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Impossibility to observe the non-dispersive Zakharenko type waves (ZTW) for the three-partial Love type
waves (LTW3) is analytically shown for layered systems consisting of a layer on a substrate, in case either
isotropic or anisotropic materials with the anisotropy factor af ¼ ðC44C66 2 C2

46Þ
1=2=C44. The other

solutions of new dispersive waves were also considered in addition to the LTW3-waves. The interesting
structures Au/Muscovite and Au/Biotite were numerically investigated concerning the LTW3-waves.
Monoclinic crystal Muscovite is likely for substrates with the speed Vt4 ¼ (C44/r)1/2 ¼ 5053 m/s and
af , 2.08 that gives bM ¼ Vt4af ¼ 10,510 m/s , Vt

[100](Diamond) ¼ 12,800 m/s. Possibility to find
supersonic LTW-waves in piezoelectric crystals with b , 20,000 m/s is also discussed. Such the b will
be greater than the speed Vl , 17,500 m/s of the bulk longitudinal wave for Diamond. Also, the first- and
second-order derivatives of the group velocity Vg , as well as the first-, second- and third-order derivatives
of the phase velocity Vph were analytically obtained and shown in dependence on the layer thickness kh,
where k is the wavenumber in the wave propagation direction. The obtained results of the derivative
calculations of the group velocity Vg could be useful for finding inflexion points in dependence of the
group delay time t (kh) ¼ L/Vg (L is a gone distance) in dispersive delay lines, as well as for production
automation of different filter and sensor on dispersive waves.

PACS: 51.40. þ p; 62.65. þ k; 68.35.Gy; 68.35.Iv; 68.60.Bs; 74.25.Ld

1. Introduction

Since Love (1911) has discovered the surface acoustical waves polarised perpendicular to the

sagittal plane in waveguides consisting of an isotropic layer on an isotropic substrate

(figure 1), much work appeared concerning these classical three-partial Love waves (LW3). It

is noted that both the x1 - and x3 -axes in the figure lie in the sagittal plane. Probably, the most

famous works are the classical and excellent books (Farnell 1978, Dieulesaint and Royer

1980). The classical LW3-waves can propagate in layered systems consisting of both

isotropic materials, as well as in crystals in the so-called highly-symmetric propagation

directions. For crystals with monoclinic symmetries such as the point group symmetries m, 2,

2/m, the waves will be the LTW3-waves with the elastic anisotropy factor (Maerfeld and

Lardat 1969, Lardat et al. 1971) af ¼ ðC44C66 2 C2
46Þ

1=2=C44. There can be af ¼ 1 for both
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isotropic materials and cubic crystals, and af ¼ (C66 /C44 )1/2 for most of the crystal

symmetries, such as orthorhombic, tetragonal, trigonal and hexagonal. In the highly-

symmetric directions, the LTW3-waves can propagate in structures, if the sagittal plane is

perpendicular to an odd-order symmetry axis (Lardat et al. 1971, Farnell and Adler 1972,

Farnell 1978).

Acoustic waves, such as dispersive Love type waves, are promising for sensors. When

liquids come into contact with the propagating medium, there can be a dramatic loss

reduction for appropriately rotated crystal cuts, allowing the shear-horizontal surface

acoustic waves (SH-SAW) sensor to operate as a biosensor. Biosensors detect chemicals

similar to chemical vapor sensors, but in liquids rather than vapor. Biosensors have already

been fabricated using the SH-SAW sensors. Of all the known acoustic sensors for liquid

sensing, sensors on the Love type waves has the highest sensitivity, according to Kovacs and

Venema (1992). For instance, successful detection of anti-goat IgG using a SH-SAW with a

polymer Love wave guide coating have been achieved in Gizeli et al. (1997), and a quartz

Love wave sensor has been demonstrated as an ice sensor in Vellekoop and Jakoby (1999),

see also Grate et al. (1993). The most popular crystal cuts and orientations for different

applications are reviewed in Morgan (1991). For the other instance, different technical

devices for signal processing can work on dispersive Love type waves, such as dispersive

delay lines (Lardat et al. 1971). Therefore, investigation of group (phase) velocity of

different dispersive waves must be useful.

The aim of the present theoretical work is to do investigations of the phase velocity Vph of

the LTW3-waves with the elastic anisotropy factor af and, therefore, of the group velocity

Vg of the dispersive LTW3-waves for delay lines and sensors application that is still not

done. This can be also useful for further investigations of the phase and group velocities of

both the LTW7-waves, considering the piezoelectric effect, and the LTW5-waves in the

layered systems consisting of two layers on a substrate. Bi-layer/substrate structures are more

reach, in which, possibly, the non-dispersive five-partial Zakharenko type waves (ZTW5)

can propagate within a dispersive mode of five-partial Love type waves (LTW5). The wave

phenomenon called as the non-dispersive ZTW-waves can exist in many structures

(Zakharenko 2005), where dispersive waves can propagate, and can be mathematically

defined by the following formulas: dVph /dk ¼ Vg (dVph /dv) ¼ 0, dVph /dk ¼ (Vg 2 Vph )/k

and dVph /dv ¼ Vph (1 2 Vph /Vg )/v, where Vg , v and k are the group velocity, angular

frequency and wavenumber, respectively. The first relationship between the phase velocity

derivatives shows that there is independence of the phase velocity Vph on both the angular

frequency v and the wavenumber k. It is noted that dispersive waves are defined as

Figure 1. The layered system consisting of a layer on a substrate with the coordinate system.
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dependence of the phase velocity Vph on both the frequency v and wavenumber k. It is also

noted that the group velocity Vg cannot be equal to zero. The second and third formulae give

clearance about where the situation dVph /dk ¼ Vg (dVph /dv) ¼ 0 occurs. This occurs when

the phase and group velocities are equal in dispersion relations for the wavenumber k – 0

(k . 0) and k , 1. It is thought that phase (group) velocity investigations of dispersive

waves can give more information on ZTW existence nature in each individual case.

The present theoretical investigations can be also useful for automation characterization of

different technical devices, such as dispersive wave filters and sensors. The next two sections

describe dispersion relations for both surface LTW3 and non-surface waves. Sections 4 and 5

relate to investigation of the LTW3 group velocity and its possible applications, respectively.

2. Theory and dispersion relations

The elastic constants, using enthalpy definition H ¼ E þ PV, where E is the internal energy,

and P and V are pressure and volume, respectively, are thermodynamically determined as:

Cijkl ¼
1

V

›E

›1ij›1kl
; ð1Þ

where 1ij (1kl ) represents the Eulerian strain tensor. For each crystal symmetry there is its

own corresponding independent components of the elastic constants tensor Cijkl that is

perfectly described in the famous classical work by Nye (1989). The equation of motion in

the tensor representation, which corresponds to propagating waves polarized perpendicular

to the sagittal plane, results in the following equality:

ðGL22 2 rv2ÞU2 ¼ 0; ð2Þ

where the corresponding component of the Green–Christoffel (GL) tensor for a layer

(the index l) and for a substrate (the index s) is written as:

GLl
22 ¼ k 2Cl

66 þ kl3
� �2

Cl
44 þ 2kkl3C

l
46 ¼ r lv2;

GLs
22 ¼ k 2Cs

66 þ ks3
� �2

Cs
44 þ 2kks3C

s
46 ¼ r sv2; ð3Þ

where there is the following commonly-used equality kl1 ¼ ks1 ¼ k; as well as the projections

kl3 and ks3 of the wavevector on the x3 -axis in figure 1. There are two roots for the first

equation in equation (3):

k
lð1;2Þ
3 ¼ 2

Cl
46

Cl
44

k^ k3; with k3 ¼ al
f k

Vph

b l

� �2

21

" #1=2

for Vph . b l; ð4Þ

but

k
lð1;2Þ
3 ¼ 2

Cl
46

Cl
44

k^ jj3; with j3 ¼ al
f k 1 2

Vph

b l

� �2
" #1=2

for Vph , b l; ð5Þ

where Vph is the phase velocity, al
f ¼ ðCl

66C
l
44 2 Cl 2

46Þ
1=2=Cl

44 is the elastic anisotropy factor

and there is the propagating velocity b l ¼ Vl
t4a

l
f with Vl

t4 ¼ ðCl
44=r

lÞ1=2; j ¼ (21)1/2.

In some highly-symmetric propagation directions, for example, in [100]-direction for cubic
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crystals, there is C66 ¼ C44 resulting in Vt4 ¼ Vt , where Vt ¼ ðC66=rÞ
1=2 represents the

speed of the bulk SH-wave. It is noted that the condition C66C44 . C2
46 is demanded for

energy conservation, according to Lardat et al. (1971). Therefore, values of b 2 should be

always positive. It was noted in Lardat et al. (1971) that there is b , Vt .

For the second equation in equation (3), the following two roots can be written for the

substrate:

k
sð1;2Þ
3 ¼ 2

Cs
46

Cs
44

k^ jx3 with x3 ¼ as
f k 1 2

Vph

b s

� �2
" #1=2

for Vph , b s: ð6Þ

This general condition for the phase velocity Vph , b s shows the existence of required

positive values of the damping wavenumber x3 for surface waves. In isotropic cases there is

the following required condition Vph , Vs
t . However, in the case Vph . b s there are already

the following roots:

k
sð1;2Þ
3 ¼ 2

Cs
46

Cs
44

k^ z3 with z3 ¼ as
f k

Vph

b s

� �2

21

" #1=2

for Vph . b s: ð7Þ

The boundary conditions (continuity of the corresponding displacement component U2 at

the interface between the layer and the substrate, at x3 ¼ 0 shown in figure 1, and continuity

of the normal component of the stress tensor ST22 at x3 ¼ 0, as well as ST22 ¼ 0 at the free

surface x3 ¼ h, where h is the layer thickness) result in the following set of homogeneous

equations:

f sUs
2 2 f l1Ul1

2 2 f l2Ul2
2 ¼ 0;

f sUs
2 Cs

44k
s
3 þ Cs

46k
� �

2 f l1Ul1
2 Cl

44k
l1
3 þ Cl

46k
� �

2 f l2Ul2
2 Cl

44k
l2
3 þ Cl

46k
� �

¼ 0;

f l1Ul1
2 Cl

44k
l1
3 þ Cl

46k
� �

exp jkl13 h
� �

þ f l2Ul2
2 Cl

44k
l2
3 þ Cl

46k
� �

exp jkl23 h
� �

¼ 0:

ð8Þ

There are so-called weight coefficients f s, f l1 and f l2 in equation (8). Expanding the

boundary conditions determinant BCD3 formed from equation (8), the following dispersion

relation appears for the case (4):

x3h ¼ ak3h tanðk3hÞ with a ¼
Cl

44

Cs
44

: ð9Þ

The phase velocity Vph of the LTW3-waves can be readily found from the following

functions v(k3 ) and k(k3 ), taking b ¼ b1 ¼ [1 2 (b l/b s)2]1/2:

vðk3Þ ¼
Vl
t

b1

al
f

as
f

k2
3

as
f

al
f

 !2

þx2
3

2
4

3
5

1=2

;

kðk3Þ ¼
1

b1a
s
f

k2
3

Vl
t

Vs
t

� �2

þx2
3

" #1=2

: ð10Þ

It is clearly seen in equations (9) and (10) that the LTW3-waves can exist, if the following

condition b l , Vph , b s is full-filled owing to a required real value of b1 . 0. It is noted
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that the phase (Vph ) and group (Vg ) velocities are defined by the following well-known

formulae:

Vph ¼
v

k
and Vg ¼

dv

dk
: ð11Þ

The phase and group velocities for the LTW3-waves are shown in figure 2(a) for the instance

structures, such as Au/Muscovite and Au/Biotite consisting of Au-layer on substrates of

Muscovite and Biotite (named for the Biot of French physicist). Figure 2(b) shows the phase

velocity (three modes) for the second possible dispersive solutions of equations (9) and (10)

giving dispersive waves for negative values of tan(k3h . 0). Two other existence

possibilities of dispersive solutions will be discussed in the next section. The LTW3

displacements U2 along the x2 -axis in figure 1 for the anisotropic case can be calculated for

the layer and substrate with the following formulas:

U2 ¼ U0

cos½k3ðx3 2 hÞ�

cosðk3hÞ
exp j k1x1 2

Cl
46

Cl
44

k1ðx3 2 hÞ2 vt

� �� �
for 0 # x3 # þh;

U2 ¼ U0 exp ðx3x3Þ exp j k1x1 2
Cs

46

Cs
44

k1x3 2 vt

� �� �
for x3 # 0:

ð12Þ

It is noted that U0 and t in equation (12) represent the so-called weight coefficient and time,

respectively. It is clearly seen that the displacements in equation (12) for anisotropic case

have an oscillating term in the exponent argument in both a layer and a substrate for

monoclinic crystals with C46 – 0. For the other crystal symmetries, the displacements

behave similar to the displacement behavior of the classical LW3-waves in layered system,

consisting of isotropic materials. Figure 3 shows the LTW3 displacement behavior for the

structure Au/Biotite.

The dispersion relation (9) is likely to both isotropic and anisotropic cases with the elastic

anisotropy factor af , which is included in both the wavenumbers x3 and k3 . It is clearly seen

in the dispersion relation (9) that þk3 and 2k3 are equivalent, because positive values of the

damping wavenumber x3 will be always required for surface waves in the taken coordinate

system shown in figure 1 (values of the x3 -axis are negative in the substrate). However, there

can be tan(k3h) , 0 in equation (9), therefore, x3 , 0, that does not give wave damping

towards depth of the substrate for non-surface dispersive waves.

Figure 2. (a) The phase (normal lines) and group (bold) velocities for three modes of dispersive LTW3-waves for
the layered systems: Au/Biotite (solid) and Au/Muscovite (dashed); (b) the phase velocity for three modes of
dispersive non-surface waves for the layered systems: Au/Biotite (solid lines) and Au/Muscovite (dashed lines).
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The layered systems studied for the LTW3-waves shown in figure 2(a) were chosen,

because Gold possesses the slowest speed Vl
t ,1526m/s among crystals listed in table 1 and

monoclinic crystal Muscovite has the fastest velocity equivalent bM , 10,510 m/s due to a

great anisotropy factor af , 2.08. This gives the lowest relationship b l/b s , 0.145 among

the other structures in table 1. It is noted that the velocity bM is only 22% less than the speed

Vt
[100] , 12,800 m/s of the bulk SH-wave for Diamond. The LTW3 existence condition

Vl
t , Vs

t changes into the condition b l , b s for monoclinic materials. It is noted that

Muscovite can be characterized as crystal possessing “hexagonal” symmetry in addition to

the class 2/m of the monoclinic prismatic symmetry, according to Aleksandrov and

Prodaivoda (2000). Some promising crystals for Acoustoelectronics, such as Biotite

(K(Mg,Fe)3 AlSi3 O10 £ (OH,F)2 ) and Phlogopite (KMg3 Si3 AlO10 £ (OH,F)2 ), were care-

fully left in “hexagonal” symmetry in Aleksandrov and Prodaivoda (2000) due to missing of

more safety information about the elastic properties of the crystals. However, there are on-

line crystallographic data, which give monoclinic symmetry for both Biotite and Phlogopite.

It is noted that the presence of the elastic constant C46 does not change significantly the

anisotropy factor af , because absolute value of C46 is one order less than that of both C44 and

C66 . It is noted that there can be C44 ! C66 and C44 @ C66 (table 1). Hence, even for

monoclinic crystals there can be taken af , (C66 /C44 )1/2. Therefore, the following

characteristics for Biotite were used in calculations: Vt4 , 5018 m/s, af , 3.639 and

b , 18,260 m/s. And for Phlogopite there are Vt4 , 5117 m/s, af , 3.618 and

b , 18,512 m/s. It is clearly seen that the velocity b for both materials is significantly

greater than the speed Vl , 17,500 m/s for Diamond. Diamond is used in technical devices in

order to operate in GHz-frequency range. However, Diamond is very expensive and does not

possess the piezoelectrical effect. Also, suitable layered systems for the classical LW3-waves

with a , 1 and a . 1 are Au/Si, Au/GaAs (a , 0.774), Ag/GaAs and Cu/GaAs (a , 1.226)

in table 1. Layered systems, such as Ag/Diopsite and Coesite/Jadeite are also suitable for the

LTW3-wave existence.

3. The other dispersive wave solutions

This section describes possible existence of the other dispersive waves in addition to the

dispersive waves (figure 2(b)) discussed in the previous section. They represent new types of

Figure 3. The displacements behaviour for three modes of dispersive LTW3-waves for the layered system
Au/Biotite with h ¼ 1mm.
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dispersive waves. They exist in the case when the values of the damping wavenumber x3 for

the substrate are negative. This occurs for the case (5), where there is the following

dispersion relation:

x3h ¼ 2aj3h tanhðj3hÞ: ð13Þ

It is clearly seen in equation (13) that there is x3h , 0, because there is

tanh(j3h . 0) . 0. Therefore, for the case of equations (5), (6) and (13), which

represents existence of the other possible solutions of dispersive waves with the

polarization, like the one of the LTW3-waves (perpendicular to the sagittal plane), and

taking b ¼ b1 ¼ [1 2 (b l/b s)2]1/2 or b ¼ b2 ¼ j[(b l/b s)2 2 1]1/2, the suitable phase

velocities can be calculated from the following dependencies:

vðj3Þ ¼
Vl
t

b

al
f

as
f

2j2
3

as
f

al
f

 !2

þx 2
3

2
4

3
5

1=2

; kðj3Þ ¼
1

bas
f

2j2
3

Vl
t

Vs
t

� �2

þx 2
3

" #1=2

: ð14Þ

It is noted that the phase velocity Vph should be positive real. Therefore, for imaginary

values of b2 in equation (14) there should be negative values under square roots.

For the cases (5), (13) and (14) there are two possibilities to find solutions of dispersive

waves. The first possibility represents the case b l , b s, therefore, there is

b ¼ b1 ¼ [1 2 (b l/b s)2]1/2. Here, values under square roots in equation (14) should be

positive real, in order to have positive real functions v(j3 ) and k(j3 ). This gives two

inequalities for analyzing:

B2tanh2ðj3hÞ2 1 $ 0 and B2tanh2ðj3hÞ2
b l

b s

� �2

$ 0 with B ¼ a
al
f

as
f

; ð15Þ

from which it is clearly seen that there is as follows: B tanhðj3hÞ $ 1 and

B tanh(j3h) $ b l/b s. Because b l , b s, it is necessary and enough to treat only the

first inequality. It is well-known that the hyperbolic tangent is confined between zero and

unity for j3h . 0. Finally, the following requirements for solutions existence can be

written for such dispersive waves:

b l , b s and B $ 1: ð16Þ

In this case, the phase velocity Vph starts with its minimum value of Vph ¼ 0 for j3h . 0.

It is noted that for B ¼ 1 þ d with d ! 0, the phase velocity Vph will start with Vph ¼ 0

for j3h ! þ 1. Such dispersive solutions exist in the following j3h-, kh- and Vph -

ranges:

Arctanhð1=BÞ # j3h # þ1;

1

bas
f

Arctanhð1=BÞ 2
Vl
t

Vs
t

� �2

þ
a

B

	 
2

" #1=2

# khðj3hÞ # þ1;

0 # Vph # b l B2 2 1

B2 2 ðb l=b sÞ2

� �1=2

:

ð17Þ
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It is clearly seen in equation (17) that there is the phase velocity Vph , b l. It is noted that

there is here only single mode of such dispersive waves.

The second possibility represents the case b l . b s, for which there are imaginary values

of b ¼ b2 ¼ j[(b l/b s)2 2 1]1/2. Therefore, values under square roots in the dispersion

relation (14) should be negative real, in order to have positive real values of the functions

v(j3 ) and k(j3 ). Thus, inequality equation (15) can be written as:

B2tanh2ðj3hÞ2 1 # 0 and B2tanh2ðj3hÞ2
b l

b s

� �2

# 0: ð18Þ

Inequalities in equation (18) give the following requirements for dispersive waves solutions:

b l . b s and B tanhðj3hÞ # 1: It is also noted that here there is only single mode of such

dispersive waves. It is obvious that the phase velocity Vph starts with Vph ¼ b s at j3h ¼ 0

and decreases to zero:

0 # j3h # Arctanhð1=BÞ;

0 # khðj3hÞ #
1

bas
f

Arctanhð1=BÞ 2
Vl
t

Vs
t

� �2

þ
a

B

	 
2

" #1=2

; b s $ Vph $ 0:

ð19Þ

The phase velocities for dispersive solutions of the other possible cases of equations (17) and

(19) are shown in figure 4(a) and (b), respectively. The insertions in figure 4 show that there

can be jv and jk for the real Vph giving energy dissipation due to the imaginary frequency, as

well as jv and k for the imaginary Vph . The displacements behaviour for the cases (17) and

(19) can be found in both layer and substrate as follows:

U2 ¼ U0

cosh½j3ðx3 2 hÞ�

coshðj3hÞ
exp j k1x1 2

Cl
4

Cl
44

k1ðx3 2 hÞ2 vt

� �� �
for 0 # x3 # þh;

U2 ¼ U0 exp ð2x3x3Þ exp j k1x1 2
Cs

46

Cs
44

k1x3 2 vt

� �� �
for x3 # 0 and x3 , 0:

ð20Þ

Layered systems with a . 1 and b l , b s are likely to the other dispersive wave existence

of the case (17). For instance, both the LTW3-waves and the other dispersive waves of the

case (17) for B ¼ aal
f =a

s
f . 1 can exist in the structures Cu/Muscovite, Au/Muscovite and

Au/Epidote. For dispersive wave existence of the case (19), there is no condition for a, which

can exist in layered systems with the condition b l . b s giving impossibility for LTW3-

wave existence. For example, the structures Si/Hedenbergite and Si/GaAs studied in

figure 4(b) do not give the existence possibility for the LTW3-waves, but they are suitable for

the wave existence of the case (19).

It is thought that new dispersive waves shown in figure 4(a) and (b) can be surface waves, if

one root in equation (6) with negative imaginary part will be taken for x3h , 0, as well as

non-surface waves in the case when one root in equation (6) with positive imaginary part will

be taken for x3h , 0. It is noted that for the LTW3-waves, one root in equation (6) with

negative imaginary part is taken for x3h . 0. Displacements behaviour for the non-surface

waves of the cases (17) and (19) are drown in figure 5. It is noted that the piezoelectrical effect

or an additional layer can cause some changes in dispersion relations of the dispersive waves

of the cases in equations (17) and (19), like occurs for LTW3-waves. It is also noted that the

new dispersive waves become the bulk SH-wave for the substrate at the layer thickness
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h ! 0. The same there is for both the surface Bleustein–Gulyaev (BG) wave (Bleustein 1968,

Gulyaev 1969) and the LTW3-waves, which become the bulk SH-wave for the piezoelectric

constants eijk ! 0 and h ! 0, respectively, showing the hybridization between the bulk SH-

wave and wave of the electrical potential in the BG wave and the one between two bulk SH-

waves of two layers in the LTW3-waves. It is possible that the new dispersive waves will be

Figure 4. The phase velocity Vph for the other solutions of dispersive waves for two possible cases: (a) equation
(17) for the structures Au/Muscovite (normal line) and Cu/GaAs (bold line); (b) equation (19) for the structures
Si/GaAs (normal line) and Si/Hedenbergite (bold line). The corresponding insertions show the dependencies
Vph(j3h).

Figure 5. The displacements behaviour for the other dispersive waves (h ¼ 1mm): the case of equation (17) for the
structure Cu/GaAs with j3h , 1.0805, kh , 1.1 and Vph , 540 m/s (normal line); the case of equation (19) for the
structure Si/GaAs with j3h , 1.8775, kh , 0.9 and Vph , 1300 m/s (bold line).
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also used in dispersive wave technical devices, if they will be studies more widely for this

purpose. Therefore, the next section studies only the group velocity of the LTW3-waves,

which are widely used in filters and sensors on dispersive waves.

4. Investigation of the LTW3 group velocity

The velocities Vg and Vph are the most important characteristics for different technical

devices. There is unique behavior of the group velocity Vg for different dispersive waves, for

example, for Love (type) waves. The group velocity of classical Love waves has one extreme

point already in layered systems, consisting of an isotropic layer on an isotropic substrate. In

addition, some characteristics, such as inflexion points, are also important to be known for

filters, such as dispersive delay lines. Finding inflexion points of the group velocity Vg with

the well-known techniques “paper-and-pencil” is, probably, inconvenient and imprecise for

theoretical study and not suitable for experimental characterization of different devices on

dispersive waves. It is also noted that production of different devices on dispersive SAW

increases continuously requiring process automation. Therefore, methods for automation

characterization of devices on dispersive waves must be developed. Indeed, in addition to

piezoelectric materials, non-piezoelectric materials for dispersive wave devices are also

used, which can be even more preferable.

The group velocity Vg can be calculated by taking derivatives from equation (10). This

gives the following:

dvh

dk3h
¼

b l

as
f b

 !2
1

vhðk3hÞ
k3h

as
f

al
f

 !2

þx3h
dx3h

dk3h

2
4

3
5;

dkh

dk3h
¼

1

as
f b

 !2
1

khðk3hÞ
k3h

Vl
t

Vs
t

� �2

þx3h
dx3h

dk3h

" #
: ð21Þ

In equation (21), there appears the following first-order derivative of the damping

wavenumber x3h for the substrate from the non-dimensional value of the wavenumber k3h

for the layer:

dx3h

dk3h
¼ a tanðk3hÞ þ

k3h

cos2ðk3hÞ

� �
: ð22Þ

It is clearly seen that the first-order derivative in equation (22) goes to infinity as 1/cos2(x) at

k3h ¼ np/2, where n ¼ 1, 3, 5, . . ., N.

The group velocity Vg can be readily obtained from equations (21) and (22):

Vg ¼
dvh

dk3h
=

dkh

dk3h
¼

dv

dk
ð23Þ

and from the well-known formula taken from Zakharenko (2005):

Vg ¼ Vph þ kh
dVph

dkh
; ð24Þ

where the functions Vph (kh) and dVph (kh)/d(kh) should be known. The phase and group

velocities of the LTW3-waves are shown in figure 2(a). It is clearly seen that the phase
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velocity Vph (kh) does not have extreme points in the figure. However, the group velocity

Vg (kh) has minimum in each mode.

The first-order derivative of the group velocity dVg /dkh can be found from this expression:

dVg

dkh
¼

dkh

dk3h

� �22
d2vh

dðk3hÞ
2
2 Vg

d2kh

dðk3hÞ
2

� �
ð25Þ

where the group velocity Vg and the first-order derivative dkh/dk3h are taken from equations

(23) and (21), respectively. Two second-order derivatives in equation (25) are given in the

Appendix by formulae (A.1) and (A.2). The first-order derivatives of the phase and group

velocities are shown in figure 6 for the structures Au/Muscovite and Au/Biotite, which were

calculated with formulae (24) and (25), respectively. It is clearly seen in figure 6 that the first-

order derivatives change significantly more rapidly at kh ! 0 than the corresponding

velocities in figure 2(a) at the same kh. This feature can be used for sensitivity improvements

of different biological/chemical sensors for sensing smaller amount of chemical elements.

It is noted that it is impossible to observe non-dispersive ZTW in any dispersive mode of

the LTW3-waves in both isotropic and anisotropic cases. This is so, because both the

frequency vh and the wavenumber kh in equation (10) depend on the non-dimensional value

of k3h possessing neither extreme points, except k3h ¼ 0, p, 2p, . . ., giving corresponding

mode beginning. The first-order derivative dVph (kh)/dkh shown in figure 6 supports the

conclusion of the impossibility existence for the non-dispersive ZTW-waves in any

dispersive LTW3 mode. Probably, the non-dispersive ZTW-waves can usually exist in

lowest-order modes of different types of dispersive waves, such as dispersive Bleustein–

Gulayev (BG) waves (Liu et al. 2003) or dispersive Rayleigh type waves (RTW) (Zhang et al.

2001, Zakharenko 2005). It is thought that the dispersive BG-waves can be treated as the

LTW lowest-order mode representing the LTW first type, which can only exist in

piezoelectrics. The higher-order modes of the LTW-waves correspond to the second type. It

is also thought that all LTW3 modes relate to the second type. From this view point, a RTW

lowest-order mode representing the first type of dispersive RTW waves is usually confined

between the non-dispersive RTW wave for a substrate and the one for a layer. However,

higher-order modes of the second type of dispersive RTW waves are usually confined

Figure 6. The first-order derivatives of both the phase (normal lines) and group (bold) velocities for the first mode
of dispersive LTW3-waves for the structures: Au/Biotite (solid) and Au/Muscovite (dashed). The insertion shows the
group velocity derivatives.
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between the speed Vt of the corresponding bulk transverse wave for a substrate and the one

for a layer. Probably, the non-dispersive ZTW-waves cannot exist in some modes of the

second type of dispersive RTW-waves. However, this is not obvious. For example, non-

dispersive ZTW-waves can split some higher-order modes of Lamb type waves in

anisotropic plates (Solie and Auld 1973, Parygin et al. 2000, Anisimkin 2004). Therefore,

phase velocity of different types of dispersive waves must be investigated.

The second-order derivatives of the phase and group velocities are shown in figure 7 for the

structures Au/Muscovite and Au/Biotite. In order to calculate the second-order derivative of

the group velocity Vg , the following formula is required:

d2Vg

dðkhÞ2
¼2 2

dkh

dk3h

� �24
d2kh

dðk3hÞ
2

d2vh

dðk3hÞ
2
2 Vg

d2kh

dðk3hÞ
2

� �

þ
dkh

dk3h

� �23
d3vh

dðk3hÞ
3
2

d2kh

dðk3hÞ
2

dVg

dk3h
2 Vg

d3kh

dðk3hÞ
3

� �
;

ð26Þ

where the first-order derivative of the group velocity dVg /d(k3h) is given in the Appendix

along with the other higher-order derivatives, see formulae (A.3)–(A.6). The second- and

third-order derivatives of the phase velocity Vph can be calculated with the following

formulae taken from Zakharenko (2005):

d2Vph

dðkhÞ2
¼

1

kh

dVg

dkh
2 2

dVph

dkh

� �
; ð27Þ

d3Vph

dðkhÞ3
¼

1

kh

d2Vg

dðkhÞ2
2 3

d2Vph

dðkhÞ2

� �
: ð28Þ

To take the first-, second- and third-order derivatives of the phase velocity Vph , as well as

the first- and second-order derivatives of the group velocity Vg , is enough for many cases, in

order to characterize some technical devises, for example, dispersive delay lines and SAW

sensors. However, already taking higher-order derivatives of the group velocity Vg even for

the classical LW3-waves represents more complicated theoretical investigations, which can

Figure 7. The second-order derivatives of both the phase (normal lines) and group (bold) velocities for the first
mode of dispersive LTW3-waves for the structures: Au/Biotite (solid) and Au/Muscovite (dashed). The insertion
shows the group velocity derivatives.
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be followed in the future in the case of necessity. It is obvious that for the extreme points

problem, it is more convenient to deal with the signs “ þ ” and “ 2 ” in the corresponding

first-order derivatives of the velocities Vph and Vg rather than to directly calculate or to

measure the velocities (figure 8). It is thought that measurements of the first-order derivatives

of the velocities could improve measurements of the velocities for weakly-dispersive waves.

Also, it is possible in the future to graphically show dependencies of the damping

wavenumber x3h(k3h) and its derivative equation (24), as well as the higher-order

derivatives (A.2) and (A.6) given in the Appendix, similar to the case of the classical LW3

waves investigated in Dieulesaint and Royer (1980), where the dependence x3h(k3h) was

originally shown.

5. Delay line applications

The obtained results of calculations of the first- and second-order derivatives of the group

velocity Vg could be useful for finding inflexion points in dependence of the group delay time

t ¼ L/Vg on the non-dimensional value of kh in dispersive delay lines (Lardat et al. 1971),

around which the time t has a linear dependence:

dt

dkh
¼ 2

L

V2
g

dVg

dkh
and

d2t

dðkhÞ2
¼ 2

L

V3
g

dVg

dkh

� �2

2
L

V2
g

d2Vg

dðkhÞ2
; ð29Þ

where L is a gone distance, and Vg , dVg /dkh and d2Vg /d(kh)2 are defined by formulas (24),

(25) and (26), respectively, calculated in the previous section. Therefore, at the inflexion

points, the following condition should be full-filled:

dVg

dkh

� �2

¼
Vg

2

d2Vg

dðkhÞ2
ð30Þ

Figure 9 shows calculations of the inflexion points using the condition (30). As it is shown

in the figure, there are two such points for the structure Au/Biotite, which are readily found.

Therefore, many acoustic wave characteristics can be readily found by a robot managed by a

special software written for this purpose, with which it can characterize dispersive wave

filters and sensors.

Figure 8. The third-order derivatives of the phase velocity Vph for the first mode of dispersive LTW3-waves for the
layered systems: Au/Biotite (solid line) and Au/Muscovite (dashed line).
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Also, the first- and second-order derivatives of the group velocity Vg from the values of vh

given in the Appendix by formulae (A.7)–(A.9) can be readily calculated by the same way,

because they should be known for some characteristics of different technical devices. It is

clearly seen in the Appendix formulae that investigation of the group velocity dependence

Vg (vh) represents more complicated case than that of the dependence Vg (kh). However, this

is more convenient for experimentalists, who work with the dependence Vg (vh), but not with

the Vg (kh).

6. Conclusion

The present theoretical investigations took particularly care of showing existence of different

dispersive wave solutions for waves polarized perpendicular to the sagittal plane in layered

systems, consisting of a layer on a substrate, including crystal anisotropy. Different

possibilities of dispersive wave existence were theoretically treated, one of them represents

the LTW3-waves. The other possible solutions for the cases of equations (17) and (19)

represent new dispersive waves. Some suitable layered systems for each treated case were

listed in the table. As the general purpose, two interesting structures, such as Au/Muscovite

and Au/Biotite, were numerically investigated concerning the LTW3-waves. Such layered

systems could be convenient for some technical devices, for which there are requirements of

a great dispersion and fast propagating velocities. It was found that the propagating velocity

b of Muscovite is only 22% less than the speed Vt (Diamond) , 12,800 m/s. It is well-known

that Diamond, being very expensive, is all the same used for technical devices in order to

work in a GHz-frequency range, see the recent patents (United States Patent 5343107 1994).

Hopefully, Muscovite (Biotite, Phlogopite) single crystals will be not expensive compared

with Diamond. It is thought that piezoelectric crystals with the b , 20,000 m/s being greater

than the speed Vl , 17,500 m/s for Diamond can exist.

Also, in the present theoretical investigations, the delay line characteristics, such as the

delay time t ¼ L/Vg , were instantly studied, because the dependence t (kh) possesses a linear

behavior around inflexion points. For this purpose, the derivatives dVg /dkh and d2Vg /d(kh)2

must be obtained. In order to calculate the derivatives of the group velocity Vg , it is necessary

Figure 9. The inflexion points shown by two crossing points from equation (30) for delay line applications on
dispersive LTW3-waves for the structure Au/Biotite.
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to obtain the first-, second- and third-order derivatives of the phase velocity Vph that was also

carried out in the present work. It is emphasized that this can be used for all-round

automation of filter and sensor production, such as dispersive delay lines or sensors on the

LTW-waves. The same investigations of the group velocity can be done for Lamb type

waves in the future.
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Appendix. The derivatives

Two second-order derivatives in equation (25) are given as follows:
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ðA:1Þ

where the second-order derivative of the damping wavenumber x3h for the substrate from the

wavenumber k3h for the layer represents the following dependence:

d2x3h

dðk3hÞ
2
¼

2a

cos2ðk3hÞ
1þ k3h tanðk3hÞ½ �: ðA:2Þ

The first-order derivative of the group velocity Vg can be calculated numerically from the

following equations:

dVg

dk3h
¼

dkh

dk3h

� �21
d2vh

dðk3hÞ
2
2 Vg

d2kh

dðk3hÞ
2

� �
: ðA:3Þ

The more complicated expression for the second-order derivative of the group velocity Vg

is given by the following formula:

d2Vg
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2
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ðA:4Þ

In formulas equations (A.3) and (A.4), the following third-order derivatives are defined as

follows:
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where the third-order derivative d3(x3h)/d(k3h)3 can be readily obtained from this equality:

d3x3h

dðk3hÞ
3
¼

4a tanðk3hÞ

cos2ðk3hÞ
1þ k3h tanðk3hÞ½ � þ

2a

cos2ðk3hÞ
tanðk3hÞ þ

k3h

cos2ðk3hÞ

� �
: ðA:6Þ
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The first- and second-order derivatives of the group velocity Vg from the values of vh are

calculated as the following functions:

dVg

dvh
¼

1

Vg

dVg

dkh
¼ 2

Vg

Vph

dVph

dvh
þ vh

Vg

Vph

� �2
d2Vph

dðvhÞ2
; ðA:7Þ

d2Vg

dðvhÞ2
¼ 2

Vg

Vph

þ
Vg

Vph

� �2
" #

d2Vph

dðvhÞ2
þ vh

Vg

Vph

� �2
d3Vph

dðvhÞ3

þ 2
dVph

dvh
þ vh

Vg

Vph

d2Vph

dðvhÞ2

� �
d

dvh

Vg

Vph

� �
; ðA:8Þ

where there is the following first-order derivative:

d

dvh

Vg

Vph

� �
¼

1

V2
ph

dVg

dvh
Vph 2

dVph

dvh
Vg

� �
: ðA:9Þ
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