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Abstract This research report discovers eight new

nondispersive interfacial shear-horizontal (SH) waves.

The obtained theoretical results correspond to the

combination of two sets of different eigenvector

components in the propagation problems of the new

interfacial SH-waves guided by the perfectly bonded

interface between two dissimilar piezoelectromagnet-

ics of symmetry class 6 mm. The explicit forms of the

solutions for finding of the propagation velocities and

the existence conditions for the new interfacial SH-

waves were also obtained. The existence conditions

are very important because they allow the existence of

the new interfacial SH-waves. Sample calculation was

performed for two dissimilar BaTiO3–CoFe2O4 com-

posites. This theoretical work and further develop-

ments can be also useful for design of various optical

and microwave technical devices, as well as the

nondestructive testing and evaluation of common

interfaces between two suitable piezoelectromagnetic

materials. These SH-polarized ultrasonic guided

waves can be also useful for some considerations in

order to infer changes in the adhesive properties at the

interface located within an adhesive bond joining two

PEM materials.

Keywords Piezoelectromagnetics �Magnetoelectric

effect � New interfacial acoustic SH-waves

1 Introduction

1971 is the year when Maerfeld and Tournois [1] have

introduced their collaborative theoretical work on new

nondispersive interfacial shear-horizontal (SH) wave

guided by the common interface of two dissimilar

transversely isotropic piezoelectrics (semi-infinite

media or half-spaces) belonging to class 6 mm. They

have also found the existence condition for the new

interfacial SH-waves later called the interfacial Maer-

feld–Tournois (MT) wave. It is worth noting that the

existence conditions are very important for the prob-

lems of wave propagation at the interface of two solids

because they clarify some specific conditions of wave

existence. They stated that the mechanical displace-

ment amplitude of the MT-wave decreases with

distance away from the common interface into both

media. It is well-known that piezoelectrics (PEs)

generally represent single-phase materials. This is also

true for piezomagnetics (PMs). Piezoelectromagnetics

(PEMs) frequently represent two-phase materials and

they can possess piezoelectric, piezomagnetic, and

magnetoelectric (ME) effects. As a result, twenty-two

new nondispersive interfacial SH-waves can be

revealed in the layered system consisting of two

dissimilar PEM half-spaces of symmetry class 6 mm.
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This was theoretically demonstrated in book [2]

published in 2012.

The theory developed byMaerfeld and Tournois [1]

can be used for the single-phase PE or PM materials

and is not suitable for the two-phase PEM composites.

Two-phase PEM laminated materials are multi-

promising and cause a big interest among different

research groups. Also, the problem of wave propaga-

tion is significantly complicated when onemedium is a

PEs and the second medium is a PMs. It is thought that

this case represents the simplest laminated PEM

composite. Soh and Liu [3] have theoretically treated

propagation of interfacial SH-waves along the com-

mon interface in a PE–PM bi-material. The PE half-

space is perfectly bonded with the PM one. Both the

materials are hexagonal crystals of symmetry class

6 mm. For this case, they have obtained the phase

velocity solution in an explicit form and discussed two

existence conditions for the interfacial SH-waves.

Concerning an imperfect interface, Huang et al. [4]

have also developed a theory that describes interfacial

SH-wave propagation in a two-phase PE/PM structure.

They also treated the case when both the hexagonal

materials pertain to class 6 mm. They have solidly

obtained an exact solution and the existence condition

for the interfacial SH-wave propagation in such bi-

material and found that the interfacial imperfection

can strongly affect the wave velocity. For the perfectly

bonded interface, they stated that their result agrees

with that derived in Ref. [3] when the interface is

grounded. Book [2] stated that such nondispersive

interfacial SH wave guided by the ungrounded inter-

face can be called the Soh–Liu wave and the

interfacial SH wave guided by the grounded interface

can be called the Huang–Li–Lee wave. However, the

treatment of the case when the wave propagation is

guided by the common interface between two dis-

similar PEMs is more complicated than the cases of

propagation of the Maerfeld–Tournois, Soh–Liu, or

Huang–Li–Lee waves. Therefore, this short report

develops (but not finalizes) the theoretical results

obtained in book [2].

It is also necessary to mention potential applica-

tions and review works on the ME effect and

composites. Generally, a continuous interest occurs

in a study of the ME effect in composites for

development of smart materials in the microwave

technology. This research arena is rapidly developed.

Therefore, reviews are annually published on

discussions of most recent advances in the physics of

ME interactions in layered composites and nanostruc-

tures. The PEM composites are able to facilitate the

conversion of energy between electric and magnetic

fields and represent potential candidates for use as

magnetic-field probes, in electronic packaging, as

acoustic devices, hydrophones, in medical ultrasonic

imaging, or as sensors and actuators [14]. Reviews [5–

17] on the ME effect and composites are recommend-

ed for the reader to receive complete information on

the subject, find the complete list of reviews in work

[9]. Modern industry can have an increasing interest in

the following possible applications of ME materials:

solid state non-volatile memory, solid state memories

based on spintronics, multi-state memory which can

find application in quantum computing area, light

computing, magnetic-electric energy converting com-

ponents, electrical/optical polarization components

which can find applications in communication. There-

fore, to know acoustic wave characteristics can be

important for nondestructive testing and evaluation of

various interfaces between two dissimilar ME mate-

rials representing PEMs. Let’s start the theoretical

discovery of some wave properties for the problem of

wave propagation along the common interface be-

tween two dissimilar PEMs.

2 Statement of the problem and fundamental

formulae

Piezoelectromagnetic (composite) materials [18–25]

possess the elastic stiffness constant C, piezoelectric

constant e, piezomagnetic coefficient h, dielectric

permittivity coefficient e, magnetic permeability co-

efficient l, and electromagnetic constant a. Also, it is
natural that such two-phase composite can have an

average mass density q. To study wave propagation

guided by the common interface between two dis-

similar piezoelectromagnetics (PEMs) denoted by

PEM1 and PEM2, it is necessary to use the corre-

sponding superscripts ‘‘I’’ and ‘‘II’’ to distinguish

these transversely isotropic materials of class 6 mm

from each other. Therefore, wave characteristics V I
tem

and V II
tem stand for the corresponding bulk SH-waves

coupled with both the electrical (u) and magnetic (w)
potentials. These velocities are very important in the

theory of interfacial SH-wave propagation because

they participate in the existence conditions. The
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rectangular coordinate system shown in Fig. 1 is

utilized for the layered system consisting of two

dissimilar PEM half-spaces perfectly bonded at the

common interface when the x3-axis is directed along

the normal to the interface. For both the PEM1 and

PEM2, the propagation direction is along the x1-axis

and perpendicular to the sixfold symmetry axis

directed along the x2-axis. The anti-plane polarized

interfacial SH-waves can damp from the common

interface towards the crystal depth, namely towards

the positive values of the x3-axis in half-space II

(PEM2) and towards the negative values of the x3-axis

in half-space I (PEM1). It is worth noticing that this

propagation direction allows one to study pure SH-

waves coupled with both the electrical and magnetic

potentials.

For the used rectangular coordinate system, the

corresponding coupled equations of motion are written

in the well-known form of the homogeneous partial

differential equations of the second order. With the

fact that the light speed in a vacuum is five orders

larger than the speed of sound in a solid, the

composition of these coupled equations of motion is

based on the quasi-static approximation: constitutive

relations, electrostatics, and magnetostatics are writ-

ten. In this short report, it is unnecessary to write down

all the equations and their transformations to demon-

strate the complete way leading to final results. The

reader can actually read book [2] for the purpose.

However, it is possible to write down the coupled

equations of motion that correspond to the studied case

of the SH-wave propagation coupled with both the

electrical and magnetic potentials. These coupled

equations of motion can be composed in the following

differential form:

q
o2U

ot2
¼ C

o2U

ox21
þ o2U

ox23

� �
þ e

o2u

ox21
þ o2u

ox23

� �

þ h
o2w

ox21
þ o2w

ox23

� �
ð1Þ

0 ¼ e
o2U

ox21
þ o2U

ox23

� �
� e

o2u

ox21
þ o2u

ox23

� �

� a
o2w

ox21
þ o2w

ox23

� �
ð2Þ

0 ¼ h
o2U

ox21
þ o2U

ox23

� �
� a

o2u

ox21
þ o2u

ox23

� �

� l
o2w

ox21
þ o2w

ox23

� �
ð3Þ

It is also necessary to state that for the treated case

of the wave propagation with the anti-plane polariza-

tion, these homogeneous partial differential equations

of the second order written above must have solutions

in the following plane wave form:

U2 ¼ U ¼ U0 exp j k1x1 þ k2x2 þ k3x3 � xtð Þ½ � ð4Þ

U4 ¼ u ¼ u0 exp j k1x1 þ k2x2 þ k3x3 � xtð Þ½ � ð5Þ

U5 ¼ w ¼ w0 exp j k1x1 þ k2x2 þ k3x3 � xtð Þ½ � ð6Þ

In all the equations written above, U, u, and w are

the mechanical displacement component along the x2-

axis, electrical potential, and magnetic potential,

respectively; U0, u0, and w0 are called the initial

amplitudes that should be perfectly determined as

eigenvector components. j = (-1)1/2, t, and x stand

for the imaginary unity, time, and angular frequency,

respectively;x = 2pmwhere m is the linear frequency.
Also, the parameters k1, k2, and k3 are the wavevector

components: (k1, k2, k3) = k(n1, n2, n3), where the

directional cosines n1, n2, and n3 are defined as

follows: n1 = 1, n2 = 0, and n3 : n3. The wavenum-

ber k in the direction of wave propagation can be

naturally normalized by the wavelength k as follows:

kk = 2p.
It is convenient to deal with the coupled equations

of motion transformed into the corresponding tensor

PEM1 

PEM2 
x1

+ x3

x2

0 

x3

Fig. 1 The configuration of the problem of the SH-wave

propagation guided by the interface between two dissimilar

piezoelectromagnetics (PEM1 and PEM2) of the transversely

isotropic 6 mm class. The x2-axis is perpendicular to the figure

plane and the coordinate beginning is denoted by ‘‘0’’
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form [2] known as the modified Green-Christoffel

equation that can solidly reveal all the eigenvalues n3
and the corresponding eigenvector components. Note

that the differential and tensor forms of the coupled

equations of motion are identical. With the tensor

form, the following six eigenvalues can be obtained:

n
ð1;2Þ
3 ¼ n

ð3;4Þ
3 ¼ �j ð7Þ

n
ð5;6Þ
3 ¼ �j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vph

�
Vtem

� �2q
ð8Þ

It is clearly seen in Eq. (8) that the eigenvalues

depend on the phase velocity Vph = x/k and the

velocity Vtem called the bulk shear-horizontal (SH)

wave coupled with both the electrical and magnetic

potentials. The value of Vtem is defined by the

following expression:

Vtem ¼
ffiffiffiffiffiffiffiffiffi
C=q

p
1þ K2

em

� �1=2 ð9Þ

The bulk SH-wave velocity Vtem depends on the

coefficient of magnetoelectromechanical coupling

(CMEMC). This nondimensional parameter exposes

the physical sense and is defined by

K2
em ¼ le2 þ eh2 � 2aeh

C el� a2ð Þ ¼ e el� hað Þ � h ea� heð Þ
C el� a2ð Þ

¼ eM2 � hM1

CM3

ð10Þ

Three coupling mechanisms of the CMEMC such

asM1 = ea - he,M2 = el - ha, andM3 = el - a2

are discussed in paper [24]. It is also clearly seen in

definition (10) that the CMEMC can approach an

infinity when el = a2 occurs. In general, one can find

that el � a2 is fair. Paper [25] explains the reader that
two suitable sets of the eigenvector components can

exist for each eigenvalue. It also discusses the suitable

forms of the eigenvectors among the other possible

forms. Therefore, the first suitable set of the eigen-

vector components can be written in the following

forms:

U0ð1Þ;u0ð1Þ;w0ð1Þ
� 	

¼ U0ð3Þ;u0ð3Þ;w0ð3Þ
� 	

¼ 0; a;�eð Þ ð11Þ

U0ð5Þ;u0ð5Þ;w0ð5Þ
� 	

¼ ea�he
CK2

em

;� eh

CK2
em

þa;
e2

CK2
em

�e

� �

ð12Þ

It is stated that the corresponding eigenvector

components in expressions (11) and (12) are coupled

via the CMEMC mechanism ea - he mentioned

above. This is obvious because one can get the

following equalities:

eu0ð3Þ þ hw0ð3Þ ¼ eu0ð5Þ þ hw0ð5Þ ¼ ea� he ¼ M1

ð13Þ

It is possible to compose the second set of the

eigenvector components for the same eigenvalues

defined by expressions (7) and (8). The eigenvector

components respectively read:

U0ð1Þ;u0ð1Þ;w0ð1Þ
� 	

¼ U0ð3Þ;u0ð3Þ;w0ð3Þ
� 	

¼ 0;l;�að Þ ð14Þ

U0ð5Þ;u0ð5Þ;w0ð5Þ
� 	

¼ el�ha
CK2

em

;� h2

CK2
em

þl;
eh

CK2
em

�a

� �

ð15Þ

It is blatant in expressions (14) and (15) that the

corresponding eigenvector components are coupled

through the other CMEMC mechanism el - ha
because

eu0ð3Þ þ hw0ð3Þ ¼ eu0ð5Þ þ hw0ð5Þ ¼ el� ha ¼ M2

ð16Þ

It is essential to state that the coupled equations of

motion are separately written for each of the dissimilar

PEM half-spaces. Therefore, each PEM half-space

possesses its own eigenvalues and eigenvectors and it

is convenient to utilize the corresponding superscripts

‘‘I’’ and ‘‘II’’ to distinguish them. The found suitable

eigenvalues and eigenvectors are exploited for con-

struction of complete mechanical displacement, com-

plete electrical potential, and complete magnetic

potential. It is natural to require equalities of the

corresponding complete parameters at the interface.

After this requirement, the suitable phase velocity Vph

can be determined by utilizing possible mechanical,

electrical, and magnetic boundary conditions at the

interface. For this purpose, corresponding determi-

nants of the boundary conditions must be also

constructed. Different electrical and magnetic bound-

ary conditions can be used when the following

mechanical boundary conditions are employed at the

common interface between PEM1 and PEM2: UI =

UII and (r32)
I = (r32)

II at x3 = 0 (see Fig. 1) where
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r32 stands for the normal component of the stress

tensor. The boundary conditions are perfectly de-

scribed in theoretical work [26] by Al’shits, Darinskii,

and Lothe. The following electrical boundary condi-

tions can occur: the electrically closed case (u = 0),

electrically open case (D3 = 0), and the continuity of

both u and D3 at the common interface (x3 = 0 in

Fig. 1) between two dissimilar PEM half-spaces, i.e.

uI = uII and (D3)
I = (D3)

II, where D3 is the normal

component of the electrical displacements (electrical

induction) andu is the electrical scalar potential. Also,

the magnetic boundary conditions are as follows: the

magnetically closed case (B3 = 0), magnetically open

case (w = 0), and the continuity of both w and B3 at

x3 = 0, i.e. wI = wII and (B3)
I = (B3)

II, where B3 is

the normal component of the magnetic flux (magnetic

displacement, magnetic induction) and w is the

magnetic scalar potential.

In this short report there is no necessity to write

down the complicated boundary conditions’ determi-

nants. By expanding the corresponding determinant,

the explicit form for calculation of the appropriate

velocity can be obtained. Therefore, the final results

for the found new interfacial SH-wave velocities are

demonstrated in the cases from (i-1) to (i-8) written

below. These eight cases correspond to different

combinations of the electrical and magnetic boundary

conditions at the interface x3 = 0 (see Fig. 1) dis-

cussed above. These eight cases represent the discov-

ery of this report, namely the discovery of eight new

nondispersive interfacial SH-waves. To avoid confu-

sion, the numeration of the new wave velocities in the

cases from (i-1) to (i-8) starts with number 23 because

twenty-two new nondispersive interfacial SH-waves

propagating along the common interface between two

dissimilar PEM half-spaces were previously discov-

ered in book [2]. This book has investigated three

possibilities for V I
tem\V II

tem: (A) only the first eigen-

vector components (11) and (12) are used for both the

dissimilar PEM half-spaces; (B) only the second

eigenvectors (14) and (15) are utilized for both the

dissimilar PEM half-spaces; (C) the first eigenvectors

are used for PEM1 and the second eigenvectors are

exploited for PEM2. The third possibility is called the

eigenvectors’ mixing that is possible because two

dissimilar media are studied. Also, possibilities (A)

and (B) can be also valid for the reverse configuration

of V I
tem\V II

tem because one can always rearrange the

configuration, namely PEM1 ? PEM2 and

PEM2 ? PEM1 in order to get V I
tem\V II

tem anew.

This is actually true for possibility (A) when only the

first eigenvectors are utilized for both the PEM

materials because such rearrangement of the con-

figuration does not change the eigenvectors: the final

configuration will also use the first eigenvectors. This

is also suitable for possibility (B) when only the

second eigenvectors are exploited. Therefore, it is

likely to state that possibilities (A), (B), and (C) for

V I
tem\V II

tem were completely researched in book [2]

that is not true in the case of V I
tem\V II

tem for the third

possibility of the eigenvectors’ mixing.

Let’s discuss possibility (C) of the eigenvectors’

mixing and explain the results of the rearrangement for

V I
tem\V II

tem given below in the cases from (i-1) to (i-8).

Indeed, in possibility (C) the first and second eigen-

vectors are used for PEM1 and PEM2, respectively. It

is necessary to state that the following rearrangements

can be carried out for the case of the eigenvectors’

mixing: the first is for V I
tem\V II

tem and the second is for

V I
tem\V II

tem. For V I
tem\V II

tem, it is obvious that it is

possible to apply a rearrangement that actually results

in the situation when the second eigenvectors instead

of the first ones are used for PEM1 and the first

eigenvectors instead of the second ones are used for

PEM2. This rearrangement requires complicated cal-

culations. The case of V I
tem\V II

tem does not require any

change in the exploitation of the eigenvectors: the first

eigenvectors are used for PEM1 and the second

eigenvectors are utilized for PEM2. It is thought that it

is more suitable case realized below in points from (i-

1) to (i-8) for various electrical andmagnetic boundary

conditions. To circumvent any confusion, the nu-

meration of the new interfacial SH-wave velocities

obtained below starts with number 23 to follow the

results obtained in book [2].

(i-1) The case of uI = uII = 0 and wI = wII = 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew23

V I
tem

� �2
s

þ CII

CI

AII

AI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew23

V II
tem

� �2
s

¼
KI
em

� �2
AI

þ CII

CI

KII
em

� �2
AI

¼
MII

3 eIMI
2 � hIMI

1

� �
þMI

3 eIIMII
2 � hIIMII

1

� �
MII

3D
I

ð17Þ
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(i-2) The case of uI = uII = 0 and B3
I = B3

II = 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew24

V I
tem

� �2
s

þ CII

CI

AII

AI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew24

V II
tem

� �2
s

¼ eIaI

MI
1

KI
A

AI
þ CII

CI

KII
M

AI

¼
eIlIIMII

3M
I
2 þMI

3 MII
2

� �2
lIIMII

3D
I

ð18Þ

(i-3) The case of D3
I = D3

II = 0 and wI = wII = 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew25

V I
tem

� �2
s

þ CII

CI

AII

AI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew25

V II
tem

� �2
s

¼ KI
E

AI
� hIIaII

MII
2

CII

CI

KII
A

AI

¼
MII

3 MI
1

� �2�hIIeIMI
3M

II
1

eIMII
3D

I
ð19Þ

(i-4) The case of uI = uII, D3
I = D3

II, wI = wII, and

B3
I = B3

II

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew26

V I
tem

� �2
s

þ CII

CI

AII

AI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew26

V II
tem

� �2
s

¼ 1þ hIIeI

MI
1

eIlII

MII
2

� ��1

� eIaI

MI
1

KI
A

AI
� eIlII

MII
2

CII

CI

KII
M

AI

� �


1� hIIeI

MI
1

� �
þ 1þ eIlII

MII
2

� �
hIIeI

MI
1

KI
E

AI
� hIIaII

MII
2

CII

CI

KII
A

AI

� ��

¼ MI
1M

II
2

MI
1M

II
2 þ eIhIIeIlII

eI MI
2M

II
3 �MII

2M
I
3

� �
MII

3D
I



MI

1 � hIIeI

MI
1

þ
hII MI

1M
II
3 �MII

1M
I
3

� �
MII

3D
I

eIlII þMII
2

MII
2

�

ð20Þ

(i-5) The case of uI = uII, D3
I = D3

II, and B3
I = B3

II = 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew27

V I
tem

� �2
s

þ CII

CI

AII

AI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew27

V II
tem

� �2
s

¼ eIaI

MI
1

KI
A

AI
� eIlII

MII
2

CII

CI

KII
M

AI

¼
eI MII

3M
I
2 �MI

3M
II
2

� �
MII

3D
I

ð21Þ

(i-6) The case of uI = uII, D3
I = D3

II, and

wI = wII = 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew28

V I
tem

� �2
s

þ CII

CI

AII

AI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew28

V II
tem

� �2
s

¼
KI
em

� �2
AI

� 1þ eIlII

MII
2

� �
hIIaII

MII
2

CII

CI

KII
A

AI
� eIlII

MII
2

CII

CI

KII
M

AI

¼
KI
em

� �2
AI

� MI
3

MII
3

hIIMII
1 eIlII þMII

2

� �
þ eI MII

2

� �2
MII

2D
I

ð22Þ

(i-7) The case of D3
I = D3

II = 0, wI = wII, and

B3
I = B3

II

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew29

V I
tem

� �2
s

þ CII

CI

AII

AI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew29

V II
tem

� �2
s

¼ hIIeI

MI
1

KI
E

AI
� hIIaII

MII
2

CII

CI

KII
A

AI

¼
hII MII

3M
I
1 �MI

3M
II
1

� �
MII

3D
I

ð23Þ

(i-8) The case of uI = uII = 0, wI = wII, and B3
I = B3

II

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew30

V I
tem

� �2
s

þ CII

CI

AII

AI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Vnew30

V II
tem

� �2
s

¼ CII

CI

AII

AI
þ 1� hIIeI

MI
1

� �
eIaI

MI
1

KI
A

AI
þ hIIeI

MI
1

KI
E

AI

¼ CII

CI

AII

AI
þ
eIMI

2 MI
1 � hIIeI

� �
þ hII MI

1

� �2
MI

1D
I

ð24Þ

In the expressions from (17) to (24), one can also

find that the following equalities were used:

A ¼ 1þ K2
em ð25Þ

D ¼ C el� a2
� �

þ e el� hað Þ � h ea� heð Þ
¼ CM3 þ eM2 � hM1 ð26Þ

KE ¼ K2
em � K2

e ¼ M2
1

CeM3

¼ ea� heð Þ2

Ce el� a2ð Þ ð27Þ

KM ¼ K2
em � K2

m ¼ M2
2

ClM3

¼ el� hað Þ2

Cl el� a2ð Þ ð28Þ

KA ¼ K2
em � K2

a ¼ M1M2

CaM3

¼ ea� heð Þ el� hað Þ
Ca el� a2ð Þ

ð29Þ
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In expression (27), the material parameter Ke
2 is

called the coefficient of the electromechanical cou-

pling that illuminates the physical sense. This pa-

rameter represents an important characteristic for

purely piezoelectric materials. This nondimensional

parameter is defined by

K2
e ¼ e2

Ce
ð30Þ

In equality (28), one can find the other material

parameter Km
2 called the coefficient of the magne-

tomechanical coupling that physically combines the

magnetic and mechanical material parameters and

represents an important characteristic of pure piezo-

magnetics. The following equality clarifies this nondi-

mensional parameter:

K2
m ¼ h2

Cl
ð31Þ

The third material parameter denoted by Ka
2 in

expression (29) is also nondimensional and combines

two terms with the electromagnetic constant a in the

CMEMC K2
em (10). Like the previous two material

parameters, it is also an exchange parameter that

reads:

K2
a ¼ eh

Ca
¼ aeh

Ca2
ð32Þ

Comparison of the left-hand side with the right-

hand side in expression (27) can reveal the physical

sense of the following equality: ea = he. It is

apparent that ea = he satisfies when Kem
2 = Ke

2

occurs. It can be assumed that the situation of

ea = he relates to the case when the magnetic

contribution to the CMEMC can be compensated

because the CMEMC value becomes equal to the

value of the purely piezoelectric characteristic de-

fined by expression (30). Indeed, the CMEMC can be

also introduced as a sum of several terms: Kem
2 =

Ke
2 ? Km

2 ? Kex
2 , where the last component stands for

an exchange term. A complicated explicit form of

this exchange term can be readily demonstrated by

using definitions (10), (30), and (31). In the same

manner, it is possible to compare the left-hand and

right-hand sides in expression (28). It is flagrant that

el = ha occurs when Kem
2 = Km

2 can exist. This can

also mean that the condition of el = ha belongs to

the second possibility when the electric contribution

to the CMEMC can be compensated for the reason

that the CMEMC value becomes equal to the value of

the purely piezomagnetic material parameter Km
2

(31). In equality (29), one can also find that both

the possibilities can exist: Kem
2 - Ka

2 = 0 occurs

when either ea - he = 0 or el - ha = 0 is fulfilled.

This can manifest that Kem
2 = Ka

2 can occur when

either electrical or magnetic properties can dominate.

In addition, one can state that both Kem
2 - Ke

2 = 0

and Kem
2 - Ka

2 = 0 as soon as the equality of

ea - he = 0 satisfies, and both Kem
2 - Km

2 = 0 and

Kem
2 - Ka

2 = 0 as soon as el - ha = 0 occurs.

3 Discussion on the existence of the interfacial SH-

waves

Next, one can also find that in the final expressions

from (17) to (24), eIIlII � aII
2 ¼ 0 in the correspond-

ing denominators on the left- and right-hand sides

leads to the fact that the both sides of each expression

approach to infinite values. Therefore, it is possible to

multiply the both sides of each expression by the factor

of eIIlII � aII
2

. As a result, the first term on the left-

hand side vanishes and one does not deal here with

infinities on the both sides. However, eIIlII � aII
2 ¼ 0

sets an infinite number for the value of the bulk

velocity V II
tem (9) due to the following fact:

KII2

em eIIlII � aII
2 ¼ 0

� 	
¼ 1, see definition (10) for

the CMEMC. It is assumed that the value of V II
tem

cannot be larger than the well-known table value of the

speed of light in a vacuum. Also, the used quasi-static

approximation requires that the values of V II
tem and the

new interfacial SH-wave velocities must be sig-

nificantly smaller than the value of the speed of light.

As a rule, the values of V I
tem and V II

tem must be close to

each other to have corresponding solutions for

obtained expressions from (17) to (24). Therefore, it

is essential to avoid the situation when eIIlII � aII
2 ¼ 0

occurs. In general, eIlI [ [ aI
2

and eIIlII [ [ aII
2

occur because the value of the electromagnetic

constant a is very small. So, it is possible to make a

statement that one must deal with both the sides of the

expressions when they represent finite numbers to find

solutions. There is also the second peculiarity when

the value of the right-hand side in all the expressions

from (17) to (24) can approach to an infinite number.

This is true when the following equality is satisfied:
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DI ¼ CI eIlI � aI
2

� 	
þ eI eIlI � hIaI

� �
�

hI eIaI � hIeI
� �

¼ 0
ð33Þ

Also, one has to focus attention on the following

three equalities for expression (20) to evade the

discussed peculiarity:

eIIlII � hIIaII ¼ 0 ð34Þ

eIaI � hIeI ¼ 0 ð35Þ

eIaI � hIeI
� �

eIIlII � hIIaII
� �

þ eIhIIeIlII ¼ 0 ð36Þ

It is worth noting that equality (34) also sets an

infinite number for the right-hand side of expression

(22) and equality (35) makes the same with the one of

expression (24).

For the final expressions from (17) to (24), the

following existence conditions must be also taken into

account to obtain solutions:

Y [ 0 and V II
tem

�
V I
tem

� �2 [ 1� Y2

for V I
tem [V II

tem

ð37Þ

In inequalities (37), the parameter Y represents the

corresponding right-hand sides of equations from (17)

to (24). It is apparently seen in all the equations from

(17) to (24) for the determination of the corresponding

velocity of the new interfacial SH-wave that this

parameter must be real and preferably have a positive

sign. Also, the second inequality is for the case of

V I
tem [V II

tem and therefore, V II
tem

�
V I
tem is smaller than

unity. This means that values of the parameter Y must

be smaller than unity, too. However, it is obvious that

existence conditions (37) are the most simple because

equations from (17) to (24) are quit complicated.

Indeed, they can be suitable for the case of CII * CI.

For the case of CII � CI, it is however possible that

the right-hand side can be significantly larger than

unity and one deals here with a more complicated case.

As a result, a numerical simulation must be performed

even in the cases when exact formulas are found.

It is also noted that the formulae from (17) to (24)

can be significantly simplified when one deals with

piezoelectromagnetic laminated composites consisting

of a piezoelectric layer (half-space) on a piezomagnetic

layer (half-space) or vice versa. This can be realized by

applying hI = 0 and eII = 0 in the equations. It is also

possible to use the electromagnetic constants such as

aI = aII = 0 for simplicity. Similar laminated con-

figurations can be also studied numerically. For

instance, a meshless method based on the local

Petrov–Galerkin approach was proposed in theoretical

work [27] to solve static and dynamic problems of two-

layered piezoelectromagnetic composites with specific

properties. The authors of paper [27] have stated that

the magnetoelectric effect is dependent on the ratio of

the layer thicknesses and considered various boundary

conditions and geometric parameters to analyze their

influence on the value of the electromagnetic pa-

rameter. So, it is possible to discuss that the theoretical

researches of this short report and book [2] represent the

limit cases when the layer thicknesses have infinite

values (the case of half-spaces) and the SH-waves are

guided by the perfectly bonded interface. There is also

book [28] on the SH-wave propagation in the trans-

versely isotropic piezoelectromagnetic plates. It is

expected that bi-plates consisting of two dissimilar

piezoelectromagnetics perfectly coupled at the com-

mon interface can be analytically researched in the

future. It is also well-known that suitable SH-waves can

be used for nondestructive testing and evaluation of

interfaces between two PEMs. SH-polarized ultrasonic

guided waves are frequently considered in order to infer

changes in the adhesive properties at interfaces located

within an adhesive bond joining two materials. For

instance, experimental work [29] suggests a promising

use of SH-like guided modes for quantifying shear

properties at adhesive interfaces, and shows that such

waves can be employed for inferring adhesive and

cohesive properties of bonds separately. Michel Cas-

taings [29] has also discussed some improvements that

can be applied to the process, and its potential for

testing the interfacial adhesion of adhesively bonded

composite components.

4 Results of calculation and further discussion

It is thought that for sample calculations, a frequently

studied solid with the hexagonal (6 mm) symmetry

can be chosen. For this purpose, the well-known

BaTiO3–CoFe2O4 composites can be utilized. For

instance, the material parameters of two dissimilar

BaTiO3–CoFe2O4 composites can be borrowed from

paper [30] or [31]. Let’s use the material parameters

given in paper [30] because they are more realistic in

comparison with those given in paper [31]. This will
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be further discussed below. For the case of

V I
tem [V II

tem, the following material parameters must

be used for the second BaTiO3–CoFe2O4 medium,

namely composite II: qII = 5,730 [kg/m3],

CII = 4.5 9 1010 [N/m2], eII = 0.1 [C/m2],

hII = 340 [T], eII = 3.3 9 10-10 [F/m], lII =
–390 9 10-6 [N/A2], aII = 2.8 9 10-12 [s/m]. As a

result, the SH-BAW velocity is V II
tem = 2794.094 [m/

s]. These material parameters roughly correspond to

the 20 % volume fracture of BaTiO3 in composite of

BaTiO3–CoFe2O4 [30]. The other dissimilar compos-

ite can roughly correspond to the 80 % volume

fracture of BaTiO3 in composite of BaTiO3–CoFe2O4

[30]. So, the material parameters for medium I are as

follows: qI = 5730 [kg/m3], CI = 5.0 9 1010 [N/m2],

eI = 0.4 [C/m2], hI = 80 [T], eI = 10.0 9 10-10 [F/

m], lI = –80 9 10-6 [N/A2], aI = 6.8 9 10-12 [s/

m], and V I
tem = 2956.343 [m/s]. Thus, the reader can

find that the condition of V I
tem [V II

tem is satisfied.

Besides, the reader can check that the limitation

condition of el[ a2 [13, 14] is also fulfilled for both

the dissimilar composites.

However, one must be careful when the material

parameters of paper [31] are used for calculations

because the BaTiO3–CoFe2O4 composite parameters

[31] do not satisfy the obligatory condition of el[ a2

[13, 14]. In addition, the dimension of the electro-

magnetic constant a in paper [31] is strange: [Ns/

(Vm)] instead of [Ns/(VC)] or [s/m], namely

a *-30 9 10-6 [Ns/(Vm)]. Using the values of

e *30 9 10-10 [F/m] and l *113 9 10-6 [N/A2]

from paper [31], one can calculate that their value of

a2 *0.90 9 10-9 is significantly larger their value of

el *3.39 9 10-13. These facts lead to the necessity

to exploit for calculations the material parameters [30]

discussed above.

Sample calculations were performed with formula

(24) representing case (i-8) for the following electrical

and magnetic boundary conditions at the common

interface: the electrical potential uI = uII = 0, con-

tinuity of the magnetic potential wI = wII, and the

continuity of the normal component of the magnetic

displacement B
I

3 ¼ BII
3 . The result of the calculation

for the case is shown in Fig. 2. The used function for

the calculation was formed from Eq. (24): the left-

hand side expression minus the right-hand side

expression must be equal to zero to demonstrate the

solution existence. For this purpose, the suitable value

of the velocity Vnew30 of the thirtieth new interfacial

SH-wave can be found when the function changes its

sign, see in Fig. 2. According to the figure, the found

value of the velocity is Vnew30 *2513.3 [m/s]. It is

clearly seen that the found speed is slower than both

the SH-BAW speeds V I
tem and V II

tem. This is the

requirement to deal with the interfacial SH-wave that

are localized at the common interface and must damp

towards the depth of either piezoelectromagnetic

medium.

It is also possible to briefly discuss the theoretical

method used in paper [31] concerning the same case of

the interfacial SH-wave propagation in the hexagonal

(6 mm) piezoelectromagnetics. For this aim, Otero

et al. [31] have treated the same coupled equations of

motion given in expressions (1), (2), and (3). It is well-

known that to resolve these differential equations, they

can be readily written in the tensor form [2] known as

the modified Green-Christoffel equation. Indeed, the

substitution of plane wave solutions (4), (5), and (6)

into the differential form of the coupled equations of

motion definitely leads to the aforementioned tensor

form. It is indispensable to state here that both the

differential and tensor forms of the coupled equations

of motion are identical. To resolve the tensor form

representing a set of three coupled homogeneous

equations means to find the eigenvalues and the

corresponding eigenvectors. This method is actual for

Normalized velocity  

Eq
ua

tio
n 

(2
4)

  

– 0.5 

0.0 

0.5 

0.0 0.2 0.4 0.6 0.8 

Fig. 2 The values of formula (24) versus the normalized

velocity Vnew30=V
II
tem because V I

tem [V II
tem, where the solution is

found as soon as in Eq. (24) the expression on the left-hand side

minus the expression on the right-hand side is equal to zero
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wave propagation in any direction and any cut

including the particularistic case treated in this report

and paper [31]. However, Otero et al. [31] have used

the other theoretical method to get solutions. Unfor-

tunately, their strange method is developed to obtain

solutions only in this particularistic case. Their method

does not resolve the coupled equations of motion in

any aforementioned form. Instead of that, they con-

struct auxiliary equations that are already independent

from each other and therefore, each of them can be

independently resolved. To couple these independent

equations anew, the boundary conditions are used,

with which some coefficients that correspond to

eigenvector components are found. However, the

eigenvector components must be found when the

equations of motion are used but not the boundary

conditions because the eigenvector components cer-

tainly relate to the equations of motion. The boundary

conditions are usually used to construct the corre-

sponding determinant of the boundary conditions and

to obtain the weight factors (but not the eigenvector

components) in the theory of partial waves. So, it is

necessary to state that the method by Otero et al. [31]

can frequently lead to incorrect final results for the

propagation velocity.

5 Conclusion

In the case of the perfectly bonded interface between

two dissimilar PEM materials of class 6 mm, it was

demonstrated in this report and book [2] that as many

as thirty new nondispersive interfacial SH-waves can

propagate. This short theoretical work has demon-

strated eight new nondispersive interfacial SH-waves

in addition to the twenty-two possibilities treated in

book [2]. The discovery of this short report relate to

the case called the eigenvectors’ mixing when differ-

ent forms of the eigenvectors are used for the

dissimilar piezoelectromagnetics. The results of this

theoretical work are the obtained explicit forms of

formulae for the phase velocity determination of the

new SH-waves and the existence conditions. This fact

resulted from the discussed peculiarity such as the

existence of the first and second eigenvector compo-

nents are respectively used for the first and second

piezoelectromagnetic half-spaces. For the results

obtained in this short report, the PEM1-SH-BAW

speed Vtem
E must be larger than the PEM2-SH-BAW

speed V II
tem, V

I
tem [V II

tem. The performed calculations

have illuminated that the thirtieth new interfacial SH-

wave can propagate with the velocity Vnew30 = m/s

(Fig. 2) along the common interface between two

dissimilar piezoelectromagnetic composites. It is

thought that these theoretical findings can be useful

for verification of some significantly more complicat-

ed theoretical patterns. It is also noted that these

theoretical investigations can be also useful for design

of optical and microwave technical devices when

suitable layered structures are exploited. It is also

well-known that interfacial waves can be used for the

nondestructive testing and evaluation of appropriate

interfaces between two dissimilar PEM materials.
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