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This theoretical investigation provides characteristics of shear-horizontal
surface acoustic waves (SH-SAWs) in piezomagnetic cubic monocrystals.
The wave characteristics for various cubic piezomagnetics such as Alfenol,
Terfenol-D, Metglas, NiFe2O4, etc., with the coefficient of magnetomecha-
nical coupling (CMMC) K2

m 5 1=3 and K2
m 5 1=3 are studied. Knowledge

of properties of cubic piezomagnetics is beneficial to the design of smart
devices, sensors, and actuators, as well as applications in non-destructive
testing. Also, the obtained results allow us to choose apt materials to
constitute piezomagnetic/piezoelectric laminate composites in the micro-
wave technology.

1. Introduction

Shear-horizontal surface acoustic waves (SH-SAWs), also called surface Bleustein–
Gulyaev (BG) waves, were first discovered in transversely-isotropic piezoelectrics in
1968–1969 [1,2]. In [3], Al’shits et al. reported a qualitative investigation on the
existence of SH-SAWs in piezoelectrics and piezomagnetics. According to [3], the
piezomagnetic effect and the piezoelectric effect can be described in the same way. As
a result, as in the transversely-isotropic piezoelectrics, the surface BG-waves can also
propagate in transversely-isotropic piezomagnetics. However, the surface BG-waves
cannot exist in cubic piezoelectrics (hence, in cubic piezomagnetics). This was stated
in a recent paper [4] by Gulyaev (the co-discoverer of the surface BG-wave) and
Hickernell published in 2005. This conclusion was also confirmed in [5]. As for cubic
piezoelectrics and cubic piezomagnetics, the ultrasonic surface Zakharenko waves
(USZWs) [5] can exist in cubic monocrystals. Based on the results of [5], all cubic
piezomagnetics in contrast to the transversely-isotropic materials can be divided into
two groups: the first group includes cubic piezomagnetics with K2

m 5 1=3 and the
second is for cubic piezomagnetics with K2

m 5 1=3, where K2
m is the coefficient of the

magnetomechanical coupling (CMMC). For K2
m 5 1=3, the USZW velocity can

significantly differ from the BG-wave velocity, VBG, compared with the difference
between the bulk wave velocity Vtm and the VBG, and the second ‘latent SAW’
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solution with the value of VaKm (see below) is always found. For K2
m 5 1=3, the

USZW velocity is situated slightly below the VaKm, and the difference between the
USZW velocity and the VBG may reaches a very large value (even �100m/s)
according to the results for cubic piezomagnetics Galfenol and Terfenol-D [6]. In the
case of the magnetic potential  ¼ 0 in the magnetic boundary conditions, the USZW
velocity for cubic piezomagnetics [6,7] coincides with the VBG. To date, little is
known about the SH-SAW characteristics in cubic piezomagnetics and even in
transversely-isotropic piezomagnetics.

Also, it is worth noting that some attempts [8–11] to analytically and
numerically find the surface SH-waves in crystals with cubic symmetry occurred
before paper [4] was published in 2005 by Gulyaev and Hickernell. However, these
attempts did not reveal the significant differences of the surface SH-wave
propagation in cubic crystals described above from that in the transversely-
isotropic materials. On the contrary, these studies [8–11] presented their results in
such a way that the surface SH-wave propagation in cubic crystals is similar to that
in the transversely-isotropic materials with none of the differences briefly described
above in this introductory section. This is cannot actually be trusted and looks like
fake or incorrect results. As a result, Academician Gulyaev (the co-discoverer of
the surface BG-waves) and Hickernell (who worked with the other co-discoverer)
stated in [4] that the surface BG-waves cannot exist in cubic piezoelectrics (hence,
in cubic piezomagnetics.).

This paper studies the wave characteristics of various cubic piezomagnetics for
utilization of the materials with the cubic symmetry in smart composite materials.
Like the transversely-isotropic composite materials [12], cubic composite materials
can also reveal their uniqueness. Note that some transversely-isotropic materials are
frequently treated as pseudo-cubic materials. It is natural that a piezomagnetic
material is a suitable pair component for a piezoelectric material to study
magnetoelectric coupling. In recent topical reviews [13–15], more than 300 references
on the subject were documented, in particular some pioneer works [16–20] about
piezomagnetic–piezoelectric composite materials and the magnetoelectric effect.
References [21–27] investigated the problem of the magnetoelectric effect in
laminated composites. Recent review papers [28,29] have discussed various device
applications when piezoelectrics and piezomagnetics are combined together to form,
for example, multi-layered structures. In 2009, review [28] particularly listed the
applications of Fe-containing materials in microwave passive devices such as phase
shifters, circulators, filters, isolators, and resonators. In 2010, review [29] also
focused on potential device applications for the composites of magnetostrictive and
piezoelectric phases such as magnetic-field sensors, dual electric-field- and magnetic-
field-tunable microwave and millimeter-wave devices, and miniature antennas. It is
noted that this research arena is rapidly developed and reviews on the subject can be
published every year. Also, of much interest is a study of interfacial wave
propagation in piezomagnetic–piezoelectric laminated composites [7,30].
Knowledge of wave properties of piezomagnetic cubic monocrystals can guarantee
a right choice of materials for a study of interfacial waves in piezomagnetic–
piezoelectric composites. The results of this paper can help to resolve some current
problems concerning utilization of cubic piezomagnetics in the layered composites.
The following section provides the theory for the SH-SAW propagation in the cubic
piezomagnetics.
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2. Theory of SH-SAW propagation

The piezomagnetic SH-SAWs with the anti-plane polarization can propagate along
the crystal surface in direction [101] perpendicular to an even-order symmetry axis.
The used rectangular coordinate system {x01¼X, x02¼Y, x03¼Z} is shown in
Figure 1, in which the crystallographic coordinates X, Y, and Z are directed along
the fourth-order symmetry axes of a piezomagnetic cubic crystal of classes m3m and
432 or along the second-order symmetry axes of a cubic piezomagnetics of class m3
[31,32]. Direction [101] is obtained by 45�-rotation around the x02-axis. According to
[3], the theoretical description of wave propagation in the cubic piezomagnetics is
similar to that for the cubic piezoelectrics. The constitutive equations for
piezomagnetics can be expressed in terms of the magnetic field H and the strains �
related to the mechanical displacements Uj as follows: �ij¼ (@Ui/@xjþ @Uj/@xi)/2 [33].
The governing mechanical equilibrium is @�ij/@xj¼ 0 and the governing magneto-
static equilibrium is @Bi/@xi¼ 0, where �ij and Bi are the stress tensor and magnetic
flux, respectively.

A piezomagnetic medium possesses the elastic stiffness constants Cijkl, piezo-
magnetic coefficients hijk, constant strain magnetic permeability coefficients �ij, and
mass density �. Treating the linear case, constitutive relations read:

�ij ¼ CH
ijkl�kl � hijmHm, ð1Þ

Bm ¼ hmij�ij þ �
�
mnHn, ð2Þ

with the following thermodynamic definitions for the material constants:

CH
ijkl ¼

@�ij
@�kl

� �
H

, ð3Þ

hmij ¼ hijm ¼ �
@�ij
@Hm

� �
�

¼
@Bm

@�ij

� �
H

, ð4Þ

x'2
x2

[101]
x'3 x3

0 

x'1

x1

K

N

45°

Figure 1. The SH-SAW propagation along direction [101] for a piezomagnetic cubic
monocrystal. K is the wave vector in the direction of wave propagation and N is the vector of
surface normal.
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��mn ¼
@Bm

@Hn

� �
�

: ð5Þ

In Equations (1)–(5), the indices i, j, k, l, m, and n run from 1 to 3. Also, �ij and �ij are
the stress and strain tensor components, respectively. Hm¼�@ /@xm ( is the mag-

netic potential) are the components of the magnetic field. According to the Voigt

notation, Cijkl, hijm, and �mn can be written as 6� 6, 3� 6, and 3� 3 matrices

standing for the elastic, piezomagnetic, and magnetic tensors, respectively.
In the quasi-static approximation, the equations of motion of an elastic medium

can be written as follows:

1

�

@�ij
@xj
�
@2Ui

@t2
¼ 0, ð6Þ

and the magnetostatics equation reads

@Bi

@xj
¼ 0: ð7Þ

In Equation (6), the second term represents the second derivative of the mechanical

displacement components Ui with respect to time t. Using Equations (1)–(7), one

can write the coupled equations of motion for a piezomagnetic medium in the

following form:

�
@2Ui

@t2
¼ Cijkl

@2Ul

@xj@xk
þ hkij

@2 

@xj@xk
, ð8Þ

0 ¼ hijk
@2Uk

@xi@xj
� �ij

@2 

@xi@xj
: ð9Þ

If one denotes the displacement component  as U4, solutions of homogeneous

partial differential Equations (8) and (9) of the second order can be expressed in

terms of the following plane wave form: U1,2,3,4 ¼ U0
1,2,3,4 exp j ðk1x1 þ k2x2þ½

k3x3 � !tÞ� where U0
i (i¼ 1, 2, 3) and U0

4¼ 
0 are the initial amplitudes; ! is the

angular frequency and j¼ (�1)1/2. The wavevector {k1, k2, k3}¼ k{n1, n2, n3} where

{n1, n2, n3} is the directional cosine vector. Also, {x1, x2, x3} are the components of

the real space vector.
A further simplification of Equations (8) and (9) for the studied case can be

achieved by leaving only equations associated with SH-SAWs. That is, for SH-SAWs

propagating in the direction [101], one has

�
@2U

@t2
¼ C

@2U

@x21
þ
@2U

@x23

� �
� h

@2 

@x21
þ h

@2 

@x23
, ð10Þ

0 ¼ �h
@2U

@x21
þ h

@2U

@x23
� �

@2 

@x21
þ
@2 

@x23

� �
, ð11Þ

because of the fact that Cijkl!C44¼C66¼C, hijm! h16¼�h34¼ h and �mn!�33¼

�11¼�. In Equations (10) and (11), the mechanical displacement component U¼U2
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is directed along the x2-axis (see Figure 1):

U2,4 ¼ U0
2,4 exp jk n1x1 þ n3x3 � Vpht

� �� �
, ð12Þ

where the phase velocity Vph is defined by Vph¼!/k (k is the wavenumber in the
direction of wave propagation.) Note that the directional cosines in Equation (12)
are defined as follows: n1� 1, n2� 0 and n3¼ n3.

Coupled Equations (8) and (9) can be also written in a tensor form. In this form,
the GL-components of the tensor in the Green–Christoffel equation are written as
follows: (GLsw� �sw�Vph)Us¼ 0 [6,34] where s and w run from 1 to 4, �sw is the
Kronecker delta for s5 4 and w5 4, �44¼ 0, Us¼ {U1,U2,U3, }. In the simplified
case of Equation (10) and (11), the equations of motion can be written in the well-
known tensor form, using the corresponding components of the GL-tensor: GL22 ¼

Cm, GL24 ¼ GL42 ¼ hðm� 2Þ and GL44 ¼ ��m with m¼ 1þ n23. Therefore, the
following system of two homogeneous equations for pure SH-waves can be written as:

GL22 � CðVph=Vt4Þ
2 GL24

GL42 GL44

 !
U0

2

 0

� �
¼

0

0

� �
, ð13Þ

where Vt4¼ (C44/�)
1/2. Setting the determinant of the coefficient matrix in Equation

(13) equal to zero, a suitable phase velocity Vph satisfying the mechanical and
magnetic boundary conditions discussed in the following section can be determined.
Once Vph is determined, non-trivial functions U0

2(Vph) and �0(Vph) can also be
obtained to satisfy  0 ¼ GL42 and U0

2 ¼ �GL44. It is worth noting that for the
surface Bleustein–Gulyaev waves for transversely-isotropic piezomagnetics, the GL24

and GL42 components are written as follows: GL24 ¼ GL42 ¼ hm.
Expanding the determinant of the coefficient matrix in Equation (13), one can

obtain the following quadratic equation:

1þ K2
m

� �
m2 �Dmþ 4K2

m ¼ 0, ð14Þ

with

D ¼
Vph

Vt4

� �2

þ 4K2
m: ð15Þ

Two polynomial roots m(1,2) of Equation (14) can be written as follows

m 1,2ð Þ ¼
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 16K2

m 1þ K2
m

� �q
2 1þ K2

m

� � : ð16Þ

Therefore, four polynomial roots (eigenvalues) of Equation (13) as functions of the
appropriate phase velocity Vph are:

n
1,2,3,4ð Þ

3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þm 1,2ð Þ

p
: ð17Þ

For each eigenvalue n
ð pÞ
3 , the corresponding eigenvector is also obtained in the

following form: (U
ð pÞ
2 , (p)) where p¼ 1, 2, 3, 4. In Equations (14)–(16), the coefficient

K2
m is called the coefficient of the magnetomechanical coupling (CMMC):

K2
m ¼ h2= C�ð Þ: ð18Þ

492 A.A. Zakharenko

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

B
io

ph
ys

ic
s 

SB
 R

A
S]

 a
t 1

9:
52

 1
8 

N
ov

em
be

r 
20

12
 



From Equation (17), it can be inferred that complex roots may occur if m(1,2)5 1.

This fulfills when the Vph is lower than some velocity VaKm obtained by solving the

following expression from Equation (16): D2
� 16K2

m(1þK2
m)¼ 0 where VaKm is

defined by

VaKm ¼ aKmVt4, ð19Þ

with

aKm ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Km 1þ K2

m

� �1=2
�K2

m

q
: ð20Þ

Note that the speed Vtm of the bulk SH-wave is given by the following well-known

formula:

Vtm ¼ Vt4 1þ K2
m

� �1=2
: ð21Þ

Indeed, only complex polynomial roots of Equation (17) exist when Vph5VaKm.

Following [5,6], within the phase velocity interval such that Vtm4Vph4VaKm only

imaginary roots of Equation (17) can exist for a small value of the CMMC K2
m5 1/3,

but all polynomial roots of Equation (17) become real for a large value of K2
m4 1/3.

It is noted that in order to ensure wave decaying behavior away from the surface or

interface, only complex or imaginary roots with negative imaginary parts are chosen.

This corresponds to the negative values of the x3-axis of the work coordinate system

{x1, x2¼ x02, x3} shown in Figure 1.
For free space, Laplace’s equation of type D ¼ 0 is written in the following form:

(k21þ k23) 0¼ 0 where �0 is the magnetic constant for a vacuum. The magnetic

potential for the free space is then represented by  0¼F(0)exp(�k1x3)�

exp[j(k1x1�!t)] where k14 0, implying that the potential  0 must decrease with

increase in x34 0 (see Figure 1).

3. Mechanical and magnetic boundary conditions

The mechanical and magnetic boundary conditions of a studied piezomagnetics

which occupies the half-space x35 0 (see Figure 1) must be satisfied. It is often

assumed that the magnetic boundary condition is either magnetically closed (B3¼ 0)

or magnetically open ( ¼ 0) surface at x3¼ 0. The realization of the magnetic

boundary conditions is described in [3]. The mechanical boundary condition for the

problem in question is �32¼ 0 at x3¼ 0, where

�32 ¼ F ð1Þ Ck
1ð Þ
3 U

1ð Þ
2 þ hk

1ð Þ
3  

1ð Þ
h i

þ F 2ð Þ Ck
2ð Þ
3 U

2ð Þ
2 þ hk

2ð Þ
3  

2ð Þ
h i

ð22Þ

is the normal stress component. In addition, the magnetic flux and the magnetic

potential are expressed, respectively, as follows:

B3 ¼ F 1ð Þ hk
1ð Þ
3 U

1ð Þ
2 � �k

1ð Þ
3  

1ð Þ
h i

þ F 2ð Þ hk
2ð Þ
3 U

2ð Þ
2 � �k

2ð Þ
3  

2ð Þ
h i

, ð23Þ

B f
3 ¼ �F

0ð Þ f
0jk1�0; ð24Þ
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and

 ¼ F 2ð Þ 2ð Þ þ F 2ð Þ 2ð Þ, ð25Þ

 f ¼ F 0ð Þ f
0, ð26Þ

where a quantity with the superscript f specifies the one corresponding to the free

space.
For the mechanically free and magnetically closed surface, using Equations

(23)–(26), one gets the following two homogeneous equations:

Ck
1ð Þ
3 U

1ð Þ
2 þ hk

1ð Þ
3  

1ð Þ Ck
2ð Þ
3 U

2ð Þ
2 þ hk

2ð Þ
3  

2ð Þ

hk
1ð Þ
3 U

1ð Þ
2 � ð�k

1ð Þ
3 � j�0k1Þ 

1ð Þ hk
2ð Þ
3 U

2ð Þ
2 � ð�k

2ð Þ
3 � j�0k1Þ 

2ð Þ

 !
F ð1Þ

F ð2Þ

 !
¼ 0:

ð27Þ

In contrast, for the mechanically free and magnetically open surface ( ¼ 0), the

above-derived equation is replaced by

Ck
1ð Þ
3 U

1ð Þ
2 þ hk

1ð Þ
3  

1ð Þ Ck
2ð Þ
3 U

2ð Þ
2 þ hk

2ð Þ
3  

2ð Þ

 1ð Þ  2ð Þ

 !
F ð1Þ

F ð2Þ

 !
¼ 0: ð28Þ

The complete mechanical displacement U�
2 and magnetic potential  �

¼U�
4 can be

expressed in the plane wave form as follows:

U�
2,4 ¼

X
p¼1,2

F pð ÞU
0 pð Þ
2,4 exp jk n1x1 þ n

pð Þ
3 x3 � Vpht

	 
h i
: ð29Þ

For Equations (27) and (28), the corresponding weight functions F(1) and F(2) can be

also found. It is very interesting that in the case of direction [101] of wave

propagation in the cubic materials, two equal eigenvalues n
ð1Þ
3 ¼ n

ð2Þ
3 can exist for the

phase velocity Vph¼VaKm. The equal eigenvalues result in the same eigenvectors

(U
0ð1Þ
2 ,�0ð1Þ) and (U

0ð2Þ
2 ,�0ð2Þ) and hence F ð1Þ ¼ �F ð2Þ. It is obvious that for this case

the weight factors F ð1Þ ¼ �F ð2Þ will zero the values of U�
2 and  �

¼U�
4 in Equation

(29). Therefore, it is possible to state that one copes here with a ‘latent’ characteristic

in Equation (29) for Vph¼VaKm because such ‘latent SAW’ will have zero

penetration depth due to U�
2 ¼ 

�
¼ 0. On the other hand, unequal eigenvalues n

ð1Þ
3

and n
ð2Þ
3 result in different eigenvectors (U

0ð1Þ
2 ,�0ð1Þ) and (U

0ð2Þ
2 ,�0ð2Þ) and hence non-

zero U�
2 and  �

¼U�
4 in Equation (29). For the case of U�

2 ¼ 
�
¼ 0, it is thought

that the ‘latent SAW’ with Vph¼VaKm for the case of K2
m5 1/3 must be

experimentally verified because the ultrasonic surface Zakharenko waves are

found slightly below the velocity VaKm for the case of K2
m4 1/3. Therefore, it is

possible here to describe an instability problem for both velocities Vtm and VaKm

leading to SAW propagation along the crystal surface. Also, it is possible to mention

the fact that some elements of crystal symmetry (screw axis or glide reflection) can be

broken near the surface. It is also noted that the solution VaKm does not exist when

the surface Bleustein–Gulyaev waves are studied in the transversely-isotropic

piezomagnetics. This is an additional significant difference for finding the BG-

waves in the transversely-isotropic piezomagnetics and the USZWs in cubic
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piezomagnetics. However, for the case of  ¼ 0, the USZW velocity coincides with

the BG-wave velocity.

4. Material properties of cubic piezomagnetics

The material constants of some cubic piezomagnetics of ceaseless interest in

utilization in various technical devices are listed in Table 1. In general, the elastic

compliances Sij, piezomagnetic constants q (m/A), and constant stress magnetic

permeability �� are given in almost all works. Notwithstanding, Table 1 lists the

elastic stiffness constant C44, piezomagnetic coefficient h16 (Tesla), and constant

strain magnetic permeability �11. According to [31,32], the elastic stiffness constant

C44 and the compliance S44 are related by C44¼ 1/S44 for all cubic and hexagonal

classes. The piezomagnetic coefficient h16¼ h can be calculated with the following

formula, using Equation (18): h ¼ Km

ffiffiffiffiffiffiffi
C�
p

. Also, the magnetic permeability �� at

the constant stress and the constant strain permeability �� are related by �� ¼
��ð1� K2

mÞ. It is emphasized that this expression is only valid for linear systems and

significant corrections are necessary in order to extend this formula to the full

nonlinear regime.
The elastic stiffness constants C44 and the mass densities � for Ni were borrowed

from [35]. C44 for Alfenol is written following [36,37]. The piezomagnetic and

magnetic properties of Ni, Alfenol, Terfenol-D(1), and Ferroxcube 7A1 listed in

Table 1 were borrowed from [21,38,39]. The mass densities � for Terfenol-D(1) and

Metglas 2605 are also listed in [14]. The static coefficients of magnetomechanical

coupling (CMMC) K2
m for Ni, Alfenol, Terfenol-D(1), Ferroxcube 7A1, and Metglas

2605 were also reported in [39–42]. It is also noticed that the piezomagnetic

coefficient for Metglas (FeBSiC) discussed in [43] is several times smaller than that

given in [39]. The material properties of Terfenol-D(2) and Terfenol-D(3) read

according to [44], which demonstrated a set of different material constants for

Terfenol-D. Different material properties of Terfenol-D(2) and Terfenol-D(3) are

chosen, which, respectively, correspond to a small value of K2
m and a very large value

of K2
m even for Terfenol-D. Note that piezomagnetics Metglas and Terfenol-D are

roughly equivalent to piezoelectrics PVDF and PZT. It is also noted that

piezomagnetics Ni and Alfenol are roughly equivalent to piezoelectrics quartz.
Also, the elastic stiffness C44, magnetic permeability �11, and mass density � are

used the same as those for nickel ferrite NiO 	Fe2O3 (NiFe2O4) and zinc-doped nickel

ferrite (NiO)0.8(ZnO)0.2Fe2O3 (Ni0.8Zn0.2Fe2O4); see [14,45–47]. However, the

piezomagnetic coefficient for NiFe2O4 is 20% to 30% smaller than that for zinc-

doped nickel ferrite. These material constants give very small values of K2
m for both

ferrites. Like cobalt ferrite, nickel ferrite is an alternative piezomagnetic material,

which exhibits nearly ideal interface coupling [13]. Also, the magnetoelectric voltage

coefficient of NiFe2O4 is increased by a factor of 1.5 for 20% substitution of Ni by

Zn. In [48,49], the principal motivation was to investigate the overall coupled

magnetic–dielectric properties of simple particulate NiFe2O4/PZT composite

ceramics. Yttrium-iron garnet (Y3Fe5O12 or YIG [45,50]) also possesses a small

value of K2
m. It is worth noting that large magnetoelectric coefficients have been

observed for YIG [13].
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5. Results of calculations and discussion

Table 2 lists the SH-SAW characteristics for the cubic piezomagnetic monocrystals.
First of all, the important characteristic such as the velocity VaKm is calculated for the

cubic crystals because the true SH-SAW velocity, namely the USZW velocity for

piezomagnetics with K2
m4 1/3 is computed just below the VaKm, but not just below

the velocity Vtm of the bulk SH-wave. It is thought that the third Terfenol-D in the

table is a good example for the case of K2
m4 1/3, because the USZW velocity VUSZWc

is only� 0.25m/s slower that the VaKm but several hundred meters per second slower
than the Vtm. Notwithstanding, Terfenol-D(3) with K2

m� 2.32 has 1% smaller value

of K2 in the table seventh column compared with Terfenol-D(1) with K2
m� 0.56. This

demonstrates a complicated dependence of the USZW velocity VUSZWc on the value

of K2
m. It is necessary to mention the well-known opinion in the research community

such that K2
m5 1 must occur for a right set of material constants. However,

Terfenol-D(3) with K2
m� 2.32 is a good example material for comparison with

Terfenol-D(1) with K2
m� 0.56 to indicate that Terfenol-D(1) is more preferable. It is

also noted that the difference for Terfenol-D(1) is approximately 9m/s between the
velocities VUSZWc and VaKm and is more than 7m/s between the velocities VBGc and

Vtm. This manifests that the USZW velocity in some apt cubic piezomagnetics can be

significantly smaller than the VaKm. Also, it is thought that the value of
(Vtm�VBGc)� 7m/s for Terfenol-D(1) represents a good present for experimental-

ists. Such material like Terfenol-D(1) allows one to have an attempt to find an

answer to the following question: what is the surface BG-wave, an instability of the
bulk SH-wave or the SH-SAW and SH-BAW are independent in the transversely-

isotropic piezomagnetics? For this purpose, it is noted that the improved optical
method for measurements of both the phase and group velocities described in [51]

allows one to measure the phase velocity with an accuracy �2m/s. Also, an

interesting result given in Table 2 was obtained for Metglas with K2
m4 1/3. Indeed,

these piezomagnetics can be used as matrices to form piezoelectromagnetics. It is

possible that the reader is already familiar with recent book [52] by the author

published in 2011 concerning the wave propagation problem in proposed cubic
piezoelectromagnetics.

For piezomagnetics Ni and Alfenol with K2
m5 1/3, the USZW velocity VUSZWc

also significantly differs from the surface BG-wave velocity VBGc calculated with the
well-known formula given in the title of Table 2. According to the last two columns

of the table, the difference between the values of (Vtm�VUSZWc) and (Vtm�VBGc) is

observed already in the first non-zero digit after the decimal point, and the first value
for Alfenol is approximately 1.5 times larger than the second. However, for the

piezomagnetics NiFe2O4, Ni0.8Zn0.2Fe2O4, and YIG with a very small values of

K2
m
 1/3 in Table 2, the values of (Vtm�VUSZWc) and (Vtm�VBGc) differ from each

other in the second non-zero digit after the decimal point.
It is thought that it is indispensable to graphically demonstrate SH-SAW

solutions for both cases of K2
m5 1/3 and K2

m4 1/3. Figure 2 shows the behavior of
the boundary-condition determinant (BCD2) for Alfenol with K2

m5 1/3; see Table 1.

Indeed, the solution is found just below the velocity Vtm of the bulk SH-wave.
On the other hand, Figure 3 shows the BCD2 behavior for such well-known

metal as Terfenol-D(1) with K2
m4 1/3. This is nearly ideal example because the case

can demonstrate solutions of the velocities Vtm, VUSZWc, and VUSZWo situated near
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each other. It is clearly seen in Figure 3 that linear dependencies of the BCD2 on the
Vph occur below the velocity VaKm; see the solid and dotted lines in the figure.

Figures 4 and 5 show the dependence of the eigenvalues and eigenvector
components for Terfenol-D(1) on the Vph in the vicinity of the velocity VaKm.

It is thought that any knowledge of ultrasonic characteristics can be useful for
choice of suitable materials (metals) for various smart devices in the microwave
technology. Also there are many nondestructive techniques for some suitable
characterizations of smart devices and they are continuously developed and
improved. For instance, Potter and Dixon [53] demonstrated a comparison of

Vtm

D
et

×
10

–4

VaKm

VUSZWc

–2

–1

1000 1040 1080 1120
Phase velocity, m/s

0

1

2

VUSZWo

Re
Im

Im

Figure 3. The behavior of the boundary-condition determinants (BCD2) for Terfenol-D(1)
with K2

m4 1/3. The dotted lines are for the BCD2 behavior in the case of  ¼ 0. Three
solutions for Vtm, VUSZWc, and VUSZWo¼VBGo (see also Table 2) are demonstrated.

VUSZWc

-8

-4

4119.31 4119.32
Phase velocity, m/s

0

4

8

D
et

×
10

–3

Re

Im

Figure 2. The behavior of the boundary-condition determinant (BCD2) for Alfenol with
K2

m5 1/3. The solution for the VUSZWc (see also Table 2) is demonstrated.
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Lamb and shear wave techniques for the ultrasonic evaluation of the crystallographic
texture of steel metals. Note that metals can frequently possess crystallographic cubic
structure. For the shear wave technique, polarized shear waves through thickness
mode were used. This can allow the determination of additional material parameters
such as the material thickness. Also, EMATs can be used for ultrasonic detection
and ultrasonic generation of both types of waves. Through-thickness shear waves
can be generated by driving an EMAT with a broadband pulse of peak frequency
�4.5MHz [53].

Phase velocity, m/s

Re(n3
(1))

Re(n3
(2))

Im(n3
(1))=Im(n3

(2)) 

n3

1083.21083
–0.5

1083.1

0

0.5

Figure 4. The dependence of the eigenvalues n
ð1Þ
3 and n

ð2Þ
3 on the phase velocity Vph for

Terfenol-D(1) near the VaKm (see also Table 2).

Figure 5. The dependence of the eigenvectors (U0ð1Þ
2 , 0(1)) for nð1Þ3 and (U0ð2Þ

2 , 0(2)) for nð2Þ3 on
the phase velocity Vph for Terfenol-D(1) near the VaKm (see also Table 2).
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Finally, it is possible to discuss SAW devices and fabrication techniques for them,
for instance, see the works cited in [54–56]. The patents [54] contain further
references on the subject and describe devices disclosed for controlling high
frequency (optic or electric) signals by the generation of SH-SAWs, for instance, the
surface BG-wave. The number of devices requiring frequency control has grown in
number and complexity. Also there is a commensurate growth of requirements for
controlling higher frequencies desirable for microwave generators and high defini-
tion television. The SAW devices [54] can use certain bulk or surface-modified
crystalline substrates which have a surface with a receiving area and an input
interdigital transducer (IDT) deposited on the signal receiving area of the substrate
surface. The used materials can support the BG wave propagation with the phase
velocities �4000m/s and �5000m/s. It is well-known that the BG wave is non-
dispersive, as well as the SH-SAWs studied in this work. This means that the phase
velocity is equal to the group velocity and defined by the formula written above after
Equation (12): vph¼!/k¼ 	
 where !¼ 2�	 and k¼ 2�/
, 	 and 
 are the linear
frequency and wavelength, respectively. SH-SAWs were generated and the trans-
mission data for the device were also monitored in [54] using a commercially
available network analyzer. A large transmission peak center was observed at
�252MHz for the used wavelength of �16 mm. This gives �4000m/s for the
calculated velocity of this acoustic wave mode which agrees with the theoretically
calculated value. The transmission data [54] also showed that other acoustic wave
modes were simultaneously generated. One of them (peak center at 360MHz)
possessed higher speed than SAW and can relate to a kind of bulk acoustic wave.
The patents [54] also describe an example of the SAW generation having 
/2 (i.e. 2	)
of the SAW generated by utilizing a hydrothermally-grown z-cut KTP crystal having
ferroelectric domains reversed under the IDT. Transmission data of the resulting
device shows a large transmission peak centers at �504MHz for the wavelength of
�8 mm. This also gives the SAW propagation speed of �4000m/s. This illustrates
that one can obtain double the frequency for the same IDT design by using domain
reversal on the area of the KTP substrate to which the input IDT is applied. This
exemplifies that the frequency can be increased by using a suitable wavelength to
keep the same propagation speed for the non-dispersive SH-SAWs. Therefore, it is
usual to give the dependencies on the phase velocity Vph in Figures 2–5 (see also
Table 2) because the frequency can depend on experimental patterns. Using the
calculated data listed in Table 2, one can state that for higher frequencies, it is
possible that all cubic material, but Terfenol-D, can be suitable because they have the
speed �4000m/s or higher. It is thought that the most promising material of them is
Metglas because it can possess the largest coupling coefficient.

6. Conclusion

This report demonstrates results concerning characteristics of the shear-horizontal
surface acoustic waves (SH-SAWs) propagating in direction [101] in cubic
piezomagnetics. The cubic piezomagnetics are well-known and used in smart
materials during the last half-century, and, therefore, promising cubic piezomagnetic
materials were studied. Some of the studied cubic piezomagnetics can possess the
coefficient of the magnetomechanical coupling K2

m5 1/3 and some of them such as
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Terfenol-D and Metglas can have K2
m4 1/3. Materials with K2

m4 1/3 demonstrate
the SH-SAW propagation with the phase velocity slightly below the velocity VaKm

where the value of VaKm can be significantly smaller than that of Vtm for K2
m! 1. It is

thought that this knowledge can be useful for choice of likely materials for various
smart devices in microwave technology. Also, cubic piezomagnetics or cubic
piezoelectromagnetic composite materials can be exploited instead of hexagonal
(6mm) materials [57].
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