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Abstract 
This theoretical work discovers four new dispersive shear-horizontal (SH) waves propagating in 
the transversely isotropic piezoelectromagnetic plate of class 6 mm. In this work, the following 
mechanical, electrical, and magnetic boundary conditions at both the upper and lower free sur-
faces of the piezoelectromagnetic plate are utilized: the mechanically free surface, continuity of 
both the electrical and magnetic potentials, and continuity of both the electrical and magnetic in-
ductions. The solutions for the new SH-wave velocities (dispersion relations) are found in explicit 
forms and then graphically studied. The graphical investigation has soundly illuminated several 
interesting peculiarities that were also discussed. The piezoelectromagnetic materials, also 
known as the magnetoelectroelastic media, are famous as smart materials because the electrical 
subsystem of the materials can interact with the magnetic subsystem via the mechanical subsys-
tem, and vice versa. Therefore, it is very important to know the wave characteristics of such 
(composite) materials because of possible constitution of new technical devices with a high level 
of integration. It is obvious that the plate waves can be preferable for further miniaturization of 
the technical devices and used for the nondestructive testing and evaluation of thin piezoelectro-
magnetic films. 
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1. Introduction 
There is an especial class of smart magnetoelectric materials called the piezoelectromagnetics, also known as the 
magnetoelectroelastics. It is well-known that these smart materials can simultaneously possess mechanical, elec-
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trical, and magnetic subsystems. As a result, an external action on the electrical subsystem can cause some 
changes in the magnetic subsystem (and vice versa) via the mechanical subsystem. Due to this fact, these smart 
materials are multi-promising for exploitation in various technical devices such as filters, sensors, actuators, de-
lay lines, lab-on-a-chip, etc. They are also available for nondestructive testing and evaluation, ultrasonic medical 
imaging, active control of sound and vibration, etc. Today, sensors and actuators are the most prominent trans-
ducers used in modern technologies including aerospace industry because they can have high resolution, desira-
ble frequency response, and generate large forces. The important property of linear coupling among mechanical, 
electrical, and magnetic fields can render piezoelectromagnetic (composite) materials useful in many areas of 
modern technology. In this endeavor, piezoelectromagnetic composites consisting of combinations of two or 
more different piezoelectric and piezomagnetic material phases have been designed to meet specific technical 
needs. Such smart materials are becoming increasingly important in diverse areas of modern technology because 
they can permit the tailoring of special properties, unavailable in homogeneous phases. As a result, the reader 
can find much review work on various smart magnetoelectric materials. For instance, some reports published in 
2012 and 2013 are listed in [1]-[7]. 

For many technical applications, it is very important to know the wave properties of bulk and thin-film pie-
zoelectromagnetic materials. This study relates to theoretical investigations of shear-horizontal (SH) acoustic 
waves in the transversely isotropic (6 mm) piezoelectromagnetic (composite) plates. The theoretical results ob-
tained in this work were not discovered in recent book [8] published in 2012 because they are based on the new 
nondispersive SH-waves discovered in recent paper [9] published in 2013. It is worth noting that it is preferable 
to experimentally generate such SH-waves with the noncontact method [10]-[12] called the electromagnetic 
acoustic transducers (EMATs). So, the following section briefly reviews the theory and the third section pro-
vides the obtained explicit forms for the new dispersive SH-waves propagating in the transversely isotropic pie-
zoelectromagnetic plates. 

2. Theory of Finding of Eigenvalues and Eigenvectors 
Consider a solid medium (thin film or plate) consisting of the transversely isotropic piezoelectromagnetic (PEM) 
material of class 6 mm. In this configuration, it is natural to exploit the rectangular coordinate system. It is fun-
damental to be familiar with the propagation directions of the shear-horizontal (SH) elastic plate waves when 
they can be coupled with both the electrical and magnetic potentials. For the transversely isotropic material of 
class 6 mm, the suitable propagation direction is given in the review paper by Gulyaev [13]. In the work coordi-
nate system, the plate SH-wave can therefore propagate along the x1-axis. This propagation direction is perpen-
dicular to both the sixfold symmetry axis managed along the x2-axis and the normal to the PEM-material surface 
directed along the x3-axis. The coordinate beginning is situated at the middle of the plate, where the parameter d 
is reserved for the plate half-thickness. The upper and lower surfaces of the plate are then situated at x3 = +d and 
x3 = –d, respectively. 

This is the case of the propagation of pure SH-wave [14] [15]. To study the propagation of the SH-wave 
coupled with both the electrical and magnetic potentials, the quasi-static approximation [8] [9] [14]-[16] must be 
utilized. The concept of the quasi-static approximation is potential because the speed of the electromagnetic 
waves is approximately five orders larger than that of the acoustic waves. The electrostatic and magnetostatic 
equilibrium equations can be then written using the differential forms of the corresponding Maxwell equations, 
namely div 0=D  and div 0=B . The electrical displacement vector D represents Gauss’s law without free 
charge and currents and the second equality represents a divergence of the magnetic flux vector B. Exploiting 
the Maxwell equations, the governing electrostatic and magnetostatic equilibrium equations therefore read: 

0i iD x∂ ∂ =  and 0i iB x∂ ∂ = . These equations represent the partial first derivatives of the electrical displace-
ment components Di and the magnetic displacement components Bi with respect to the real space components xi, 
where the index i runs from 1 to 3. Besides, the governing mechanical equilibrium equation is also written as the 
following partial first derivative of the stress tensor components σij with respect to xj, where the indexes i and j 
run from 1 to 3: 0ij jxσ∂ ∂ = . With this equation, wave motions of a PEM material in dependence on time t 
can be described by the following equation of motion: 2 2

ij j ix U tσ ρ∂ ∂ = ∂ ∂ , where ρ is the mass density of 
the PEM bulk material. On the right-hand side of the equation there are the partial second derivatives of the 
mechanical displacement components Ui with respect to time t. In addition to the equation of motion written 
above, it is necessary to take into account the electrostatics and magnetostatics in the quasi-static approximation 
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to form the coupled equations of motion: 0i jD x∂ ∂ =  and 0i jB x∂ ∂ = . The coupled equations of motion are 
written for the case when the thermodynamic functions such as the mechanical stress tensor (σij), electrical dis-
placements (Di) and magnetic displacements (Bi) depend on the mechanical (strain tensor ηij), electrical (field 

i iE xϕ= −∂ ∂ ) and magnetic (field i iH xψ= −∂ ∂ ) thermodynamic variables. Here φ and ψ are called the elec-
trical and magnetic potentials, respectively, and they are defined by the equations written below. 

As a result, the finally composed equations called the coupled equations of motion represent homogeneous 
partial differential equations of the second order. Using U4 = φ, U5 = ψ, and U2 = U called the mechanical dis-
placement component along the x2-axis, it is natural that solutions for the coupled equations can be composed in 
the following plane wave forms concerning the pure SH-wave propagation: 

( )0
2 1 1 2 2 3 3exp j phU U U k n x n x n x V t = = + + −                        (1) 

( )0
4 1 1 2 2 3 3exp j phU k n x n x n x V tϕ ϕ  = = + + −                        (2) 

( )0
5 1 1 2 2 3 3exp j phU k n x n x n x V tψ ψ  = = + + −                        (3) 

In the equations written above, U0, φ0, and ψ0 are called the initial amplitudes that should be perfectly deter-
mined as eigenvector components. j = (–1)1/2 is the imaginary unity, t and ω stand for the time and angular fre-
quency, respectively. The phase velocity Vph is defined by the following equality: Vph = ω/k; ω = 2πν where ν is 
the linear frequency. The wavenumber k in the direction of wave propagation, ( ) ( )1 2 3 1 2 3, , , ,k k k k n n n= , can be 
naturally normalized by the wavelength λ as follows: kλ = 2π. Also, the directional cosines n1, n2, and n3 are de-
fined as follows: n1 = 1, n2 = 0, and n3 ≡ n3. 

Next, the coupled equations of motion for the SH-wave propagation coupled with both the electrical (φ) and 
magnetic (ψ) potentials can be readily written in a corresponding tensor form representing the well-known mod-
ified Green-Christoffel equation. Indeed, a substitution of the solutions written in plane wave forms (1), (2), and 
(3) into the coupled equations of motion composed in the form of the partial differential equations can actually 
transform the later equations into the well-known tensor form. So, the following three homogeneous equations 
written in the matrix form represent the coupled equations of motion (modified Green-Christoffel equation for 
the case of the pure SH-wave propagation): 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

22 2 2
3 4 3 3 0

2 2 2 0
3 3 3

0
2 2 2
3 3 3

1 1 1
0

1 1 1 0
01 1 1

ph tC n V V e n h n
U

e n n n

h n n n

ε α ϕ
ψα µ

  + − + +           + − + − + =    
       + − + − +  
 

             (4) 

In Equation (4), n3 represents the eigenvalues and U0, φ0, and ψ0 are the eigenvector components. Also, it is 
essential to mention the following nonzero material parameters in expression (4): the elastic stiffness constant C, 
piezoelectric constant e, piezomagnetic coefficient h, dielectric permittivity coefficient ε, magnetic permeability 
coefficient μ, and electromagnetic constant α. They are defined as follows: C = C44 = C66, e = e16 = e34, h = h16 = 
h34, ε = ε11 = ε33, μ = μ11 = μ33, and α = α11 = α33 [17] [18]. Also, Vt4 stands for the speed of the shear-horizontal 
bulk acoustic wave (SH-BAW) uncoupled with both the electrical and magnetic potentials (pure mechanical 
SH-BAW): 4tV C ρ=  where ρ is the mass density of the piezoelectromagnetic material. 

In the case of the pure SH-wave propagation, the corresponding tensor form of the equations of motion for the 
piezoelectromagnetic (6 mm) medium can be written in the form of Equation (4). Solving these equations, it is 
possible to obtain all the eigenvalues and the corresponding eigenvectors. To discuss the problem of finding of 
suitable eigenvalues and the corresponding eigenvectors is the main purpose for this section. It is natural to 
leave all the intermediate mathematical operation and give right away the final results. So, all the six eigenva-
lues n3 representing the six roots of the sixth-order polynomial formed after expanding the determinant of the 
coefficient matrix in equation (4) are inscribed as follows: 

( ) ( ) ( ) ( )1 2 3 4
3 3 3 3 jn n n n= − = = − = −                                   (5) 

( ) ( ) ( )25 6
3 3 j 1 ph temn n V V= − = − −                                 (6) 
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In expression (6), the velocity denoted by Vtem represents the speed of the SH-BAW coupled with both the 
electrical and magnetic potentials. The value of Vtem is defined by the following expression: 

( )1 221tem emV C Kρ= +                                (7) 

In expression (7), 2
emK  is called the coefficient of the magnetoelectromechanical coupling (CMEMC). This 

dimensionless parameter can be calculated with the following formula: 

( )
( ) ( )

( )
2 2

2 2 1
2 2

3

2
em

e e h h e h eM hMe h ehK
CMC C

µ α α εµ ε α
εµ α εµ α

− − − −+ −
= = =

− −
            (8) 

One can find in definition (8) that the CMEMC represents the material parameter depending on the following 
three different coupling mechanisms discussed in paper [19]: 1M e hα ε= − , 2M e hµ α= − , 2

3M εµ α= − . 
With the found eigenvalues defined by expressions (5) and (6), it is required to determine the corresponding ei-
genvectors in the form of (U0, φ0, ψ0) for all the eigenvalues n3. For eigenvalues (5), it is possible to have the 
following eigenvector components discussed in report [20] such as U0, φ0, and ψ0: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )0 1 0 30 1 0 1 0 3 0 3, , , , 0, ,U Uϕ ψ ϕ ψ α ε= = −                     (9) 

For eigenvalues (6), the corresponding eigenvector components (U0, φ0, ψ0) also mentioned in report [20] can 
be written as follows: 

( ) ( ) ( )( )

( ) ( )( )

( )

2
0 5 0 5 0 5 1

2 2 2

2 2 2 2
12

1
3 2 1

2 1

, , , ,

1 , ,

, , .

em em em

em em e
em

M eh eU
CK CK CK

M C K K K K
K

M M M M
eM hM

α

ϕ ψ α ε

α ε

 
= − + − 
 

= − − −

= −
−

              (10) 

because 

( )
( )

22
2 2 1

2
3

E em e

e hMK K K
C M C

α ε
ε ε εµ α

−
= − = =

−
                         (11) 

( )( )
( )

2 2 1 2
2

3
A em

e h e hM MK K K
C M Cα

α ε µ α
α α εµ α

− −
= − = =

−
                    (12) 

2
2
e

eK
Cε

=                                                   (13) 

2
2

eh ehK
C Cα

α
α α

= =                                             (14) 

In expressions (11) and (13), the coefficient of the electromechanical coupling (CEMC) is denoted by 2
eK . 

The other parameter denoted by 2Kα  in expressions (12) and (14) couples only the terms with the electromag-
netic constant α in CMEMC (6). It is central to state that the eigenvector components φ0 and ψ0 of eigenvectors 
(9) and (10) are naturally coupled via the corresponding CMEMC mechanism M1 mentioned above that can be 
expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( )0 1 0 1 0 3 0 3 0 5 0 5
1e h e h e h Mϕ ψ ϕ ψ ϕ ψ+ = + = + =                     (15) 

Utilizing the found eigenvalues and eigenvectors, it is possible to compose the complete mechanical dis-
placement UΣ, complete electrical potential φΣ, and complete magnetic potential ψΣ. These parameters can be 
compactly written in the plane wave form as follows: 

( ) ( ) ( )( )0
1 1 3 3

1,2,3,4,5,6
exp jp p p

ph
p

U F U k n x n x V tΣ

=

 = + − ∑                    (16) 
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( ) ( ) ( )( )0
1 1 3 3

1,2,3,4,5,6
exp jp p p

ph
p

F k n x n x V tϕ ϕΣ

=

 = + − ∑                   (17) 

( ) ( ) ( )( )0
1 1 3 3

1,2,3,4,5,6
exp jp p p

ph
p

F k n x n x V tψ ψΣ

=

 = + − ∑                   (18) 

Using the following equalities ( ) ( ) ( )exp cosh sinh±Θ = Θ ± Θ  and ( ) ( ) ( )exp j cos jsin± Θ = Θ ± Θ , it is 
possible to rewrite the complete parameters for the case of Vph < Vtem. Therefore, the parameters UΣ, φΣ, and ψΣ 
can be rewritten in the following convenient forms: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

20 1 0 1 0 5
01 3 02 3 03 3

20 5
04 3 1

cosh sinh cosh 1

sinh 1 exp j .

ph tem

ph tem ph

U F U kx F U kx F U kx V V

F U kx V V k x V t

Σ   = + + −  
 

   + − × −    

     (19) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

20 1 0 1 0 5
01 3 02 3 03 3

20 5
04 3 1

cosh sinh cosh 1

     sinh 1 exp j .

ph tem

ph tem ph

F kx F kx F kx V V

F kx V V k x V t

ϕ ϕ ϕ ϕ

ϕ

Σ   = + + −  
 

   + − × −    

      (20) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

20 1 0 1 0 5
01 3 02 3 03 3

20 5
04 3 1

cosh sinh cosh 1

     sinh 1 exp j .

ph tem

ph tem ph

F kx F kx F kx V V

F kx V V k x V t

ψ ψ ψ ψ

ψ

Σ   = + + −  
 

   + − × −    

     (21) 

In these equations, ( ) ( ) ( ) ( )1 2 3 4
01F F F F F= + + + , ( ) ( ) ( ) ( )1 2 3 4

02 – –F F F F F= + , ( ) ( )5 6
03F F F= + , and  

( ) ( )5 6
04F F F= − . The formulae written above are valid within the plate thickness, 3d x d− ≤ ≤ + . In expres-

sions from (19) to (21), the corresponding weight factors can be determined from equations formed with boun-
dary conditions discussed in the following section. The main purpose of the following section is to theoretically 
discover several new SH-waves propagating in the transversely isotropic PEM plate. This is based on the reali-
zation of the corresponding mechanical, electrical, and magnetic boundary conditions [21]. 

3. Boundary Conditions Leading to New Results 
In this theoretical investigations there are contacts of the upper (x3 = +d) and lower (x3 = –d) surfaces of the 
transversely isotropic PEM plate with the free space, also known as a vacuum. Therefore, it is also necessary to 
introduce the vacuum material constants and the corresponding expressions for the electrical and magnetic po-
tentials in a vacuum. For a vacuum, the dielectric permittivity constant has the following value: 

( ) [ ]–7 2 12
0 10 4π 8.854187817 10 F mLCε −= = ×  where [ ]82.99782458 10 m sLC = ×  is the speed of light in a 

vacuum. For the free space, it is possible to exploit the well-known Laplace equation of type ∆φf = 0 that can be 
written as follows: ( )2 2

1 3 0 0fk k ϕ+ = . The electrical potential above the upper surface (x3 = + d) of the PEM can  
be written in the following plane wave form ( ) ( ) ( )0

0 1 3 1 1 3exp exp j , E
f F k x k x t x dϕ ω= − − ≥ +   , and below the  

lower surface (x3 = –d): ( ) ( ) ( )0
0 1 3 1 1 3exp exp j , E

f F k x k x t x dϕ ω= − ≤ −   . 
Also, the free space magnetic permeability constant has the following value:  

[ ] [ ]–7 7
0 4π 10 H m 12.5663706144 10 H mµ −= × = × . For the magnetic potential, Laplace’s equation of type ∆ψf  

= 0 can be also written in the following form: ( )2 2
1 3 0 0fk k ψ+ = . The magnetic potential in a vacuum above the  

upper surface (x3 = + d) is ( ) ( ) ( )0
0 1 3 1 1 3exp exp j , M

f F k x k x t x dψ ω= − − ≥ +   , and below the lower surface (x3  

= –d): ( ) ( ) ( )0
0 1 3 1 1 3exp exp j , M

f F k x k x t x dψ ω= − ≤ −   . It is worth noting that both the electrical and mag-
netic potentials exponentially decrease in a vacuum when x3 > +d and x3 < –d. 

Thus, it is now possible to introduce the boundary conditions at the upper and lower surfaces of the PEM 
plate. They are the same at both the surfaces. The mechanical boundary condition relates to the normal compo-
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nent of the stress tensor σ32, namely σ32 = 0. This is called the mechanical traction-free condition at the free sur-
face. The electrical boundary conditions are the continuity of both the electrical potential φ and the normal 
component of the electrical displacement D3, namely φ = φf and D3 = Df, where the superscript “f” relates to the 
free space (vacuum). Concerning the magnetic boundary conditions, they are the continuity of both the magnetic 
potential ψ and the normal component of the electrical displacement B3: ψ = ψf and B3 = Bf. It is thought that it is 
unnecessary to give here all the complicated expressions and their transformations. Consequently, it is possible 
to shortly write that for these boundary conditions mentioned above, eight homogeneous equations with eight 
unknown parameters can be written. The eight unknown parameters are the weight factors F(1), F(2), F(3), F(4), F(5), 
and F(6) given in expressions from (16) to (18) and the electrical weight factor FE and the magnetic weight factor 
FM for a vacuum. It is a usual mathematical procedure that the weight factors FE and FM can be excluded from 
the further consideration and one can naturally treat six homogeneous equations with six unknown parameters 
F(1), F(2), F(3), F(4), F(5), and F(6). Due to the fact that in this case there are identical eigenvalues defined by ex-
pression (5), these six homogeneous equations can be rewritten as those with four unknown parameters repre- 
senting the weight factors F01, F02, F03, and F04. These transformations are similar to those carried out with the 
complete parameters in the previous section, see expressions from (19) to (21). 

As a result, three homogeneous equations corresponding to the mechanical, electrical, and magnetic boundary 
conditions for the upper surface at x3 = +d read: 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

0 1 0 1 0 1
01 02

0 5 0 5 0 5
03 04

sinh cosh

sinh cosh 0.

CU e h F kd F kd

b CU e h F bkd F bkd

ϕ ψ

ϕ ψ

+ + +  

+ + + + =  
                      (22) 

( ) ( ) ( )( ) ( ) ( ){ }
( ) ( ) ( )( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ ( ) ( ) ( ) ( )}

0 1 0 1 0 1
01 02

0 5 0 5 0 5
03 04

0 1 0 1 0 5 0 5
0 01 02 03 04

sinh cosh

sinh cosh

cosh sinh cosh sinh 0.

eU F kd F kd

b eU F bkd F bkd

F kd F kd F bkd F bkd

εϕ αψ

εϕ αψ

ε ϕ ϕ ϕ ϕ

− − − +

− − − +

+ + + + =

    (23) 

( ) ( ) ( )( ) ( ) ( ){ }
( ) ( ) ( )( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ ( ) ( ) ( ) ( )}

0 1 0 1 0 1
01 02

0 5 0 5 0 5
03 04

0 1 0 1 0 5 0 5
0 01 02 03 04

sinh cosh

sinh cosh

cosh sinh cosh sinh 0.

hU F kd F kd

b hU F bkd F bkd

F kd F kd F bkd F bkd

αϕ µψ

αϕ µψ

µ ψ ψ ψ ψ

− − − +

− − − +

+ + + + =

   (24) 

For the lower free surface at x3 = –d, one can compose the following three homogeneous equations corres-
ponding to the mechanical, electrical, and magnetic boundary conditions: 

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( )

0 1 0 1 0 1
01 02

0 5 0 5 0 5
03 04

sinh cosh

sinh cosh 0.

CU e h F kd F kd

b CU e h F bkd F bkd

ϕ ψ

ϕ ψ

+ + −  

+ + + − =  
                      (25) 

( ) ( ) ( )( ) ( ) ( ){ }
( ) ( ) ( )( ) ( ) ( ){ }

( ) ( ){ ( ) ( ) ( ) ( ) ( ) ( )}

0 1 0 1 0 1
01 02

0 5 0 5 0 5
03 04

0 1 0 1 0 5 0 5
0 01 02 03 04

sinh cosh

sinh cosh

cosh sinh cosh sinh 0.

eU F kd F kd

b eU F bkd F bkd

F kd F kd F bkd F bkd

εϕ αψ

εϕ αψ

ε ϕ ϕ ϕ ϕ

− − − −

− − − −

+ − + − =

    (26) 

( ) ( ) ( )( ) ( ) ( ){ }
( ) ( ) ( )( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ ( ) ( ) ( ) ( )}

0 1 0 1 0 1
01 02

0 5 0 5 0 5
03 04

0 1 0 1 0 5 0 5
0 01 02 03 04

sinh cosh

sinh cosh

cosh sinh cosh sinh 0.

hU F kd F kd

b hU F bkd F bkd

F kd F kd F bkd F bkd

αϕ µψ

αϕ µψ

µ ψ ψ ψ ψ

− − − −

− − − −

+ − + − =

   (27) 

where 
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( )2
1 ph temb V V= −                                   (28) 

This set of six homogeneous equations from (22) to (27) must be resolved to get the corresponding dispersion 
relations. To simplify this set of homogeneous equations, it is natural to exploit the following equalities based on 
eigenvector components (9) and (10): 

( ) ( ) ( )0 1 0 1 0 1
1CU e h e h Mϕ ψ α ε+ + = − =                                    (29) 

( ) ( ) ( )
2

0 5 0 5 0 5
1 2

1 em

em

K
CU e h M

K
ϕ ψ

+
+ + =                                     (30) 

( ) ( ) ( )0 1 0 1 0 1 0eU εϕ αψ εα αε− − = − + =                                    (31) 

( ) ( ) ( )
2 2

0 5 0 5 0 5
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( ) ( ) ( )0 1 0 1 0 1 2
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( ) ( ) ( )
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− − = + − − + =             (34) 

The employment of these equalities from (29) to (34) transforms equations from (22) to (24) written for the 
upper free surface of the PEM plate at x3 = +d into the following forms: 

( ) ( ) ( ) ( ) ( )
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     (37) 

For the lower free surface at x3 = –d, one can also compose the following three homogeneous equations: 
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2

01 02 03 042

1
sinh cosh sinh cosh 0em

em

K
e h F kd F kd b F bkd F bkd

K
α ε

 + − − + − =     
   (38) 
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     (40) 

These latter six equations will be used below for further proper transformations to obtain suitable solutions 
representing dispersion relations. This report treats two cases (i) and (ii) leading to the discovery of several new 
dispersive SH-waves propagating in the transversely isotropic piezoelectromagnetic plate of class 6 mm. Let’s 
consider the first case of them. 

(i) The first case 
It is obvious that to form a consistent set of equations, it is indispensable to multiply some of them by appro-

priate constants. Such multiplication must lead to the same dimension for all the transformed equations and 
change nothing because the equations are homogeneous. Indeed, one has to finally obtain the following set of 
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three homogeneous equations: ax + by = 0, cx + dy = 0, (a + c)x + (b + d)y = 0. As soon as these three homoge-
neous equations will be obtained, it is obvious that it is possible to deal with the first two equations because the 
third equation represents a sum of the rest two equations. This is the main purpose for the further analysis. 
Therefore, it is possible now to write the suitable factors for this case. Analyzing the forms of Equation (37) and 
(40), it is natural to make a conclusion that the fitting factor for Equations (35) and (38) is  
( ) ( )2

3 1e h M Mεµ α α ε− − =  and the one for Equations (36) and (39) is 0 0εµ αε  to form consistent equa-
tions. 

So, the final six homogeneous equations are inscribed as follows: 
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               (46) 

It is possible to say that in these six homogeneous equations written above, the CMEMC coupling mechanism 
such as 2

3M εµ α= −  mentioned after Equation (8) plays a major role to demonstrate that the corresponding 
equations are consistent. To form two different sets of three consistent equations in two unknowns, it is neces-
sary to combine three homogeneous equations with the weight factors F01 and F03 and to separately unite the rest 
three equations with the weight factors F02 and F04. For this purpose, the first pair of Equations (41) and (44) 
must be first treated. First of all, Equation (44) must be added to Equation (41) to simplify Equation (41) and the 
simplified equation must be then subtracted from Equation (44). As a result, these transformations result in two 
simplified equations, one of them contains only the weight factors F01 and F03 and the second has only the 
weight factors F02 and F04. To compensate the undesirable factor of 2 in the final equations, they must be mul-
tiplied by the factor of 0.5. The same can be done for the second pair of Equations (42) and (45) and the third 
pair of Equations (43) and (46). 

Finally, the first set of three consistent equations reads: 

( ) ( ) ( )
2
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01 032

1sinh sinh 0em
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                          (47) 
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                             (48) 

( ) ( ) ( ) ( )
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εµ α εµ εµ −
− + + =          (49) 

It is blatant that these three equations written above are consistent because the third equation of them repre- 
sents the sum of the rest two equations. As a result, the dispersion relation can be obtained by a successive sub-
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traction of Equations (47) and (48) from Equation (49). The first dispersion relation for the determination of the 
velocity Vnew33 of the thirty third new dispersive SH-wave propagating in the transversely isotropic PEM plate is 

( ) ( )
2 2

2 2 0
33 33 2 21 tanh 1 0

1
e

new tem new tem
em

K KV V kd V V
K

αεµ
εµ α

− − − − = 
  − +

           (50) 

It is worth noticing that the numeration of the new SH-waves follows that used in book [8] because thirty-two 
new SH-waves for different boundary conditions were previously discovered in the book. This is useful because 
it avoids any confusion. 

Concerning the second set of three consistent equations with the weight factors F02 and F04, they can be in-
troduced in the following forms: 
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                        (51) 
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With the same method, a subtraction of Equations (51) and (52) from Equation (53) can definitely lead to the 
second dispersion relation. This dispersion relation can actually determine the velocity Vnew34 of the thirty fourth 
new dispersive SH-wave. Consequently, it reads 

( ) ( )
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2 20
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K KV V kd V V
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αεµ
εµ α
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            (54) 

In this case, it is also likely to discuss the situation when the normalized value of the plate half-thickness kd 
approaches an infinity, tanh(∞) = 1 due to kd → ∞. The substitution of the value of kd → ∞ in dispersion rela-
tions (50) and (54) significantly simplify them and gives the same expression for calculation of the velocity of 
the nondispersive SH-wave propagating on the free surface of the PEM material. This nondispersive SH-wave 
was discovered in paper [9], see formula (73) in the paper. Following the numeration of the new nondispersive 
SH-waves used in works [9] [17], it is natural here to introduce this formula in the following form: 

1 2 1 22 22 2
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new tem tem
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M h CM eM hMK

αεµ µ
α

      −   = − = −   + −+        
        (55) 

where 2 2
em eK K−  (11) and 2 2

emK Kα−  (12) were exploited. 
(ii) The second case 
Consider the second case when the other CMEMC coupling mechanism such as 1M e hα ε= −  can play a 

major role to get consistent equations for determination of the propagation velocity of the plate SH-waves. In 
this case, it is possible to start with the treatment of six homogeneous equations from (35) to (40) anew. Equa-
tions (35) and (38) are left unchanged because they already contain the factor of e hα ε− . However, the rest 
four equations must be properly transformed. To obtain consistent equations, it is natural that a factor of eα must 
be used for Equations (36) and (39) and a factor of (–hε) must be employed for equations (37) and (40). Now it 
is reasonable to write down consistent equations right away, because it is unnecessary here to rewrite all the 
mathematical procedures carried out in case (i). 

The first set of three consistent homogeneous equations can be unveiled in the following convenient forms: 
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( ) ( ) ( ) ( ) ( )
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Next, expressions (57) and (58) must be successively subtracted from expression (56). This leads to the fol-
lowing intermediate dispersion relation that still contains both the weight factors F01 and F03: 
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It is doable to exclude the weight factor F01 from the dispersion relation written above. For this aim, the de-
pendence of F01 on F03 in expression (56) must be fittingly exploited. Finally, one can write down the following 
complicated dispersion relation for the determination of the velocity Vnew35 of the thirty fifth new SH-wave 
propagating in the transversely isotropic PEM plate: 
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  (60) 

where KE and KA are defined by expressions (11) and (12), respectively.  
Concerning the second set of three consistent equations with the weight factors F02 and F04, they can be in-

troduced in the following forms: 
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A consecutive subtraction of Equations (62) and (63) from Equation (61) results in the following dispersion 
relation containing the undesirable weight factors F02 and F04: 
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Utilizing Equation (61), the final dispersion relation can be obtained. Therefore, one can find the following 
dispersion relation for the calculation of the velocity (Vnew36) values of the thirty sixth new SH-wave that can 
propagate in the studied plate configuration: 
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For discovered dispersion relations (60) and (65), a substitution of tanh(∞) = 1 for an infinite value of kd → ∞ 
can significantly simplify them. One can check that such simplification leads to formula (79) for the nondisper-
sive wave velocity Vnew9 obtained in paper [9]. Indeed, this simplification results in the fact that dispersion rela-
tions (60) and (65) for calculation of the dispersive SH-wave velocities are actually transformed into the same 
expression that determines the nondispersive SH-wave velocity. Following the numeration of the new nondis-
persive SH-waves utilized in paper [9] and book [17], the formula for calculation of the velocity Vnew9 of the 
ninth new nondispersive shear-horizontal surface acoustic wave (SH-SAW) can be transformed into the follow-
ing form: 
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                 (66) 

It is also worth noting that all the discovered dispersion relations are written in this report for the case of Vph < 
Vtem. This is the case of the fundamental modes. All the obtained dispersion relations can be readily transformed 
into the case of Vph > Vtem that relates to the existence of an enormous number of the higher-order modes of the 
dispersive SH-waves. Indeed, the fundamental modes of the dispersive SH-waves propagating in the PEM plates 
can be further researched for a concrete PEM material. It is expected but it is not obligatory that the obtained 
dispersion relations can show similar qualitative dependencies like those obtained in the investigations recently 
carried out in papers [22]-[24]. It is also possible to state that there are two technical regimes and they can prac-
tically supplement each other in the problem of nondestructive testing and evaluation of PEM thin films (plates). 
The first regime relates to the small values of the nondimensional values of kd. It is responsible for the SH-wave 
propagation within the whole plate that can be useful for the nondestructive detection of serious defects in the 
depth of the PEM material. The second regime pertains to infinite values of kd → ∞ when the value of the dis-
persive SH-wave velocity approaches the value of the corresponding SH-SAW. This means that in the second 
regime, the oscillations are localized at the free surface of the PEM material and one deals here with the corres-
ponding SH-SAW. Therefore, it is expected that defects on the solid surface can be solidly detected and distin-
guished from bulk defects by the nondestructive testing technique. Thus, a plate configuration is preferable for 
further miniaturization of various optical and acoustical technical devices compared with bulk PEM materials. 
Furthermore, PEM materials can be preferable to experimentally generate PEM SH-waves with the noncontact 
method [10]-[12] such as the EMATs that was mentioned in the introductory section. 

4. Numerical Study 
Let’s graphically investigate the obtained complicated dispersion relations given by explicit forms (50), (54), 
(60), and (65). The piezoelectromagnetic samples are BaTiO3–CoFe2O4 and PZT-5H–Terfenol-D. The first ma-
terial parameters [22]-[24] are: C = 4.4 × 1010 [N/m2], e = 5.8 [C/m2], h = 275.0 [T], ε = 56.4 × 10–10 [F/m], μ = 
81.0 × 10–6 [N/A2], ρ = 5730 [kg/m3]. Those for the second one [22, 23, 24] are: C = 1.45 × 1010 [N/m2], e = 8.5 
[C/m2], h = 83.8 [T], ε = 75.0 × 10–10 [F/m], μ = 2.61 × 10–6 [N/A2], ρ = 8500 [kg/m3]. The first composite is 
known as relatively strong piezoelectromagnetics and the second possesses significantly weaker piezoelectro-
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magnetic properties. So, one has a contrast for comparison and better understanding of the problem of the SH- 
wave propagation in the PEM materials. 

It is thought that the first pair of dispersion relations (50) and (54) is relatively simpler than the second pair of 
equations (60) and (65). Figure 1 shows the normalized velocities Vnew33/Vtem (50) and Vnew34/Vtem (54) of the 
fundamental modes of the dispersive SH-waves for the case of Vnew33 < Vtem and Vnew34 < Vtem. The dispersion re-
lations are shown as functions of the normalized values of kd, where k is the wavenumber in the propagation di-
rection and d is the plate half-thickness. It is natural to show dispersion relations for several values of the nor-
malized material parameter α2/εµ. This parameter has a peculiarity such that α2 < εµ [1]. One can find that α2  
εµ usually occurs for practical PEM composites. However, the value of α2 < εµ cannot be too small. If the value 
of α2 < εµ is too small, the eighth new nondispersive SH-SAW defined by formula (55) cannot exist. As a result, 
the new dispersive SH-waves defined by expressions (50) and (54) cannot also exist. So, the reader can check 
that there are the following threshold values of α2/εµ for the studied composites: α2/εµ > (α2/εµ)th ~ 6.4 × 10–3 for 
the PZT-5H–Terfenol-D and α2/εµ > (α2/εµ)th ~ 5.0 × 10–7 for BaTiO3–CoFe2O4. 

As soon as the value of α2/εµ > (α2/εµ)th, the new dispersive SH-waves (50) and (54) can propagate. However, 
when the value of α2/εµ is slightly larger than the value of (α2/εµ)th there is a relatively large “silence zone” for 
the Vnew33 because the value of Vnew33 is equal to zero at nonzero value of kd. Figure 1 shows that there is the 
same qualitative picture for both the studied composites. Indeed, the figure shows that the closer the value of 
α2/εµ to the value of (α2/εµ)th is situated, the larger the “silence zone” for the Vnew33 and smaller the value of the 
Vnew33/Vtem occur. It is thought that such technical devices as piezoelectromagnetic switches can be created based 
on the peculiarities discussed above. These switches will react on the SH-wave propagation: the ON-regime can 
be realized when the SH-waves propagate for some suitable value of α2/εµ > (α2/εµ)th and the OFF-regime is for 
α2/εµ < (α2/εµ)th without any SH-wave propagation. The reader can find that this is also suitable for the comput-
er logics when the ON-regime corresponds to “1” state and the OFF-regime corresponds to “0” state, or vice 
versa. This can be caused and controlled, for instance, by an external magnetic field. Also, it is obvious that 
there is a possibility to work with very slow PEM-SH-wave speeds Vnew33 and Vnew34 for the case when the value 
of α2/εµ is slightly larger than the value of (α2/εµ)th. This fact and the structure geometry (thin films) can be 
called for further miniaturization of various technical devices such as the dispersive wave delay lines. There is 
also a possibility to study very slow speeds of the acoustic SH-waves coupled with both the electrical and mag-
netic potentials. It is hoped that some slow speeds representing only several percents from the SH-BAW speed 
Vtem can be readily reached in properly performed experiments. 
 

 
(a)                                              (b) 

Figure 1. The normalized velocities Vnew33/Vtem (thick lines, formula (50)) and Vnew34/Vtem (thinner lines, for-
mula (54)) of the fundamental modes of the dispersive SH-waves propagating in the PEM plates versus the 
normalized value of the half-thickness kd: (a) PZT-5H–Terfenol-D, where (1) α2/εµ = 0.006561, (2) 0.0081, (3) 
0.01, (4) 0.04, (5) 0.09; (b) BaTiO3–CoFe2O4, where (1) α2/εµ = 5.329 × 10–7, (2) 6.4 × 10–7, (3) 1.0 × 10–6, (4) 
1.0 × 10–4.                                                                                       
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There is also the second figure for further discussions. The second figure studies dispersion relations (60) and 
(65). It was mentioned above that these dispersion relations are more complicated in comparison with the first 
pair of the dispersion relations graphically studied in the first figure. The normalized velocities Vnew35/Vtem (for-
mula (60)) and Vnew36/Vtem (formula (65)) for the PZT-5H–Terfenol-D are shown in Figure 2(a) and Figure 2(b), 
respectively. The same velocities for the BaTiO3–CoFe2O4 are shown in Figure 2(c) and Figure 2(d), respec-
tively. It is necessary to state right away that the qualitative picture is the same in majority for both the studied 
composites. However, it is preferable to discuss the PZT-5H–Terfenol-D composite because it provides defi-
nitely more informative picture due to the significantly stronger piezoelectromagnetic properties. First of all, it is 
crucial to introduce the peculiarity for this case shown in Figure 3. The reader can find in the third figure that 
for each studied sample there is one crossing point between the new SH-SAW velocity Vnew9 and the well-known  
 

 
(a)                                               (b) 

 
(c)                                               (d) 

Figure 2. The normalized velocities Vnew35/Vtem (formula (60)) and Vnew36/Vtem (formula (65)) of the fundamen-
tal modes of the dispersive SH-waves propagating in the PEM plates versus the normalized value of the 
half-thickness kd: (a) Vnew35 in PZT-5H–Terfenol-D, where (1) α2/εµ = 1.0 × 10–8, (2) 0.01, (3) 0.09, (4) 0.16, 
(5) 0.25, (6) 0.36, (7) 0.49, (8) 0.64, (9) 0.81, (10) 0.9801, (11) 0.998001; (b) Vnew36 in PZT-5H–Terfenol-D, 
where (1) α2/εµ = 1.0 × 10–8, (2) 0.04, (3) 0.2809, (4) 0.36, (5) 0.49, (6) 0.81, (7) 0.9801, (8) 0.998001, (9) 
0,99980001; (c) Vnew35 in BaTiO3–CoFe2O4, where (1) α2/εµ = 1.0 × 10–8, (2) 0.01, (3) 0.04, (4) 0.09, (5) 
0.1521, (6) 0.16, (7) 0.36, (8) 0.64, (9) 0.81, (10) 0.9801, (11) 0.998001; (d) Vnew36 in BaTiO3–CoFe2O4, where 
(1) α2/εµ = 1.0 × 10–8, (2) 0.1521, (3) 0.1565389225, (4) 0.16, (5) 0.36, (6) 0.64, (7) 0.81, (8) 0.9801.               
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Figure 3. The normalized velocities VBGM/Vtem (dotted lines) and Vnew9/Vtem 
(solid lines, formula (66)) of the nondispersive SH-SAWs propagating in 
the PEMs such as PZT-5H–Terfenol-D (black lines) and BaTiO3–CoFe2O4 
(gray lines) versus the normalized parameter α2/εµ.                         

 
SH-SAW called the surface Bleustein-Gulyaev-Melkumyan (BGM) wave discovered by Melkumyan [25], dis-
cussed in review [1], and studied in paper [26]. The surface BGM wave propagates with the speed VBGM. The 
mentioned peculiarity is that there are two different behaviors in Figure 2 for the cases of Vnew9 > VBGM and Vnew9 
< VBGM. Therefore there must exist the case of Vnew9 = VBGM. According to Figure 3 and the title of Figure 2, this 
happens at the value of α2/εµ = (α2/εµ)BGM ~ 0.2809 for PZT-5H–Terfenol-D and α2/εµ = (α2/εµ)BGM ~ 
0.1565389225 for BaTiO3–CoFe2O4. With Figure 2(a) and Figure 2(b) for PZT-5H–Terfenol-D, the reader can 
find that the case of α2/εµ < (α2/εµ)BGM relates to the usual dispersion relations. This means that the velocity 
Vnew35 starts with zero value at a nonzero value of kd (Figure 2(a)) and Vnew35(kd → ∞) → Vnew9. Regarding the 
velocity Vnew36 shown in Figure 2(b) there is also Vnew36(kd → ∞) → Vnew9. In this study there is an interest in 
investigation of the fundamental modes in the case of Vph < Vtem. Therefore, Figure 2(b) and Figure 2(d) show 
only the case of Vnew36 < Vtem. Figure 2(a) and Figure 2(c) show that the “silence zone” can also occur. It is 
worth noticing that the case of α2/εµ < (α2/εµ)BGM can be commercially realizable because α2  εµ occurs for all 
known PEM composites. 

Let’s also discuss the case of α2/εµ > (α2/εµ)BGM. It is clearly seen in Figure 2(a) and Figure 2(b) for 
PZT-5H–Terfenol-D that the case of Vnew9 < VBGM for α2/εµ > (α2/εµ)BGM can provide an extra peculiarity. This 
peculiarity relates to the existence of the extreme points. Also, this case does not demonstrate a “silence zone” in 
Figure 2(a) that can be found in Figure 2(b). For the PZT-5H–Terfenol-D composite, the minimum and maxi-
mum points are clearly seen in Figure 2(a) and Figure 2(b), respectively. They can also exist in Figure 2(c) and 
Figure 2(d) for composite BaTiO3–CoFe2O4. However, these figures are quite unsuitable for the analysis due to 
the very smooth extremes. The significantly stronger piezoelectromagnetics such as PZT-5H–Terfenol-D is 
more preferable for the purpose of solid demonstration of the existence of the extreme points in the dispersion 
relations. The extreme points pertain to the phenomenon called the nondispersive Zakharenko waves [27] [28]. 
The nondispersive Zakharenko waves were first discovered in paper [27] when a two-layer structure was treated. 
Paper [28] discusses that the nondispersive Zakharenko waves can also exist in plates and quantum systems.  
The existence of the nondispersive Zakharenko waves (Vph = Vg ≠ 0) follows from the following coupled beha-
vior of the phase Vph and group Vg velocities [27] [28]: 

( )
( ) ( )d 1

d
ph

g ph

V
V V

kd kd
= −                                (67) 

where the dependence Vph(kd) represents Vnew35(kd) or Vnew36(kd) in this case. 
Formula (67) states that an increase in the phase velocity Vph(kd) results in Vph < Vg. Also, any decrease in the 

phase velocity Vph(kd) leads to Vph > Vg. Thus, the reader can conclude that there are two different types of the 
wave dispersion: Vph < Vg and Vph > Vg. It is expected that a nondispersive wave can propagate for longer dis-
tances than any (weakly) dispersive wave around. It is also necessary to mention that the nondispersive Zakha-
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renko wave divides the corresponding mode of the dispersive SH-waves into two submodes (modes) with the 
different dispersions: Vph < Vg and Vph > Vg. This fact can be used because it is well-known that the Love type 
waves possessing Vph > Vg can demonstrate the best sensitivity. 

5. Conclusion 
This report has delved into the propagation problems of the shear-horizontal (SH) waves in the piezoelectro-
magnetic (PEM) plates. This theoretical investigation has analytically exhibited the existence of extra four new 
dispersive SH-waves propagating in the transversely isotropic PEM plates of class 6 mm. These discovered new 
SH-waves pertain to the homogeneous case when the following set of the mechanical, electrical, and magnetic 
boundary conditions is applied to both the upper and lower free surfaces of the PEM plate: σ32 = 0, φ = φf, D = 
Df, ψ = ψf, and B = Bf, where the superscript f stands for the free space, also known as a vacuum. The obtained 
dispersion relations for these four new dispersive SH-waves were also graphically studied. The graphical study 
of the obtained complicated dispersion relations has demonstrated several peculiarities that were also discussed. 
It is obvious that the plate SH-waves can be useful for further miniaturization of various technical devices be-
cause two-dimensional plates can be used instead of three-dimensional bulk (composite) materials. Also, the 
plate SH-waves can be used for nondestructive testing and evaluation of PEM thin films. 
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