and Li2O{26.450, 2.180, 4.180} with C
2 , 9.51 on line 68 of the table,

represent such examples for the conditions C11 @ C44 and C11 @ C12. However, there are

cubic crystals with a great C 2 @ 0 in the table, such as NaCN {2.534, 0.033, 1.444} with

C 2 , 48.71 on line 23, for which there is C11 @ C44 with C11/C12 , 3 2 4. There is also one

interesting crystal in the table on line 82, such as pyrite FeS2{34.480, 10.810, 3.112} with a

relatively small C 2 , 0.98, but with velocity V th , 0.84Vl that is close to Vl, for which

there is C11 @ C12 with C11/C44 , 3. It is obvious that there are two limit cases caused by the

unique crystals anisotropy. In the first case with C 2 , 24, it is a problem to find a real phase

velocity for Rayleigh SAW in the V-range 0 , V , Vt. The second already represents the

other limit situation with a great C 2 @ 0, which can result in existence of the new supersonic

SAWs with the phase velocity V . Vl.
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3. Acoustic cubic crystals

The material constants of cubic crystals were taken from Anderson (1965), Farnell (1970),

Ashcroft and Mermin (1976), Blistanov et al. (1982), Landolt-Boernstein International

Tables (1985), Nikonorov and Kardashov (1985), Belomestnych (1998) and Aleksandrov

and Prodaivoda (2000), such as densities r and the elastic constants C11, C12 and C44, which

are listed in table 1. The anisotropy term C 2 was calculated with formula (6), and the velocity

V th in the last column of the table was calculated using formula (11), which depends on both

the speeds Vt and Vl, as well as on the C 2. The material constants of both NaCN and KCN

were taken from Haussuehl (1977) and Haussuehl and Michaelis (1979), and the material

constants of CsCN were taken from Loidl et al. (1983). In addition, perovskites were taken

from the review book (Aleksandrov and Beznosikov 2004) on perovskites. According to

table 1, there is no cubic crystal symmetry for which the anisotropy terms C 2 were all either

negative or positive. Examination of table 1 makes this statement obvious. Probably, cubic

crystals of the piezoelectric class 23 possess only positive values of the anisotropy term C 2.

However, there are no many known crystals of the class for Statistics. This can be clarified in

the future, if a 23-symmetry cubic crystal with a negative C 2 will be discovered. It is also

possible to discuss the anisotropy term C 2 as the crystal characteristics for cubic crystals

within each symmetry class. For example, for m3m-symmetry class, the cubic crystals Ge, Si

and Diamond with the diamond structure type have only positive values of the C 2. However,

the cubic crystals with both bcc- and fcc-lattices, as well as with both the NaCl and CsCl

structure types, can have both positive and negative C 2. Probably, cubic crystals with the

same structure type, such as Diamond, can have only either positive or negative values of the

C 2. The “sign” of the anisotropy term C 2 for suitable structures could also be the structure

characteristics. It is noted that all structure types of cubic crystals are described in

Crystallography, see the book (Kleber 1971).

Indeed, it is clearly seen in the formulae (1), (2) and (6), as well as in table 1, that the

anisotropy terms C 2 . 0 and C 2 , 0 correspond to the anisotropy factors h , 1 and h . 1,

respectively. Also, zero anisotropy term C 2 ¼ 0 corresponds to h ¼ 1. However, for W on

line 12 of the table there are C 2 , 2 0.014 , 0 with h , 0.995 , 1 that could be

explained by the way that this caused by square dependence (6) of the C 2 resulting in such

invalid correspondence between C 2 and h about C 2 , 0. On the other hand, this could be

excluded, if the elastic constants in equation (6) will be measured with a greater accuracy. In

addition, the C 2 can be significantly different from crystal to crystal for the same h. For

example, Diamond on line 3 of the table with C 2 , 2 0.39 and Al on line 11 with

C 2 , 2 0.57 have the same h , 1.21–1.22. The other instance is for the crystals NH4Br,

KRS-5 and -6 on lines 54–56 of the table, respectively. This can be explained by the

complicated dependence C 2 on the elastic constants. LiCl and LiF with the same

C 2 , 2 1.34 possessing h , 1.85 and h , 1.99 on lines 25 and 26, respectively, give also

one example.

The other crystal characteristics could be the threshold velocity V th (11). It is seen in table

1 that the velocity V th can be imaginary for negative C 2 , 22. Also, the real velocity V th

can be below the speed Vt, between the speeds Vt and Vl, and, perhaps, even greater than the

speed Vl. The “gigantic” positive anisotropy term C 2 ¼ 48.71 for the cubic crystal NaCN

due to the small constant C44 ¼ 0.033 £ 1010 [Nm22] at 293K, according to Haussuehl

1977 and Haussuehl and Michaelis 1979, does not give the condition V th . Vl, because the
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speed Vt is very slow. In both NaCN and KCN there is a phase transition observed at

temperatures 283 and 168K, respectively. Table 1 lists only non-piezoelectric classes of

cubic crystals. Crystal with V th , Vl can be convenient for different technical devices on

SAWs. Also, it is well-known that values of the elastic constants C11, C12 and C44 depend on

temperature for all cubic crystals. It is assumed that the electrical field and/or pressure can be

applied to a crystal with C 2 @ 0 that could also result in appearance of the new supersonic

SAWs. It is noted that application of an electrical field or a pressure to a cubic crystal can

convert the cubic symmetry into monoclinic symmetry. This is the non-linear case, for which

the corresponding third-order elastic constants Cijklmn, as well as the fourth-order Cijklmnpq for

some cases, should be considered in addition to the second-order Cijkl.

For the other instance, numerical investigations of elastic instabilities in cubic crystals

from stress–strain relations were carried out in Karki et al. (1997) for several cubic crystals.

The elastic stability criteria for a cubic crystal are written in the following view, according to

Wallace (1972) and Wang et al. (1995)):

C11 þ 2C12 . 0 ðspinodal criterionÞ; ð34Þ

C44 . 0 ðshear criterionÞ; ð35Þ

C11 2 C12 . 0 ðBorn criterionÞ: ð36Þ

In the case when a cubic crystal undergoes hydrostatic pressure P representing an isotropic

stress, according to Wallace (1972), there is:

cijkl ¼ Cijkl þ 0:5Pð2dijdkl 2 dildjk 2 dikdjlÞ: ð37Þ

The generalized stability criteria from Wallace (1972) and Wang et al. (1995) for a cubic

crystal under hydrostatic pressure can be analogically written, using equations (34)–(36):

c11 þ 2c12 . 0; c44 . 0; c11 2 c12 . 0: ð38Þ

The elastic constants cij representing the case of hydrostatic pressure are related to the Cij

defined with respect to the Eulerian strain variables by

c11 ¼ C11; c12 ¼ C12 þ P; c44 ¼ C44 2
P

2
: ð39Þ

In the case of vanishing load, only the Born stability criterion can be treated for a cubic

crystal in the finite-load stability conditions (38). It is also noted that the shear instability can

be reached before the spinodal one. It is clearly seen in equation (39) that hydrostatic

pressure can significantly change both the elastic constants C12 and C44, but not C11.

The existence of forbidden propagation directions for the RTW2-waves in cubic crystals

was stated in Gazis et al. (1960), Buchwald (1961), Buchwald and Devis (1963) and

Tursunov (1967). However, this is still not obvious as was mentioned in Farnell (1970).

It is clearly seen in formula (5) that for negative C 2 , 24, the RTW2-waves cannot exist,

because the waves are confined in the V-range 0 , V , Vt, where both A2
t # 1 and A2

l # 1

give ðA2
t þ A2

l Þ # 2 and 4A2
l A

2
t # 4. Therefore, there is ðA2

t þ A2
l þ C 2Þ2 $ 4 for C 2 , 24

that does not give all complex roots in equation (5), two of which with negative imaginary

parts should be taken for surface waves in order to have wave damping towards negative

values of the Z-axis in figure 1. In table 1 there are no cubic crystals with such negative

C 2 , 24, but there are Na, Pb, Ag, Au, Cu, Pd, Li, K, Rb, CuCl, CuBr, b-brass, FeAl2O4

and Fe2TiO4, for which there is the imaginary V th for 22 . C 2 . 24. For cubic crystals
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with such negative C 2, the existence section of RTW2-waves with the real phase velocity V

is divided into two sub-sections. Within the first, there is the case of all real roots. In the

second, where there are complex roots in equation (5), the RTW2-waves can be found. It is

noted that there are all imaginary roots in equation (5) for positive C 2 in the V-range

0 , V , Vt. Figure 2 shows the displacement behavior for both complex and imaginary

roots. Complex roots m3 ¼ a 2 ib in equation (16) result in amplitude oscillation along

negative values of the Z-axis, because U1,3 (2Z) , exp[ik(a 2 ib)(2Z)] ¼ (cos aZ 2

i sin aZ)exp(2bkZ). It is also noted that the RTW2-waves can exist in both cubic and non-

cubic crystals, if the following condition is full-filled:

C 2 . 212 C11=C33 2 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11=C33

p
: ð40Þ

It is clearly seen that the condition (40) of theRTW2existence is converted into the condition

C 2 . 24 for the case of C11 ¼ C33. It is noted that it can be C 2 . , 2 2 for crystals with

the elastic constant C11 ! C33 and even C 2 . , 2 10 for crystals with C11 @ C33.

Also, there is a situation when solutions give the imaginary phase velocity iV with

i ¼ (21)1/2. It is possible that in this case the imaginary phase velocity iV will result in the

imaginary group velocity iVg and, hence, in negative energy E , (iVg)
2. It is noted that the

well-known relationship Vg ¼ d(kV)dk was verified in Rayleigh (1877) for running waves.

There is an example for systems with negative energy, such as electron–positron pairs as

neutral quasi-particles, consisting of electrons with positive energy and positrons with

negative energy in physics of elementary quasi-particles. It is thought that imaginary iV

would appear to mean an exponentially damped non-wave like disturbance for some cases.

Solutions for the imaginary iV can be also found for real wavenumber k. For example, among

the fcc-lattice crystals in the right hand column of table 1, all values of the velocity Vth are

imaginary showing a finding problem of real V of the RTW2-waves for such materials,

except for Pt, Ni and Al. Also, the imaginary iV ¼ 2v/ik can exist for imaginary

wavenumber ik. Therefore, the exponential law exp[ik(m1X þ m3Z 2 Vt)] for plane waves

transforms into exp[i(ik)(m1X þ m3Z þ iVt)]. Moreover, time t can be taken imaginary

t ! it, like it is taken in theory of black holes. Therefore, it is possible to do the following

careful transformations k ! ik and V ! iV that can result in negative energy. In addition, in

homogeneous waves can have the same mathematical structure as pure plane waves, except

that their wavevector is complex. The later results in an exponential decay along the

wave front. Inhomogeneous waves representing a new kind of leaky surface waves on a

Figure 2. The displacement amplitude (U1 and U3) behaviour according to equation (16): (a) imaginary roots for
crystals with positive C 2, as well as for isotropic materials; (b) complex roots for crystals with negative C 2, as well
as for the possible case of C 2 @ 0 and V th . VL.
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brass-water smooth interface were theoretically discovered in Declercq et al. (2003), using

the Deschamps principle (Deschamps 1994). Also, inhomogeneous waves, such as dispersive

Floquet waves and multi-layered Rayleigh waves were studied in Potel et al. (1999) in a

lossy medium, which can be characterized by complex elastic constants C11, C33, C12, C13

and C44 (Dransfeld and Salzmann 1970, Hosten and Castaings 1993). It is noted that the C 2

can be also complex for such complex elastic constants.

The dynamic characteristics from equations (4)–(5), such as A0 ¼ A2
l þ A2

t þ C 2 and

B0 ¼ A2
l A

2
t of the Li2O and NaCN cubic crystals with C 2 @ 1 are shown in figure 3. The

dynamic characteristics become A0 ¼ ðC11=C33ÞA
2
l þ A2

t þ C 2 and B0 ¼ ðC11=C33ÞA
2
l A

2
t

from equation (12) in [110] propagation direction of cubic crystals, as well as for suitable non-

cubic crystals. It is thought that further research requires evaluation of theC 2 for newmaterials

already available, as well as crystal (system) synthesis with the suitable C 2 for SAW

applications. The condition V th . Vl for crystals could be also one multi-promising problem

already in Acoustics, as there is the room temperature superconductivity problem. The

supersonic SAWs along with the RTW-waves could be convenient phenomena for

measurements of thickness and other properties of superconducting surface layer of a bulk

superconductor discussed in Collins and Grant (1972), because superconductivity can be kept

in the layer atmagnetic fields, at which superconductivity is destroyed.Also, Collins andGrant

(1972) review many applications of the RTW-waves, for instance, in electronic devices

(Ballato 2001). It is impossible to review all possible application for the SAW different types.

The new supersonic SAWs can be studied in the same ways, which are already done for the

RTW-waves, for example, interactions with the other phonons, photons and electrons, as well

as different scattering. It is thought that phonon–electron interactions play a major role in

superconductivity. In general, superconducting materials are treated as isotropic in theory of

superconductivity. However, they are anisotropic with a great number of chemical elements.

In addition, both the anisotropy term C 2 in equations (6) and (13) and the velocity V th in

equations (11) and (14) can be applied for searching the supersonic SAWs with V th . Vl in

non-cubic crystals and layered systems. All crystal classes can be found in the excellent and

classical textbook by Nye (1989). In order that the C 2 can exist in the corresponding view in

equations (6) and/or (13) for non-cubic crystals, the elastic constants C15 and C35 should be

zero. This can be fulfilled for suitable classes of tetragonal, orthorhombic, trigonal and

hexagonal symmetries, see for example Nye (1989). Both the piezoelectric and

Figure 3. The coefficients A0 ¼ A2
l þ A2

t þ C 2 and B0 ¼ A2
l A

2
t for the cubic crystals Li2O (normal lines) and

NaCN (thick lines), where there is A0(V
th ) ¼ 0 and B0(Vt and Vl) ¼ 0, as well as B0(V ¼ 0) ¼ 1.
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piezomagnetic effects can also result in the possible existence of the new SAWs in non-cubic

crystals with C 2 @ 0 and V . Vl. It is noted that the effects can broaden the V-range, in

which the new supersonic SAWs can be found. It is also noted that for strong piezoelectrics,

metallization of the surface of semi-infinite crystals can result in an unusual situation,

namely, in increasing the phase velocity of Rayleigh type SAWs (Kakio et al. 1999). It is

thought that electrical boundary conditions, such as the surface metallization, could also have

an effect on the existence possibility of the new supersonic SAW with V , Vl.

4. Conclusions

In the present work, the focus was given to such crystal characteristics as both the anisotropy

term C 2 and the threshold velocity V th. Evaluation of the both for crystals can give

information about the possible existence of new supersonic SAWs with C 2 @ 0 and V . Vl,

as well as about the RTW-wave missing withC 2 ! 0 in the phase velocity range 0 , V , Vt

in some propagation directions. For instance, for the cubic crystals with C 2 , 24, the

RTW2-waves cannot propagate below the speed Vt in [100] propagation direction. Of all the

treated cubic crystals listed in the table, none with negative C 2 , 24 were found. Probably,

there are no such cubic crystals, because there is the condition C11 . C12. The cubic crystals

Na, Pb, Ag, Au, Cu, Pd, Li, K, Rb, CuCl, CuBr, b-brass, FeAl2O4 and Fe2TiO4 have negative

C 2 , 22, for which there is a sector with all four real roots for V , Vt. Also, such negative

C 2 , 22 results in the imaginary V th. In the case of a positive C 2, the RTW2-waves can

always exist with V , Vt. It is noted that the RTW2-wave features in crystals with C 2 . 0 do

not differ from the classical RW2-waves in isotropic media characterized by completely

imaginary roots (5). However, in the case of C 2 @ 0 there is the existence possibility of the

new supersonic SAWs with V . Vl, for which all the roots (5) are already complex, similar to

the case of C 2 , 0. The cubic crystals Li2O, KRS-5, KRS-6, NH4Br, PbS, RbF, RbCl, RbI,

RbBr, AgCl, KF, KI, KCl, KCN and NaCN have a corresponding great anisotropy term

C 2 . 2, of which there are crystals with even a “gigantic” C 2 . 5. However, evaluation of

the velocity Vth did not show the possible existence of the new supersonic SAWs with the

condition V th . Vl in the crystals. Also, many effects were discussed, which can cause the

appearance of the supersonic SAWs above the speed Vl with the same basis, namely, with a

great C 2 @ 0 as the limit case of such SAW existence.

Acknowledgements

I would like to acknowledge the Referees for useful notes.

References

Aleksandrov, K.S. and Prodaivoda, G.T., Anisotropy of Elastic Properties of Both Minerals and Rocks, p. 354, 2000
(Publishing SB RAS: Novosibirsk), in Russian.

Aleksandrov, K.S. and Beznosikov, B.V., Perovskites. The Present and the Future, p. 231, 2004 (Publishing SB RAS:
Novosibirsk).

Anderson, O.L., Determination and some uses of isotropic elastic constants of polycrystalline aggregates using
single-crystal data. In Physical Acoustics, edited byW.P. Mason and R.N. Thurston, Vol. IIIB, pp. 43–95, 1965
(Academic Press: New York).

Ashcroft, N.W. and Mermin, N.D., Solid State Physics, Vol.1 (399 pages) and Vol.2 (422 pages) 1976 (Holt,
Rinehart and Winston: New York–Chicago–San Francisco–Atlanta–Dallas–Montreal–Toronto–London–
Sydney).

A. A. Zakharenko76



Ballato, A., Modeling piezoelectric and piezomagnetic devices and structures via equivalent networks. IEEE Trans.
Ultrason. Ferroelectr. Freq. Control, 2001, 48 (5), 1189–1240.

Belomestnych, V.N., Physics–chemical acoustics of crystals, p. 183, 1998 (Publishing TROTSa: Tomsk), in
Russian.

Blistanov, A.A., Bondarenko, V.S., Perelomova, N.V., Strizhevskaya, F.N., Chkalova, V.V. and Shaskol’skaya, M.P.,
Acoustical Crystals. In Acoustical Crystals, Nauka, Moscow, edited by Shaskol’skaya, M.P., Vol. 632, 1982,
in Russian.

Buchwald, V.T., Rayleigh Waves in Transversely Isotropic Media. Q. J. Mechanics Appl. Math., 1961, 14, 293–317.
Buchwald, V.T. and Devis, A., Surface waves in elastic media with cubic symmetry. Q. J. Mechanics Appl. Math.,

1963, 16, 283–293.
Collins, J.H. and Grant, P.M., The role of surface acoustic wave technology in communication systems. Ultrasonics,

1972, 10(2), 59–71.
Declercq, N.F., Degrieck, J. and Leroy, O., On the theoretical discovery of a new kind of leaky surface waves. Tenth

International Congress on Sound and Vibration, Stockholm, Sweden, pp. 1–8, 2003
Deschamps, M., Reflection and refraction of the evanescent plane wave on plane interface. J. Acoust. Soc. Am., 1994,

96(5), 2841–2848.
Dransfeld, K. and Salzmann, E., Excitation, detection and attenuation of high-frequency elastic surface waves. In

Physical Acoustics: Principles and Methods, edited by Mason, W.P. and Thurston, R.N., 7, pp. 250–310, 1970
(Academic Press: New York and London).

Farnell, G.W., Properties of elastic surface waves. In Physical Acoustics, edited by W.P. Mason and R.N. Thurston,
Vol. 6, pp. 109–166, 1970 (Academic Press: New York).

Farnell, G.W. and Adler, E.L., Elastic wave propagation in thin layers. In Physical Acoustics: Principles and
Methods, edited by W.P. Mason and R.N. Thurston, Vol. 9, pp. 35–127, 1972 (Academic Press: New York).

Farnell, G.W., Types and properties of surface acoustical waves. In Surface Waves. Topics in Applied Physics, edited
by A.A. Oliner, Vol. 24, pp. 26–96, 1978 (Springer Verlag: Berlin–Heidelberg–New York).

Gazis, D.C., Herman, R. andWallis, R.F., Surface elastic waves in cubic crystals. Phys. Rev., 1960, 119(2), 533–544.
Haussuehl, S., Cubic sodium cyanide, another crystal with KCN-type anomalous thermoelastic behavior. Acta

Crystallogr., 1977, A33, 847–849.
Haussuehl, S. and Michaelis, W., Third-order elastic constants of cubic sodium cyanide and potassium cyanide. Acta

Crystallogr., 1979, A35, 240–243.
Hosten, B. and Castaings, M., Transfer matrix of multilayered absorbing and anisotropic media. Measurements and

simulations of ultrasonic wave propagation through composite materials. J. Acoust. Soc. Am., 1993, 94(3),
1488–1495.

Kadota, M., Nakanishi, J., Kitamura, T. and Kumatoriya, M., Properties of leaky, leaky pseudo, and Rayleigh surface
acoustic wave on various rotated Y-cut langasite crystal substrates. Jpn. J. Appl. Phys., 1999, 38(Pt. 1 No 5B),
3288–3292.

Kakio, Sh., Nakamura, H. Kanmori, Y. and Nakagava, Y., Reversal phenomenon in phase velocity of surface acoustic
waves on free and metallized surfaces by proton-exchange. Jpn. J. Appl. Phys., 1999, 38(Pt. 1 No 5B),
3261–3264.

Karki, B.B., Ackland, G.J. and Crain, J., Elastic instabilities in crystals from ab initio stress-strain relations. J. Phys.:
Condensed Matter, 1997, 9, 8579–8589.

Kleber, W., An Introduction to Crystallography, p. 336, 1971 (Veb-Verlag Technik: Berlin).
Lamb, H., On waves in an elastic plate. Proc. R. Soc. Lond., Ser. A, 1917, 93, 114–128.
Landolt-Boernstein International Tables, Elastic, piezoelectric, pyroelectric, piezooptic, electrooptic constants and

non-linear dielectric suseptibilities of crystals. New Series, Group III, Vol. 18, p. 179, 1985 (Springer Verlag:
Berlin–Heidelberg–New York–Tokyo).

Lardat, C., Maerfeld, C. and Tournois, P., Theory and performance of acoustical dispersive surface wave delay lines.
Proc. IEEE, 1971, 59, 355–368.

Loidl, A., Haussuehl, S. and Kjems, J.K., Elastic properties of CsCN. Zeitschrift der Physik, 1983, B50(3), 187–192.
Nikonorov, S.P. and Kardashov, B.K., Elasticity and displacement diselasticity of crystals. Science, p. 250, 1985

(Moscow), in Russian.
Nye, J.F., Physical Properties of Crystals, Their representation by tensors and matrices, p. 385, 1989 (Clarendon

Press: Oxford).
Potel, C., Devolder, S., Ur-Rehman, A., Belleval, J.-F., Gherbezza, J.-M., Leroy, O. and Wevers, M., Experimental

verification of the theory of multi-layered Rayleigh waves. J. Appl. Phys., 1999, 86(2), 1128–1135.
Rayleigh, J.W.S., On running waves. Proceedings of the London Mathematical Society, Vol. IX, pp. 21–25, 1877.
Rayleigh, Lord, On waves propagated along the plane surfaces of an elastic solid. Proc. Lond. Math. Soc., 1885, 17,

4–11.
Stoneley, R., The propagation of surface elastic waves in a cubic crystal. Proc. R. Soc. Lond., 1955, A232, 447–458.
Tursunov, D.A., Common surface waves in cubic crystals. Soviet Acoust. J., 1967, 13, 100–105.
Wallace, D.C., Thermodynamics of Crystals, p. 463, 1972 (Wiley: New York).
Wang, J., Li, J., Yip, S., Phillpot, S. and Wolf, D., Mechanical instabilities of homogeneous crystals. Phys. Rev. B,

1995, 52, 12627–12635.
Zakharenko, A.A., Dispersive Rayleigh type waves in layered systems consisting of piezoelectric crystals bismuth

silicate and bismuth germanate. Acta Acustica united with Acustica, 2005, 91(4), 708–715.

Cubic crystal anisotropy 77


