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This paper theoretically investigates the three-partial slow surface Zakharenko-type
waves (SSZTW3) with the anti-plane polarization possessing single mode and propa-
gating in layer-on-substrate systems. The dispersive SSZTW3 can exist with the condi-
tions on both the shear elastic constants CL

44
> CS

44
and the bulk shear wave velocities

V L
t < V S

t , where the superscripts L and S belong to the layer and substrate, respec-
tively. The SSZTW3 mode starts with zero-phase velocity and approaches the maximum
velocity Vtm < V L

t for infinite layer thicknesses. The SSZTW3 phase and group veloc-
ities were calculated for many layered structures with Vtm < 1000 m/s, for example,
for Au/Paratellurite structure, where the Paratellurite is a common acousto-optic crys-
tal. The velocities’ first and higher derivatives were also obtained in order to better
understand their behavior for different applications in SAW filters and sensors. The
calculations of derivatives were carried out for the Au/Ftorapatite structure with the
smallest value of Vtm ∼ 210 m/s that is lower than any known acoustic wave velocity
in tough materials. It is thought that SSZTW3 usage in MEMS-(CMUTs) technical de-
vices can simplify technological processes. The effective masses were also calculated for
different layered structures in the limit of zero-phase velocity Vph, where the dispersion

relations correspond to those for free quasi-particles in a vacuum. It was found that
the masses are smaller than the mass of a free electron. Hence, it is expected that the
SSZTW3 appearance with Vph → 0 can be caused by electrons.

Keywords: Interfacial slow waves; anti-plane polarization; soliton-like phonons; quasi-
particle mass; phase and group velocities and their derivatives.
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1. Introduction

Types of surface acoustic waves (SAWs) differ from each other by their own unique

features. It is thought that the most important SAW feature is the wave polarization

in addition to system geometry, in which surface waves can propagate. It is well

known that the Love waves1 represent the simplest SAW example propagating in

waveguides consisting of a layer on a substrate (see Fig. 1). The Love-type waves

(LTW) are characterized by polarization along the x2-axis perpendicular to the
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Fig. 1. The wave propagation direction in the layered system consisting of a layer on a substrate,
where the x2-axis is perpendicular to the figure plane.

sagittal plane formed by both the x1- and x3-axes. The LTWs can propagate in the

waveguides with the existence condition: the bulk shear wave velocity V S
t in the

substrate should be higher than the velocity V L
t in the layer. That results in all

imaginary/complex wavevector components k
(n)
3 = k

(n)
0 − jχ

(n)
3 along the x3-axis

negative values in the substrate for such SAW existence, j = (−1)1/2. Therefore,

the damping wave numbers χ
(n)
3 should be positive for the LTWs; n is an integer.

Note that some wave numbers along the x3-axis in the layer should be real. That

is obligatory to give an infinite number of LTW modes.

The same negative sign for the damping wave numbers χ
(n)
3 should be taken for

the Rayleigh-type waves (RTW) possessing polarization in the sagittal plane for the

coordinate system (see Fig. 1). In contrast to the LTW, the RTW can exist in both

monocrystals and layered structures. However, surface waves with the anti-plane

polarization (perpendicular to the sagittal plane) can also exist in piezoelectric

monocrystals known as the surface Bleustein–Gulyaev type waves (BGTW).2,3 Note

that one of the BGTW discoverers states in Ref. 4 that such SAWs cannot exist in

cubic piezoelectrics. Indeed, Bleustein2 has noted that they cannot exist in (001)

[100] propagation direction for the piezoelectrics. However, Gulyaev and Hickernell

note that in 1966, Kaganov and Sklovskaya6 studied the Love-wave-polarized SAWs

in cubic piezoelectrics. Recent reviews of shear SAWs in solids can be found in

Refs. 7, 8. The single-mode dispersive BGTW9 propagate in layered systems, and

they can be treated as the LTW first type (lowest-order mode), while an infinite

number of LTW modes belong to the LTW second type. That is an analogy with

the first (lowest-order mode) and second types of dispersive RTW. Note that all

wave numbers k3 for both the thin film and substrate should be imaginary/complex

with χ3 > 0 for the dispersive BGTW and RTW first type. One can also read about

the SAW types in the very famous and classical issues,10–13 the book10 of which

describes SAW applications for signal processing. Note that today the LTWs are

widely used in dispersive SAW filters and sensors, and of all known sensors, LTW

SAW devices have the highest sensitivity.14–17
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In addition to the well-known LTW and RTW SAW types with all χ
(n)
3 > 0

in k
(n)
3 = k

(n)
0 − jχ

(n)
3 for a substrate, new types of slow SAWs possessing single

mode with the anti-plane polarization and all χ
(n)
3 < 0 in k

(n)
3 = k

(n)
0 + jχ

(n)
3 were

discussed in Ref. 18 studying wave propagation in the layer-on-substrate structures.

Indeed, such SAWs called the slow surface Zakharenko-type waves (SSZTWs) can

propagate, for which substrate wave numbers along the x3-axis are taken all with

positive imaginary parts in Fig. 1 coordinate system. According to Ref. 18, the

three-partial SSZTW3 with the Love wave polarization can exist with both the

conditions V L
t > V S

t and V L
t < V S

t in contrast to the LTW3 existence single

condition V L
t < V S

t . However, the SSZTW3 existence condition V L
t < V S

t demands

another additional condition on shear elastic constants CL
44 > CS

44. As soon as both

existence conditions are fulfilled, the SSZTW3 mode starts with zero-phase velocity

at large values of kh (k is the wave number in direction of wave propagation, and h

is the layer thickness) and approaches some maximum velocity Vtm < V L
t at kh →

+∞. The SSZTW3 phase Vph and group Vg velocities are studied in this paper.

Note that the conditions CL
44 > CS

44 and V L
t < V S

t are also true for piezoelectrics

that must be studied in future. It is thought that slow in-plane polarized SAWs can

also exist.

Note that the SSZTW3 Vph behavior, such as Vph(kh ∼ 1 to 3) = 0 and

Vph(kh → +∞) = Vtm, is similar to the Vph behavior of the asymmetric (flexu-

ral) A0 mode of in-plane polarized Lamb-type waves in plates, for which there are

Vph(kh = 0) = 0 and Vph(kh → +∞) = VR with the RTW velocity VR. The analogy

between the dispersive SSZTW and Lamb-type waves allows the use of the SSZTW3

single mode in technical devices instead of the Lamb wave A0 mode. It is noted

that different liquid and vapor sensors are manufactured using the Lamb wave A0

mode. Therefore, it is possible to introduce some Lamb wave applications studied

in Refs. 19–25. The most popular materials for studying the Lamb waves are Si

and Al. Aluminum aircraft wings can be nondestructively inspected, and minimum

dispersion25 should occur. It is thought that the most suitable case for the SSZTW

application is their usage in such microelectromechanical system (MEMS) struc-

tures as the capacitive micromachined ultrasonic transducers (CMUTs). Today,

the Lamb wave CMUTs19 in isotropic and nonpiezoelectric plates (membranes) are

more preferable compared with piezoelectric plates. It is also thought that tech-

nological processes of CMUT manufacturing can be simplified working with the

SSZTWs: the thin-film deposition single step for the SSZTW CMUT manufac-

turing process, but many steps in the Lamb wave CMUT manufacturing process,

utilizing the sacrificial layer method.

The following section describes the theory for the SSZTW3 existence in the

layered systems using nonpiezoelectric anisotropic materials. Section 3 shows the

phase and group velocities’ behavior. Section 4 further investigates the velocities

with discussions about possible applications.
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2. Slow Waves in Layered Systems

SAW two-layer structures, consisting of a layer on a substrate, can be treated as

plates, one side of which represents vacuum–solid interface, and the opposite side

is coupled with a solid substrate (see Fig. 1). The substrate usually localizes wave

motion along the negative values of the x3-axis at the layer–substrate interface.

That can be achieved by material choice for both the layer and substrate. Thus, such

structures represent waveguides, in which waves propagate along the x1-axis within

the layer. The constitutive equations for an anisotropic material can be expressed

in terms of the strains τ related to mechanic displacements: τij = (∂Ui/∂xj +

∂Uj/∂xi)/2. The governing mechanical equilibrium is written using stress σ as

follows: ∂σij/∂xj = 0. However, equations of motion must be separately written

for each layer studying the layered structures. The equations of motion, omitting

the piezoelectric/piezomagnetic effect as well as the elasto/electro-optic effect, can

be written using the famous works10–13,26 on waves in solids:

Cijkl
∂2Ul

∂xj∂xk
− ρ

∂2Ui

∂t2
= 0 , (1)

where ρ is the mass density. The elasticity tensor components Cijkl =

(1/V )[∂2E/(∂Θij∂Θkl)] with the Eulerian strain tensor components Θij and Θkl

are thermodynamically determined using the enthalpy H = E + PV with E, P ,

and V denoting the internal energy, pressure, and volume, respectively. Physical

properties of crystals and their representation by tensors and matrices can be read

in detail in the classic book27 by Nye. Solutions for the displacement components

Ui in Eq. (1) can be readily found using the plane wave approximation:

Ui = Ui0 exp[j(k1x1 + k3x3 − ωt)] , (2)

where Ui0 is an initial amplitude, ω = 2πv and t are the angular frequency and

time, respectively. The wavevector Ks components k1 and k3 are the projections

onto the x1 and x3-axes in Fig. 1; j = (−1)1/2. Substituting the Ui from (2) into

(1), one can obtain equations of motion in the following tensor view:

(GLij − δijρω2)Ui = 0 , (3)

where GLij = Cijklklkk are the GL-tensor components in the Green–Christoffel

equation. δij is the Kronecker delta: δij(i = j) = 1 and δij(i 6= j) = 0.

The theoretical description10,12,13 of wave propagation in solids in the common

case states that there are such propagation directions for both piezoelectrics and

nonpiezoelectrics, in which the “pure” waves can exist. They can have the anti-

plane polarization perpendicular to the sagittal plane possessing single mechanical

displacement component U2 independent from the other components U1 and U3.

Also, “pure” waves can have the in-plane polarization in the sagittal plane when the

U1 and U3 are coupled. Note that the “pure” waves can propagate in each propaga-

tion direction of isotropic materials. To realize the “pure” waves in nonpiezoelectric

crystals, a chosen propagation direction should give the following zero components
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of the symmetric GL-tensor: GL12 = GL21 = GL23 = GL32 = 0. Dieulesaint and

Royer also discuss possible cuts and directions for “pure” wave existence in crystals

of 32 point groups of symmetry. For instance, the “pure” wave existence in cubic

nonpiezoelectrics occurs in (001) [100] and (001) [110] directions. Therefore, the

following corresponding equation can be readily separated from Eq. (3) to treat

anti-plane polarized “pure” waves:

(GL22 − ρω2)U2 = 0 , (4)

where GL22 is the GL-tensor nonzero component. U2 is the displacement compo-

nent along the x2-axis. Equation (4) is true for almost all crystal symmetries from

monoclinic to cubic, see Refs. 10, 12, 13.

For a thin film in the waveguide shown in Fig. 1, Eq. (4) expanding the GL22-

tensor component is written as follows:

GLL
22 − ρLω2 = k2CL

66 + 2kkL
3 CL

46 + (kL
3 )2CL

44 − ρLω2 = 0 , (5)

where the superscript L is used for the layer. CL
66, CL

46, CL
44, and ρL are the layer

material constants assuming bulk elastic properties for the layer, and kL
3 is the

wavevector projection onto the x3-axis. After some transformations in Eq. (5), two

polynomial roots can be found as follows:

k
L(1.2)
3 = −

CL
46

CL
44

k ± jζ3 with ζ3 = αL
f k

[

1 −

(

Vph

βL

)2]1/2

(Vph < βL) , (6)

where Vph = ω/k is the phase velocity, αL
f = [CL

66C
L
44 − (CL

46)
2]1/2/CL

44 is the

elastic anisotropy factor. The velocity equivalent βL is defined as βL = V L
t4αL

f with

V L
t4 = (CL

44/ρL)1/2. In some highly symmetric propagation directions, for example,

in [100] direction for nonpiezoelectric cubic crystals, there is C66 = C44 resulting in

Vt4 = Vt6, where Vt6 = (C66/ρ)1/2 represents the speed of the bulk shear-horizontal

wave. According to Ref. 12, there is β < Vt with the energy conservation condition

C66C44 > C2
46 for anisotropic case. It is noted that in this case there are complex

values of k
L(1,2)
3 for Vph < βL, while two real roots should be in Eq. (6) for LTWs

with the Vph > βL in the layered system shown in Fig. 1. Note that both positive

and negative values of the layer damping wave number ζ3 are taken in calculations.

Expanding the corresponding GL22-tensor component for the substrate in

Eq. (3) and using the superscript S, the following equation must be solved in order

to find values of kS
3 :

GLS
22 − ρSω2 = k2CS

66 + 2kkS
3 CS

46 + (kS
3 )2CS

44 − ρSω2 = 0 , (7)

two complex roots of which are written as follows:

k
S(1,2)
3 = −

CS
46

CS
44

k ± jχ3 with χ3 = αS
f k

[

1 −

(

Vph

βS

)2]1/2

(Vph < βS) . (8)

Analogically, the elastic anisotropy factor for the substrate is αS
f = [CS

66C
S
44 −

(CS
46)

2]1/2/CS
44, and the velocity equivalent βS is equal to βS = V S

t4αS
f with V S

t4 =
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(CS
44/ρS)1/2. In Eqs. (5)–(8), the wave number k = k1 = kL

1 = kS
1 is the wavevector

k component along the x1-axis, k = 2π/λ with λ being the wavelength. It is noted

that for the free space, it is taken GLij = 0 due to all Cijkl = 0. It is clearly seen

in Eq. (8) that the substrate damping wave number χ3 can be both positive and

negative due to the square root dependence. For LTWs, the dispersion relations,

showing dependence of the damping wave number χ3 for a substrate on the real wave

number k3 for a layer, give positive values of χ3 : χ3(k3 > 0) > 0. Therefore, the

sign of χ3 is taken to be negative in Eq. (8) in order to have surface waves. However,

for SSZTWs, the dispersion relations χ3(ζ3) give negative values of χ3{χ3(ζ3 > 0) <

0} depending on imaginary layer wave number ζ3. Therefore, the χ3 sign should

be positive giving SAWs. That is also true for piezoelectrics, where all substrate

wave numbers χ
(n)
3 with positive imaginary parts should be chosen for finding the

SSZTWs in the Fig. 1 coordinate system instead of the substrate wave numbers

χ
(n)
3 with negative imaginary parts for finding LTWs.

It is necessary to account for mechanical boundary conditions on both sides of

the thin film in Fig. 1. First of all, it is required that there is continuity of the dis-

placement component U2 at the interface x3 = 0 between the layer and substrate,

as well as continuity of the stress tensor normal component ST32 = C44k3 + C46k1.

At the free surface x3 = h, where h is the layer thickness, the displacement compo-

nent U2 is arbitrary. Therefore, the single requirement represents equality to zero

of the stress tensor component, ST32 = 0. The boundary conditions result in the

following set of homogeneous equations:









1 −1 −1

CS
44k

S
3 + CS

46k −CL
44k

L(1)
3 + CL

46k −CL
44k

L(2)
3 + CL

46k

0 [CL
44k

L(1)
3 + CL

46k] exp(jk
L(1)
3 h) [CL

44k
L(2)
3 + CL

46k] exp(jk
L(2)
3 h)









×









fSUS
2

fL(1)U
L(1)
2

fL(2)U
L(2)
2









= 0 . (9)

There are the so-called weight coefficients fL(1), fL(2), and fS in Eq. (9), as well as

the displacement partial components U
L(1)
2 , U

L(2)
2 , and US

2 . Expanding the third-

order boundary conditions’ determinant (BCD3) of matrix in Eq. (9), the following

dispersion relation appears, using Eqs. (6) and (8):

χ3h(ζ3h > 0) = −aζ3h tanh(ζ3h) < 0 with a = CL
44/CS

44 . (10)

It is clearly seen in Eq. (10) that positive and negative values of the layer wave

number ζ3h are equivalent. Therefore, only positive values of ζ3h can be taken for

the treatment.
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The phase velocity Vph represents the well-known function of the angular

frequency ω and wave number k and is defined as follows:

Vph =
ω(ζ3)

k(ζ3)
. (11)

The functions ω(ζ3) and k(ζ3) are found from definition of the wave numbers ζ3h

and χ3h in Eqs. (6) and (8), respectively. After some transformations, they are

written as follows:

ω(ζ3) =
V L

t4

b

αL
f

αS
f

[

− ζ2
3

(

αS
f

αL
f

)2

+ χ2
3

]1/2

, (12)

k(ζ3) =
1

bαS
f

[

− ζ2
3

(

V L
t4

V S
t4

)2

+ χ2
3

]1/2

, (13)

where there is the constant b = [1 − (βL/βS)2]1/2, which depends on both the

velocity equivalents for the layer βL and substrate βS . It is possible to multiply by

the layer thickness h both the left-hand and right-hand sides of Eqs. (12) and (13) in

order to deal with nondimensional values of ζ3h and function χ3h(ζ3h) defined from

boundary conditions in Eq. (10). It is clearly seen in Eqs. (12) and (13) that there

is no dependence on the sign of the function χ3h(ζ3h), which can be both positive

and negative. However, the substrate wave number χ3 sign for finding slow SAWs

should be chosen to be opposite to the one for finding LTWs that was discussed

above.

This paper studies slow SAW propagation in the layered systems with the con-

dition for the velocity equivalent, such as βL < βS . According to Ref. 18, values

under square roots in Eqs. (12) and (13) should be positive real, in order to have

positive real functions ω(ζ3) and k(ζ3). That gives two inequalities for analyzing

0 ≤ D2 tanh2(ζ3h) − 1 and 0 ≤ D2 tanh2(ζ3h) −

(

βL

βS

)2

with D = a
αL

f

αS
f

.

(14)

It is clearly seen in Eq. (14) that D tanh(ζ3h) ≥ 1 and D tanh(ζ3h) ≥ βL/βS .

Because βL < βS , it is necessary and sufficient to treat only the first inequality. It

is well-known that the hyperbolic tangent is confined between zero and unity for

ζ3h ≥ 0. Finally, the following requirements for solutions existence can be written

for such slow dispersive waves:

βS > βL and D ≥ 1 . (15)

In this case, the Vph starts with its minimum value of Vph = 0 for ζ3h > 0. It is

noted that for D = 1+δ with δ → 0, the Vph will start with Vph = 0 at a large value

of ζ3h. Such dispersive solutions exist in the following ζ3h, kh, and Vph ranges:

ζ0h ≤ ζ3h ≤ +∞ with ζ0h = Arctanh(1/D) , (16)
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k0h ≤ kh(ζ3h) ≤ +∞ with k0h =
1

bαS
f

Arctanh(1/D)

[

−

(

V L
t4

V S
t4

)2

+

(

a

D

)2]1/2

,

(17)

0 ≤ Vph ≤ Vtm with Vtm = βL

[

D2 − 1

D2 − (βL/βS)2

]1/2

and D2 > 1 . (18)

It is clearly seen in Eq. (18) that the velocity Vtm < βL because βL < βS .

This type of three-partial slow surface Zakharenko waves (SSZTW3) in Eqs. (16)–

(18) has the single dispersive mode starting at k0h > 0 according to Eq. (17), but

not at k0h = 0. Also, it was numerically found that k0h = ζ0h for Vph = 0. The

mode starting with k0h > 0 occurs due to existence of energy-dissipative waves

with the imaginary frequency jω in the kh-range 0 < kh < k01h that was shown

and discussed in Ref. 18. It is noted that such dissipative waves can even give real

phase and group velocities, Vph1 = jω/jk and Vg1 = jdω/jdk. Also, Zakharenko18

discusses the second type of SSZTW3 propagating in layered structures consisting

of a rigid layer on a substrate, βL > βS , and possessing a single dispersive mode,

which exists in the kh-range: 0 < kh < k02h without energy dissipation for real

frequency ω. Peculiarities of the SSZTW3 second type can be studied in future.

Indeed, real phase and group velocities, Vph2 = jω/jk and Vg2 = jdω/jdk, can also

be found here for kh > k02h.

Figure 2 shows the functions ωh(ζ3h) and kh(ζ3h) for the SSZTW3 first type

using Eqs. (12) and (13) for some layered systems listed in Table 1. It is clearly seen

that they depend on the function χ3h(ζ3h) determined by the dispersion relation

in Eq. (10). Therefore, it is necessary to mathematically analyze the behavior of

the function χ3h(ζ3h) calculating the following first derivative:

dχ3h

dζ3h
= −a

[

tanh(ζ3h) +
ζ3h

cosh2(ζ3h)

]

. (19)

It is clearly seen in Eq. (19) that the first derivative goes to −a for ζ3h → ∞

since hyperbolic tangent approaches unity. The behavior of the function χ3h(ζ3h) is

1
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Fig. 2. The dependences (a) ωh(ζ3h) and (b) kh(ζ3h) using their functions in Eqs. (12) and (13).
Crystal names for numbers (1)–(9) are given in Table 2.
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Table 1. The acoustic crystal characteristics taken from Refs. 28, 29.

C44 C66 C46

Crystal Density (×1010 (×1010 (×1010 Vtm

name (kg/m3) N/m2) N/m2) N/m2) Vt6(m/s) Vt4(m/s) αf β(m/s) D2 (m/s)

Au 19754 4.60 4.60 — 1525.989 1525.989 1 1525.989 — —
Muscovite 2820 1.65 7.20 −0.32 5052.912 2418.897 2.0799 5031.088 1.7966 1043.193
Albite 2630 1.73 3.20 −0.25 3488.166 2564.751 1.3523 3468.420 3.8659 1348.066

Anorthite 2760 2.35 4.15 −0.12 3877.658 2917.960 1.3279 3874.794 2.1729 1163.438
Hyalophane 2646 1.36 3.54 −0.17 3657.688 2267.120 1.6085 3646.694 4.4217 1369.784
Zincite(ZnO) 5642 4.245 4.429 — 2801.763 2742.946 1.0214 2801.763 1.1255 593.828
Hydroapatite 3218 3.96 4.75 — 3841.968 3507.960 1.0952 3841.968 1.1249 548.452
Ftorapatite 3218 4.43 4.70 — 3821.694 3710.298 1.0300 3821.694 1.0163 210.353
TeO2 5990 2.65 6.59 — 3316.876 2103.340 1.5770 3316.876 1.2117 702.069
NaO 2805 4.05 4.05 — 3799.803 3799.803 1 3799.803 1.2900 773.541
RbMnF3 4317 3.19 3.19 — 2718.343 2718.343 1 2718.343 2.0794 1193.601
CaF2 3180 3.37 3.37 — 3255.378 3255.378 1 3255.378 1.8632 1105.923
SrF2 4240 3.20 3.20 — 2747.211 2747.211 1 2747.211 2.0664 1188.558
Fe2TiO4 4836 3.96 3.96 — 2861.570 2861.570 1 2861.570 1.3494 874.004
ZnSe 5264 3.92 3.92 — 2728.884 2728.884 1 2728.884 1.3770 908.243
InSb 5790 3.04 3.04 — 2291.382 2291.382 1 2291.382 2.2896 1275.426
ZnTe 5636 3.12 3.12 — 2352.837 2352.837 1 2352.837 2.1737 1248.633
Bi4(GeO4)3 7120 4.36 4.36 — 2474.590 2474.590 1 2474.590 1.1131 599.539
CaMoO4 4340 3.69 4.61 — 3259.159 2915.871 1.1177 3259.159 1.2439 744.509
CaWO4 6010 3.35 3.87 — 2537.571 2360.941 1.0748 2537.571 1.6321 1076.393

Here there are the velocity equivalent β = αf Vt4 and the speed Vt6 = (C66/ρ)1/2 of the bulk shear wave. The last two columns give features for
Au/crystal structures: D2 = (aαL

f /αS
f )2 and Vtm from Eq. (18).
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Fig. 3. The dependences χ3h(ζ3h) for crystals with corresponding numbers (1)–(9) given in
Table 2.

shown in Fig. 3 for layered systems, consisting of the Au-layer on different substrates

listed in Table 1. Gold has high material density that results in slow velocity Vt6

compared with the other crystals listed in the table, which shows some substrate

materials with suitable shear elastic constants being slightly larger than that for

gold, CS
44 > CL

44, in order to have the velocity Vtm as small as possible. In the

table, the materials are listed, which give the velocity Vtm ∼ 1000 m/s and below.

It is noted that the smallest velocity Vtm in the table is for the layered structure

consisting of the Au-layer on the substrate of ftorapatite (Ca10(PO4)6F2): Vtm ∼

210 m/s. The higher derivatives of the function ζ3h(ζ3h) are given by the appendix

formulae (A1) and (A2), and they are used for further investigations of the phase

and group velocities.

The displacements behavior of the SSZTW3 first type studied in this paper can

be found in both the layer and substrate as follows:

U2 = U0
cosh[ζ3(x3 − h)]

cosh(ζ3h)
exp[j(k1x1 − ωt] (0 ≤ x3 ≤ +h) ,

U2 = U0 exp(−χ3χ3) exp[j(k1x1 − ωt)] (x3 ≤ 0, χ3 < 0) .

(20)

In Eq. (20), the negative values of substrate wave number χ3 are calculated with

the dependence χ3h(ζ3h) from Eq. (10). Figure 4 shows the SAW displacement

behavior for the layered structures: Au/ftorapatite and Au/TeO2. Paratellurite

(TeO2), also called tellurium dioxide, belongs to the tetragonal crystal class 422 and

is distinguished by extremely high elastic anisotropy. Paratellurite is a piezoelectrics

and is one of the crystals mostly used in acousto-optics. Hence, the SSZTW3 first

type in the Au/TeO2 system can be studied in future to notify the piezoelectricity

influence.
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Fig. 4. The displacement behavior for the layered structures such as Au/ftorapatite and
Au/paratellurite, using different values of χ3h and ζ3h: (1) χ3h(ζ3h ∼ 1.519) ∼ −2.395 for
Au/paratellurite and χ3h(ζ3h ∼ 2.756) ∼ −2.839 for Au/ftorapatite; and (2) χ3h(ζ3h = 10) =
−17.3585 for Au/paratellurite and χ3h(ζ3h = 10) = −10.384 for Au/ftorapatite.

For nonsurface waves, sample displacement behavior was shown in Ref. 18. It

is clearly seen in Fig. 4, using values of the velocity Vtm from Table 1, that there

is a smaller damping in the layer from the interface toward the layer free surface

in layered structures with higher velocity Vtm, because the single mode starts at a

smaller value of kh. Therefore, in suitable layered systems with a high velocity Vtm

there will be a weak damping in the layer at kh → k0h from the interface toward

the layer free surface. For large values of kh, when the Vph approaches the velocity

Vtm, the displacements are localized at the interface and can be readily found there.

It is noted that such slow SAWs can exist due to the free surface influence, and

interfacial waves (like Stoneley-type waves with the in-plane polarization) with the

anti-plane polarization propagating along the interface of two solids do not exist

at small values of kh. It is noted that when nondispersive interfacial Stoneley-like

waves propagate along the interface between two solid half-spaces, they are localized

at the interface and can exist in both configurations: a rigid half-space (layer) on

a soft substrate (half-space) and the soft half-space on the rigid substrate, showing

the same propagating velocity for both configurations. That completely differs from

the SSZTW existence, which starts at Vph(k01h) = 0 approaching the velocity Vtm

at kh → ∞ for the configuration of the soft layer on the rigid substrate. However,

for the configuration of the rigid layer on the softer substrate, the SSZTW-Vph

starts at kh = 0 with the bulk wave velocity V S
t for the substrate, but not with

the velocity Vtm, and reduces to zero at k02h, according to Ref. 18. Hence, it is

possible to state that there is no analogy between the SSZTWs with the velocity

Vtm, existing due to the influence of the layer free surface, and completely interfacial

Stoneley-like waves.
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3. Phase and Group Velocities and Their First Derivatives

It is thought that both the Vph and the derivative of Vph are the most impor-

tant wave characteristics. The Vph for different structures shown in Fig. 5(a) was

calculated with formulae (11)–(13) for the structures listed in Table 2. That is prob-

ably the most convenient case to calculate it. Also, the Vph can be calculated from

Eq. (10) using the definitions in Eqs. (6) and (8). The Vg is defined as follows:

Vg =
dω

dk
. (21)

The Vg can be readily evaluated with the following numerical approximation, using

the appendix formulae (A3) and (A4):

Vg =
dωh

dζ3h

/

dkh

dζ3h
. (22)

Using Eqs. (A3) and (A4), the Vg in (23) depends on (1/Vph) and becomes infinity

for zero Vph. However, it is thought that there should be Vg = Vph = 0 manifesting

mode beginning for dispersive waves. Therefore, the Vg can be calculated with

known Vph using the other formula. Indeed, there is the following dependence30 of
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Fig. 5. The phase (a) and group (b) velocities. Crystal names for numbers (1)–(9) are given in
Table 2.

Table 2. The effective masses for the SSZTW3 first type at the wave number k → k0, which
were calculated with formula (27) taking the layer thickness h = 1 µm for the Au/crystal systems
listed in Table 1.

Crystal (1) Hydroapatite (2) Ftorapatite (3) Paratellurite (TeO2)

Mass µ∗(×10−38 kg) ∼ 2.7 ∼ 3.2 ∼ 2.2

Crystal (4) NaO (5) Zincite (ZnO) (6) Powellite (CaMoO4)

Mass µ∗(×10−38 kg) ∼ 1.3 ∼ 2.4 ∼ 1.5

Crystal (7) Fe2TiO4 (8) Bi4(GeO4)3 (9) ZnSe

Mass µ∗(×10−38 kg) ∼ 1.6 ∼ 1.8 ∼ 1.2

For comparison, the mass of a free electron is 0.911 × 10−30 kg.
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the Vg on the Vph, kh, and derivative of Vph with respect to kh:

Vg = Vph + (k − k0)h
dVph

dkh
. (23)

It is noted that it is possible to use in Eq. (23) values of (k − k0) instead of values

of k for the case of Vg(k0h) = Vg(k0h) = 0 in order to receive true Vg behavior,

because the mode beginning starts at k0h 6= 0. However, usage of (k − k0) instead

of k in dVph/dkh = dVph/d(kh − k0h) and other derivatives written below must

give the same result, because k0h is constant. Also, it is clearly seen in Eq. (23)

that for very small values of (k−k0)h resulting in dkh = (k−k0)h, the relationship

Vg = 2Vph must be fulfilled for a free quasi-particle (QP) propagating in vacuum.

The dependence Vg(kh) calculated with formula in Eq. (23), using the appendix

formula (A5), is shown in Fig. 5(b) for the structures listed in Table 2. Both Vg and

Vph approach the corresponding maximum velocity Vtm at kh → ∞, which should

be lower than the corresponding speeds Vt for each studied layered structure.

Equation (23) states that as soon as some dependence Vph(kh) appears, the Vg

is unequal to the Vph, except mode beginning at kh = 0 or kh = k0h. Therefore,

the inequality between Vg and Vph can be a dispersion indicator. It is possible to

evaluate the value of max(Vg − Vph) treating the case of Vg > Vph. From Eq. (23)

it is possible to write the following equality:

max(Vg − Vph) = max

[

kh
dVph

dkh

]

. (24)

The extreme point becomes equal to zero by applying the well-known convenient

mathematical procedure giving the following equation for analysis:

d(Vg − Vph)

dkh
=

dVph

dkh
+ kh

d2Vph

d(kh)2
= 0 , (25)

from which a kh-domain for maximum difference between Vg and Vph can be readily

evaluated.

Figure 6 shows the Vph together with the Vg for the sample layered structure:

Au/ftorapatite possessing the smallest velocity Vtm. The figure insertion shows

deviation of the Vph and Vg from the linear dependencies Vph(k) and Vg(k) with

the QP relationship Vg = 2Vph at small values of (k − k0). The Vg looks like a

hybridization of the velocities Vg1 and Vg2 starting with the velocity Vg1 at kh →

k0h and possessing one maximum in the kh-range: k0h < kh < ∞. Both the

velocities Vg and Vg2 approach the velocity Vtm at kh → ∞. The kinetic energy

Ek at small (k − k0) can be given by the well-known Quantum Physics formula

describing the energy dependence on the angular frequency ω as well as on the

wave number k. Namely, the energy of a free QP in vacuum Ek = ~ω = p2/2M

or Ek = ~(ω − ω0) = (p − p0)
2/2M represents common dispersion relation of

a quantum system, where M represents a QP mass m or an effective mass µ∗.

~ = 1.05459× 10−34Js is the quantum Planck’s constant having the physical sense

of action quantum and dimension of impulse momentum. The particle quasi-impulse
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Fig. 6. The phase and group velocities for the Au/ftorapatite structure. The group velocities
Vg1 and Vg2 represent the free quasi-particle approximation at small values of (k − k0)h and
approximation of Eq. (22) for kh → ∞, respectively. The insertion shows the functions Vg(kh)
and Vph(kh) with the relationships Vg ∼ 2 Vph for small values of (k − k0)h.

p = ~k = MVg(p0 = ~k0) linearly depends on the wave number k. Excluding the

energy dependence on mass, the kinetic energy can be represented by the following

formula: Ek = ~kVg/2 = ~kVph. It is necessary here to state that mass possessing

is the consequence of wave properties, namely the straight line dependencies Vg(k)

and Vph(k) in the dispersion relations giving the following definition: M = ~k/Vg =

~kdk/dω. This definition states that mass is a result of continuous changes in time

and space and represents the wave motion consequence in the problem of wavelet-

corpuscular dualism. Table 2 gives the masses calculated with the following formula,

using Vg(k0) = 0:

µ∗(k → k0) =
~(k − k0)

Vg(k)
=

~(k − k0)

2Vph(k)
, (26)

which gives mass of a soliton-like phonon. It is noted that dispersive waves pos-

sessing the dispersion relationship Vg = 2Vph of a free QP can be called solitons.

In Table 2, effective masses can be compared with the mass of a free electron:

me− = 0.911×10−30 kg. The effective masses are smaller than me− giving a unique

feature for such very light QPs. Using values of Vtm listed in Table 1, note that

there is dependence between the velocity Vtm and effective mass: the mass is larger

in such layered structure in which the velocity Vtm is smaller. Such effective mass

dependence on the layer thickness h as a larger mass corresponds to a smaller h and

vice versa, could be due to occurrence of a greater mass compensation for a larger

h because the layer boundaries are moved further from each other. It is thought

that the values of the effective mass listed in Table 2 can further reduce down to

∼ 10−40 kg at Vph → 0, because the Vph depends on kh quasi-linear (see the in-

sertion in Fig. 6) but not linear that can be used for some applications concerning

study of very light QPs.
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It is obvious in Fig. 5(a) that the dispersive SSZTW3 single modes cannot

possess the nondispersive Zakharenko-type waves (ZTW) at k > k0 and k < ∞. The

wave phenomenon called the nondispersive ZTW can exist in many structures,30

where dispersive waves can propagate, and can be mathematically defined by the

following formulas, using (k−k0) instead of k and ω0 = const (it is possible to take

ω0 = 0 for simplicity meaning zero potential energy, Ep = ~ω0) for the case:

dVph/d(k − k0) = Vg(dVph/dω) = 0 , (27)

dVph/d(k − k0) = (Vg − Vph)/(k − k0) , (28)

dVph/dω = Vph(1 − Vph/Vg)/ω . (29)

Note that ω0 position on the energy scale must be determined from experiments.

The first relationship between the derivatives of the Vph in Eq. (27) shows that

there is independence of the Vph on both the frequency ω and wave number k. Note

that dispersive waves are defined as dependence of the Vph on both the ω and k.

Equations (28) and (29) clarify that the equalities in Eq. (27) occur when the Vph

and Vg are equal in dispersion relations for the wave number k 6= 0(k > 0) and

k < ∞. It is noted that the Vg cannot be equal to zero, except the situation when

there is the following straight line behavior of the velocities: Vg(k) = 2Vph(k) at

k → 0 or (k − k0) → 0. That corresponds to a free QP existing in vacuum (or

even forming “quasi-vacuum” that is possible to suggest), where k0 is a nonzero

wave number for zero kinetic energy Ek = ~
2(k − k0)

2/2µ∗ that frequently occurs

in quantum systems.

The first derivatives of both the Vph and Vg of the SSZTW3 first type are shown

in Figs. 7(a) and 7(b), respectively. The formula for the dVg/dkh is given by the

following relationship, using Eq. (23):

dVg

dkh
= 2

dVph

dkh
+ (k − k0)h

d2Vph

d(kh)2
, (30)

where the derivatives of the Vph are taken from the appendix formulae (A5) and

(A6), respectively.
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Fig. 7. The first derivatives of the phase (a) and group (b) velocities for the Au/ftorapatite
structure. The insertion shows sign changing of the dVg/dkh.



February 18, 2010 11:24 WSPC/INSTRUCTION FILE S0217979210054774

530 A. A. Zakharenko

In addition to this study of the SSZTW3 second type existing in the case of a

rigid layer on a soft half-space, there are also works concerning SAW existence in

the same case. Kaibichev and Shavrov31 have reported about new SAW existence

with the Vph > Vt1 > Vt2, where Vt1 and Vt2 are the speeds of the corresponding

shear transverse waves for the layer and half-space. They have treated the same dis-

persion equation y = a0x Tan(x), which is used for finding the LTW3-Vph. However,

they have noted that Dieulesaint and Royer in their famous book10 have stated only

single possibility for SAW existence representing LTW3 solutions of the equation

y = a0x Tan(x) that is true. The other more complicated case of SAWs was studied

in the work32 by Gulyaev and Plessky. Such acoustic waves with the Love wave

polarization are inhomogeneous, and they caused by a periodic structure on the

monocrystal surface giving acoustic waves, which are slowing down. Also, slow flex-

ural SAWs with the Rayleigh wave polarization in layered structures for the case

of ρL > ρS and µL > µS (ρ and µ are the mass density and shear module) were

studied by Viktorov et al.33 using both theoretical and experimental approxima-

tions. The work33 particularly gives an approximated formula for Vph calculations,

which corrects a previous formula taken from Ref. 34 and is coupled with the Vph

of zero-order mode of asymmetric Lamb-type waves (flexural plate waves). As the

result of their approximations, a maximum error for Vph calculation was up to 30%,

and the same for Vg calculation was even over 50%. Note that several experimental

points of measured Vg of their slow SAW with the 50% errors do not clarify the

problem: which Vg was actually measured, the slow SAW or the bulk shear wave?

Such a big interest in finding slow SAW caused by their unique properties: very

small Vph can be reached by proper choice of kh that can be quite useful in a set

of technical applications.

4. Higher Derivatives and Their Possible Applications

It is necessary to study the SSZTW3 first type more widely due to their possible

applications in different MEMS technical devices. Note that such type of slow SAWs

can exist in the same layered structures, in which the three-partial LTW3 can exist.

That can give an additional interest in the study of the SSZTW3 due to a possibility

to use them along with LTW3 in different MEMS structures for further device

microminiaturization. The LTW3 Vg-investigations were carried out in Ref. 18.

The same investigations can be readily followed for the Vg of the SSZTW3 first type

discussing about possible applications. It is thought that technical device realization

of evaluating higher derivatives of the Vph and Vg is needed concerning sensor

application, because their changes with increase in the value of kh are several

orders greater than any changes of the Vph(kh) and Vg(kh). Indeed, the derivatives

for each mode can be used in multi-functional technical devices, because it was

recently suggested to use many modes in such devices operating their individual

reactions, for example, to selected chemical elements. It is thought that technical
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Fig. 8. The second derivatives of the phase (a) and group (b) velocities for the Au/ftorapatite
structure. The insertion shows sign changing of the second derivative of group velocity.

devices, in which the derivatives are evaluated, will have a bigger sensitivity to

smaller amount of chemical elements.

The second derivatives of the Vph and Vg are shown in Figs. 8(a) and 8(b),

respectively. The second derivative of the Vg can be readily calculated with the

following formula taken from Ref. 30:

d2Vg

d(kh)2
= 3

d2Vph

d(kh)2
+ (k − k0)h

d3Vph

d(kh)3
, (31)

which represents the function from the second and third derivatives of the Vph

given in the appendix formulas (A6) and (A10), respectively. The d2Vph/d(kh)2

was calculated with the appendix formula (A6), for which the dVph/dkh should

be first known. It is expected that the dVph/dkh and dVg/dkh will approach some

constant values for kh → k0h, using the free QP approach with the relationship

Vg = 2Vph. However, it is difficult to verify due to great values of the derivatives.

Also, it is obvious that the value of dVg/dkh will change its sign because the Vg

has one maximum. Therefore, the second derivative d2Vph/d(kh)2 will behave like

the well-known δ-function that appears frequently studying different problems. The

third derivative of the Vph calculated with the appendix formula (A10) is shown in

Fig. 9 for the Au/ftorapatite structure. Calculation of the third derivative of Vg is

more complicated, for which it is necessary to obtain the fourth derivative of Vph.

The obtained results of calculations of the first and second derivatives of the Vg

can be useful for finding inflection points in dependence of the group delay time

τ = Σ/Vg (Σ is a gone distance) on the value of kh. That can have application in

technical devices, for instance, dispersive delay lines.10 It is well known that around

an inflection point the τ(kh) has a linear dependence, and to find the linearity (a

robot managed by special software can do it) the following first derivative should

be found:

dτ

dkh
= −

Σ

V 2
g

dVg

dkh
. (32)
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Fig. 10. Finding the inflection point for delay line application considering the Au/ftorapatite
structure.

Hence, the d2τ/d(kh)2 can be obtained from Eq. (32) and is defined by the following

function18:

d2τ

d(kh)2
= 2

Σ

V 3
g

(

dVg

dkh

)2

−
Σ

V 2
g

d2Vg

d(kh)2
=

2Σ

V 3
g

Zr . (33)

The functions Vg , dVg/dkh, and d2Vg/d(kh)2 in Eqs. (32) and (33) are defined by

formulas (23), (30), and (31), respectively. Therefore, at the inflection points the

following condition should be fulfilled:

Zr =

(

dVg

dkh

)2

−
Vg

2

d2Vg

d(kh)2
= 0 . (34)

The function Zτ is shown in Fig. 10 for the SSZTW3 first type propagating in

the Au/ftorapatite structure in the kh-range: 4.1 < kh < 5.0. It is clearly seen in

the figure that there is only a single inflection point at kh ∼ 4.21. It is thought that

also one inflection point can exist at kh = k0h for both the Vph and Vg . However,

it is very complicated to calculate the derivatives at kh → k0h.
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It is noted that in many experiments the function τ(ω) is used, but not the

function τ(k). Therefore, it is necessary to follow investigations of the function

τ(ω) in the same way. Indeed, there are the following relationships between the

derivatives dτ/dk and dτ/dω of the delay time τ as well as between dVg/dk and

dVg/dω, using the definition Vg = dω/dk:

dτ

dkh
= Vg

dτ

dωh
and

1

V 2
g

dVg

dkh
=

1

Vg

dVg

dωh
. (35)

Hence, using the relationships in Eq. (35), it is possible to find dependence of the

delay time τ on the nondimensional value of ωh or ktmh = ωh/Vtm, where h and

Vtm are the material constant parameters described in the previous section. The

function τ(ω) is then written as follows:

dτ

dωh
= −

Σ

V 2
g

dVg

dωh
, (36)

which becomes Eq. (32) by substituting the k instead of the ω. Similarly, substi-

tuting ω instead of k in Eq. (33) or applying differentiation to Eq. (36), the second

derivative of the delay time τ is

d2τ

d(ωh)2
= 2

Σ

V 3
g

(

dVg

dωh

)2

−
Σ

V 2
g

d2Vg

d(ωh)2
. (37)

It is noted that calculating the derivatives dτ/dωh and d2τ/d(ωh)2 in (37) and

(38) represents a more complicated problem, for which Ref. 18 can provide with

the derivatives dVg/dωh and d2Vg/d(ωh)2.

5. Conclusion

Theoretical investigations of SSZTW3 SAWs were presented in this paper studying

layered systems, consisting of the thin film (Au) on different substrates listed in

Table 1. These slow SAWs can propagate with the condition βL < βS for the

velocity equivalents βL and βS of the layer and substrate, respectively, using the

condition for the material elastic constants: CL
44 > CS

44. These slow SAWs possess

the anti-plane polarization and single dispersive mode starting with zero Vph at

large values of kh and approaching the velocity Vtm at kh → ∞. Some possible

applications of the slow SAWs were discussed, which could be used in SAW filters

and sensors similar to the lowest-order mode of Lamb-type waves (flexural plate

waves). The Vph and Vg were also calculated for the slow SAWs in different layered

structures listed in Table 2. Also, the first and second derivatives of the velocities

for the Au/ftorapatite structure possessing the slowest velocity Vtm ∼ 210 m/s were

calculated. The third derivative of the Vph was also obtained. It is thought that the

derivatives can be used to increase sensor sensitivity to small amount of chemical

elements as a particular application. Also, the effective mass was evaluated and

discussed for the case of zero Vph, where both the Vph and Vg show behavior of

a free QP in vacuum. The evaluated QP masses for h = 1 µm are smaller than
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the mass of a free electron and depend on value of h. Note that this study can

be useful for further investigations of slow waves in piezoelectric (piezomagnetic)

layered systems as well as accounting different optic effects such as electro-optic

and acousto-optic effects, see Ref. 35.
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Appendix A

The derivatives obtained using the Leibniz formulae: d(f(x)g(x))/dx and

d(f(x)g−1(x))/dx. Note that the Vph derivatives of the SSZTW3 first type differ

from those of the LTWs from Ref. 18.

The d2(χ3h)/d(ζ3h)2 represents the following function of the ζ3h using Eq. (19):

d2χ3h

d(ζ3h)2
=

2a

cosh2(ζ3h)
[ζ3h tanh(ζ3h) − 1] . (A1)

The third derivative d3(χ3h)/d(ζ3h)3 is obtained using formula (A1) as follows:

d3χ3h

d(ζ3h)3
=

2a tanh(ζ3h)

cosh2(ζ3h)
[3 − 2ζ3h tanh(ζ3h)] +

2aζ3h

cosh4(ζ3h)
. (A2)

The first derivatives of the functions ωh(ζ3h) and kh(ζ3h) are given by the

following formulae, using Eqs. (12) and (13):

dωh

dζ3h
=

(

βL

αS
f b

)2
1

ωh(ζ3h)

[

− ζ3h

(

αs
f

αL
f

)2

+ χ3h
dχ3h

dζ3h

]

, (A3)

dkh

dζ3h
=

(

1

αS
f b

)2
1

kh(ζ3h)

[

− ζ3h

(

V L
t4

V S
t4

)2

+ χ3h
dχ3h

dζ3h

]

. (A4)

Using the known first derivatives in Eqs. (A3) and (A4), it is possible to numer-

ically calculate the dVph/dkh:

dVph

dkh
=

dVph

dζ3h

dζ3h

dkh
with

dVph

dζ3h
=

1

kh

(

dωh

dζ3h
− Vph

dkh

dζ3h

)

. (A5)

Further, the second derivative of the Vph is equal to the following expression:

d2Vph

d(kh)2
=

d

dζ3h

(

dVph

dkh

)

dζ3h

dkh
=

(

dkh

dζ3h

)

−2[
d2Vph

d(ζ3h)2
−

d2kh

d(ζ3h)2
dVph

dkh

]

, (A6)

where the following second derivative is defined as follows:

d2Vph

d(ζ3h)2
=

1

kh

(

d2ωh

d(ζ3h)2
− 2

dkh

dζ3h

dVph

dζ3h
− Vph

d2kh

d(ζ3h)2

)

. (A7)

In Eqs. (A6) and (A7), the second derivatives of the ωh and kh are given as follows:

d2ωh

d(ζ3h)2
= −

1

ωh

{(

dωh

dζ3h

)2

−

(

βL

αS
f b

)2[

−

(

αS
f

αL
f

)2

+

(

dχ3h

dζ3h

)2

+ χ3h
d2χ3h

d(ζ3h)2

]}

,

(A8)
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d2kh

d(ζ3h)2
= −

1

kh

{(

dkh

dζ3h

)2

−

(

1

αS
f b

)2[

−

(

V L
t4

V S
t4

)2

+

(

dχ3h

dζ3h

)2

+ χ3h
d2χ3h

d(ζ3h)2

]}

.

(A9)

In Eqs. (A8) and (A9), the second derivative of the substrate damping wave number

χ3h with respect to the layer wave number ζ3h is found using Eq. (A1).

The more complicated expression for the third derivative of the Vph is given as

follows:

d3Vph

d(kh)3
=

d

dζ3h

(

d2Vph

d(kh)2

)

dζ3h

dkh

=

(

dkh

dζ3h

)

−3[
d3Vph

d(ζ3h)3
− 3

dkh

dζ3h

d2kh

d(ζ3h)2
d2Vph

d(kh)2
−

d3kh

d(ζ3h)3
dVph

dkh

]

(A10)

with the following third derivative of the phase velocity

d3Vph

d(ζ3h)3
=

1

kh

(

d3ωh

d(ζ3h)3
− 3

d2kh

d(ζ3h)2
dVph

dζ3h
− 3

dkh

dζ3h

d2Vph

d(ζ3h)3
− Vph

d3kh

d(ζ3h)3

)

, (A11)

where the following third derivatives of the frequency ωh and wave number kh are

defined as follows:

d3ωh

d(ζ3h)3
= −

1

ωh







3
dωh

dζ3h

d2ωh

d(ζ3h)2
−

(

βL

αS
f b

)2
[

3
dχ3h

dζ3h

d2χ3h

d(ζ3h)2
+ χ3h

d3χ3h

d(ζ3h)3

]







,

(A12)

d3kh

d(ζ3h)3
= −

1

kh







3
dkh

dζ3h

d2kh

d(ζ3h)2
−

(

1

αS
f b

)2
[

3
dχ3h

dζ3h

d2χ3h

d(ζ3h)2
+ χ3h

d3χ3h

d(ζ3h)3

]







.

(A13)

In Eqs. (A12) and (A13), the third derivative d3(χ3h)/d(ζ3h)3 can be calculated

using Eq. (A2).
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