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PREFACE  

 

This book addresses to theoretical investigations of shear-horizontal surface acoustic 

waves (SH-SAWs) propagating in composites of class 6 mm which can possess 

piezoelectric and piezomagnetic phases. Applying different electrical and magnetic 

boundary conditions in the theoretical treatments, wave characteristics of seven new 

SH-SAWs are obtained in explicit forms. It was found that the new SH-SAWs can 

have both piezoelectric and piezomagnetic properties. Also, the analytically obtained 

exact formulae for the new SH-SAW velocities can demonstrate dependencies on the 

squared speed of light in a vacuum. It was also found that the new SH-SAWs can be 

coupled with the surface Bleustein-Gulyaev waves and bulk acoustic waves for the 

piezoelectric phase and the piezomagnetic phase. Calculations of the new SH-SAW 

characteristics were performed for sample two-phase composites BaTiO3-

(CoO)Fe2O3. It is thought that the obtained results can be useful for complete 

understanding of wave processes in two-phase and laminated composite materials in 

acoustoelectronics and acoustooptics. It is also thought that the theoretical results can 

be utilized in fabricating smart materials in the microwave technology.  

 

PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 

75.20.En, 75.80.+q, 81.70.Cv  

 

Keywords: piezoelectromagnetics, magnetoelectric effect, surface Bleustein-Gulyaev 

waves, surface Melkumyan waves, new surface acoustic waves.  
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applications of the waves for signal processing (filters, sensors, etc.) and the 

structural health monitoring. Note that one can financially support the research of the 

International Institute of Zakharenko Waves, using the following bank account: 
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States possesses the planets in the Solar System (but Earth) who sells surfaces of the 
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number of Star System in our Universe. It is thought that our Universe can 
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INTRODUCTION  

 

In the late 1960s, shear-horizontal surface acoustic waves (SH-SAWs) called the 

surface Bleustein-Gulyaev (BG) waves were discovered in transversely-isotropic 

piezoelectrics [1-2]. It is thought that a transversely-isotropic material of hexagonal 

class 6 mm is a good example to theoretically demonstrate characteristics of the 

surface BG-waves. Note that the surface BG-waves can propagate in direction 

perpendicular to the sixth-order symmetry axis of hexagonal crystals. However, the 

surface BG-waves can exist not only in the transversely-isotropic piezoelectrics, but 

also in the transversely-isotropic piezomagnetics. Note that the surface BG-wave 

velocity is well-known in the arena of physical acoustics of solids and is written in a 

relatively simple and explicit form as follows: VBG = Vte{1 – (Ke
2/[(1 + Ke

2)×(1 + 

ε11/ε0)])2}1/2 where Vte is the shear-horizontal bulk acoustic waves (SH-BAW) and Ke
2 

is called the coefficient of the electromechanical coupling (CEMC). The expression 

for the velocity VBG also couples the material characteristics of a piezoelectrics such 

as the dielectric permittivity coefficient ε11 with the same characteristics ε0 for a 

vacuum. Using the electrical boundary condition of the electrically closed surface, the 

value of ε11/ε0 vanishes and the BG-wave velocity is defined by the following 

simplified form: VBG = Vte{1 – [Ke
2/(1 + Ke

2)]2}1/2.  

Piezoelectric and piezomagnetic properties of anisotropic materials were studied 

in Ref. [3] by Al’shits and Lyubimov. Also, existence of surface waves in anisotropic 

elastic half-space with piezoelectric and piezomagnetic properties was theoretically 

investigated in work [4] by Alshits, Darinskii, and Lothe. According to Ref. [4], the 

piezomagnetic effect and the piezoelectric effect can be described in the same way. 

Therefore, the surface BG-wave velocities written above are also true for 

transversely-isotropic piezomagnetics, using the corresponding material 

characteristics for the piezomagnetic materials. Also, the recent review paper [5] by 

Gulyaev, Dikshtein, and Shavrov mentioned that dispersion relations for 

magnetoelastic SH-waves in ferromagnetics and antiferromagnetics can lead to the 
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surface BG-wave velocity. The more recent review paper [6] written by Gulyaev (the 

co-discoverer of the surface Bleustein-Gulyaev waves) in collaboration with 

Hickernell mentioned about impossibility of the existence of the surface BG-waves in 

cubic piezoelectrics. This means that the surface BG-waves cannot also exist in cubic 

piezomagnetics. However, shear-horizontal surface acoustic waves called the 

ultrasonic surface Zakharenko waves (USZWs) can exist in cubic piezoelectrics and 

cubic piezomagnetics. In 2007, Ref. [7] demonstrated the existence of the new SH-

SAWs called the USZWs in cubic piezoelectrics. Also, in Ref. [8] published in 2010, 

the USZW existence was demonstrated for such well-known cubic piezomagnetics as 

Galfenol, Terfenol-D, and CoFe2O4. Indeed, the wave characteristics of the surface 

BG-waves in the transversely-isotropic crystals and the USZWs in the cubic crystals 

can dramatically differ from each other.  

Also, some composite materials can possess both the piezoelectric and 

piezomagnetic effects, as well as the magnetoelectric (ME) effect. This is true for 

both the transversely-isotropic materials and materials with the cubic symmetry of 

class m3m. Over 300 experimental and theoretical works concerning investigations of 

the magnetoelectric (ME) effect in composites are reviewed in Ref. [9] by Fiebig. Ref. 

[10] by Schmid provides the tensor form in the Nye notation [11] of the 58 point 

groups permitting the linear magnetoelectric effect. Note that there occurs a 

continuous interest in the study of the magnetoelectric effect in composites for 

development of smart materials in the microwave technology. It is possible to 

mention several classical works [12-16] which originally studied composites and the 

ME-effect. Indeed, piezoelectrics and piezomagnetics can be bonded together to form 

composites that exhibit the ME-effect. As the result of the ME-effect, an electrical 

signal can be obtained from the piezoelectrics as a result of the application of a 

magnetic field to the piezomagnetics. On the other hand, the piezomagnetics can be 

magnetized because of the application of an electrical field to the piezoelectrics.  

Modern researches on the ME-effect in composites are cited in Refs. [17-31]. It 

is thought that the most popular composites are those in which hexagonal 

piezoelectrics BaTiO3 and hexagonal piezomagnetics CoFe2O4 are utilized, see some 
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works in Refs. [32-36]. However, a growing attention is also focused on composite 

structures consisting of piezomagnetics Terfenol-D and piezoelectrics PZT-5H [33]. 

Indeed, the concept of electro-magnetic composites has arisen in the last two decades. 

The electro-magnetic composite materials can exhibit field coupling that is not 

present in any of the monolithic constituent materials. Such materials can find 

broaden applications in ultrasonic imaging devices, sensors and actuators for system 

control, transducers, and many other emerging components. Also, there is a strong 

interest in theories that provide characteristics of such complex materials and can 

predict the coupled response of these “smart” composites and structures composed of 

them. Concerning recent theories, Li in Ref. [37] has studied the electromagneto-

acoustic surface Bleustein–Gulyaev wave. Also, Melkumyan in Ref. [38] has 

discovered new shear-horizontal elastic surface waves in transversely-isotropic 

magneto-electro-elastic materials, and Ref. [39] by Melkumyan describes new pure 

SH-SAWs guided by cuts in the materials. The following chapter addresses to 

constitutive relations for two-phase composite materials.  
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CHAPTER  I.  Coupled Governing Equations  

 

It is well-known that for a material with both the piezoelectric and 

piezomagnetic phases, the mechanical strain tensor τ, electrical field vector E, and 

magnetic field vector H [34, 40-42] are utilized as independent thermodynamic 

mechanical, electrical, and magnetic variables, respectively. Therefore, the 

thermodynamic potential G for a three-dimensional piezoelectromagnetic solid is 

written as the following function G = G(τ, E, H). As a result, the coupled constitutive 

relations for linearly-piezoelectromagnetic solids [43, 44] are given by:  

 

kkijkkijklijklij HhEeC −−= τσ     (1) 

kikkikklikli HEeD αετ ++=     (2) 

kikkikklikli HEhB ματ ++=     (3) 

 

where the indices i, j, k, and l run from 1 to 3. It is clearly seen in equations from (1) 

to (3) that such a piezomagnetic-piezoelectric composite possesses the elastic 

stiffness constants Cijkl, piezoelectric constants ekij, piezomagnetic coefficients hkij, 

dielectric permittivity coefficients εik, magnetic permeability coefficients μik, and 

electromagnetic constants αik.  

In equations from (1) to (3), σij and τkl are the stress and strain tensor components, 

respectively. The elastic strain tensor components τkl are expressed as the following 

dependence on the partial first derivatives of the mechanical displacement 

components Uk with respect to the real space components xl:  

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
k

l

l

k
kl x

U
x
U

2
1τ      (4) 

 

Di and Bi are the components of the electrical displacement and the magnetic 

induction (i.e. magnetic flux) in equations (2) and (3), respectively. Using the 
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electrical potential φ and the magnetic potential ψ in the quasi-static approximation, 

the components of the electrical field Ek and the magnetic field Hk in equations from 

(1) to (3) can be defined as follows:  

 

     
k

k x
E ϕ∂

−=       (5) 

     
k

k x
H ψ∂

−=      (6) 

 

Applying the Maxwell equations such as divD = 0 and divB = 0, the governing 

mechanical, electrostatic, and magnetostatic equilibriums read  
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It is finally noted that the material constants in equations from (1) to (3) are 

thermodynamically defined as follows:  
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In equation (10), the elastic stiffness constants Cijkl are defined at constant electrical 

and magnetic fields. The other material constants in equations from (11) to (15) are 

also defined at corresponding constant thermodynamic variables. According to the 

Voigt notation, Cijkl, ekij, hkij, εik, μik, and αik can be also written as 6×6, 3×6, 3×6, 3×3, 

3×3, and 3×3 matrices [45, 11, 46] which stand for the elastic, piezoelectric, 

piezomagnetic, dielectric, magnetic, and electromagnetic tensors, respectively. Using 

the definitions of the thermodynamic variables and material constants, it is possible to 

write equations of motion for such solids. That is the main purpose of the following 

chapter.  
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CHAPTER  II.  Equations of Motion  

 

Following the definitions given in the previous chapter, the equations of motion 

of an elastic medium can be written in the following form [47-49]:  

 

    2

2

t
U

x
i

j

ij

∂
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=
∂

∂
ρ

σ      (16) 

 

In expression (16), the right term at the factor ρ called the mass density of the 

medium represents the second partial derivative of the mechanical displacement 

components Ui with respect to time t. Also, the electrostatics and magnetostatics in 

the quasi-static approximation read:  
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The coupled equations of motion, namely equations from (16) to (18) for a two-phase 

solid which possesses both the piezoelectric and piezomagnetic effects, can be than 

written with the material constants for a piezoelectromagnetic medium in the 

following form, using equations from (1) to (3):  
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Coupled equations from (19) to (21) represent homogeneous partial differential 

equations of the second order. It is well-known that solutions for such equations can 

be represented in the following plane wave form [49, 50]:  

 

( )[ ]txkxkxkUU ii ω−++= 332211
0 jexp    (22) 

( )[ ]txkxkxk ωϕϕ −++= 332211
0 jexp    (23) 

( )[ ]txkxkxk ωψψ −++= 332211
0 jexp    (24) 

 

where the index i runs from 1 to 3. In equations from (22) to (24), Ui
0, φ0, and ψ0 are 

the initial amplitudes. The imaginary unity is defined as j = (–1)1/2 and ω is the 

angular frequency defined as ω = 2πν where ν is the linear frequency. {k1, k2, k3} = 

k{n1, n2, n3} are the components of the wavevector K directed towards the wave 

propagation (see figure 1) and {n1, n2, n3} are the directional cosines. Note that the 

wavenumber k in the direction of wave propagation is defined as k = 2π/λ where λ is 

the wavelength.  

 

 

Figure 1. The direction of SH-SAW propagation in a half-space of class 6 mm which 

possesses the piezoelectric and piezomagnetic effects. The SH-SAW propagation is 

directed along the wavevector K and perpendicular to the vector N of surface normal. 

Also, the vectors K and N are directed perpendicular to the sixth-order symmetry axis 

of the crystal directed along the x2-axis of the rectangular co-ordinate system  

 

Note that equations from (19) to (21) are the coupled equations of motion 

written in the common form. However, these equations can be readily written in the 

x20 

x3

x1

K 
N

monocrystal 
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following simplified form, leaving only equations for waves with the anti-plane 

polarization and non-zero components of the material tensors for the studied direction 

of wave propagation (see figure 1):  
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In equations from (25) to (27), the mechanical displacement component U2 is directed 

along the x2-axis directed parallel to the sixth-order symmetry axis of a two-phase 

crystal of class 6 mm, see figure 1. Stating for simplicity that the wavevector K is 

directed along the x1-axis, the directional cosines are defined as follows: n1 = 1, n2 = 0 

and n3 ≡ n3. As the result, the solutions in the plane wave form are than written for the 

studied case as follows:  

 

( )[ ]tVxnxnkUU ph−+= 3311
0

5,4,25,4,2 jexp     (28) 

 

where the phase velocity is defined as Vph = ω/k. In equation (28), the electrical 

potential φ and the magnetic potential ψ are written as the fourth and fifth 

displacement components U4 and U5, respectively, which depend on the 

corresponding initial amplitudes U4
0 = φ0 and U5

0 = ψ0. For the studied complicated 

case of two-phase materials, it is possible to further simplify the theoretical 

description of the problem because C44 = C66 = C, e16 = e34 = e, h16 = h34 = h, ε11 = ε33 

= ε, μ11 = μ33 = μ, and α11 = α33 = α. The material constants are listed in table 1 for the 

case when the shear-horizontal acoustic waves are coupled with both the electrical 

and magnetic potentials. The following chapter provides the useful tensor form of the 

equation of motion and the problem of finding of eigenvalues and eigenvectors.  
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Table 1. The material characteristics of the piezoelectromagnetic composites 

consisting of BaTiO3-CoFe2O4 of class 6 mm. Following Refs. [44, 53], the material 

constants are given as percentage volume fraction (VF) of BaTiO3 in composites 

consisting of BaTiO3-CoFe2O4. Note that the magnetic permeability of a vacuum is μ0 

= 4π×10–7 [H × m–1] ~ 12.566371×10–7 [(V×s) × (A×m)–1]; 10–12 Ns/(VC) = ps/m, F = 

C/V, and T = Tesla = N×(A×m)–1. The mass density is assumed the same ρ = 5730 

[kg/m3] and j = (– 1)1/2  
Composite VF 0% 20% 40% 60% 80% 100% 

C, 1010 [N/m2] 4.53 4.50 4.50 4.50 5.00 4.30 

e, [C/m2] 0 0.1 0.2 0.3 0.4 11.6 

h, [T] 560 340 220 180 80 0 

ε, 10–10 [F/m] 0.8 3.3 8.0 9.0 10.0 112.0 

μ, 10–6 [N/A2] – 590 – 390 – 250 – 150 – 80 5.0 

α, 10–12 [Ns/VC] 0 2.8 4.8 6.0 6.8 0 

Ke
2 0 0.00067340067 0.001111111111 0.00222222222 0.003200000 0.279401993 

Km
2 -0.011733453 -0.00658689459 -0.004302222224 -0.00480000000 -0.001600000 0 

Kem
2 -0.011733453 -0.00591346104 -0.003191064178 -0.00257767111 0.001600109 0.279401993 

VEM, 106 [m/s] 4.602873089j 2.78747336669j 2.23606797750j 2.7216552697j 3.535533906j 4.225771274 

VEMα, 106 [m/s] 4.602873089j 2.78747336660j 2.23606797737j 2.7216552694j 3.535533905j 4.225771274 

Vα, 1012 [m/s] - 0.357142857143 0.208333333333 0.16666666667 0.147058824 - 

VEM0α, 106 [m/s] 4.607782748j 2.79197507190j 2.24170910463j 2.7331278472j 3.563633399j 3.777639469 

VE0Mα, 106 [m/s] 4.367526034j 2.75081502726j 2.22379590861j 2.70836572424j 3.519985271j 4.224101952 
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CHAPTER  III.  The Tensor Form of Equations of Motion  

 

Using material constants, it is thought that a tensor form of the equation of 

motion is more convenient for further theoretical analysis. Substituting the 

mechanical displacement components Ui, the electrical potential φ = U4, and the 

magnetic potential ψ = U5 in equations from (22), (23), and (24) into equations from 

(19) to (21), the equations of motion in the common form can be written in the well-

known tensor form [51]:  

 

( ) 0GL 0 =− sphswsw UVρδ     (29) 

 

in which GLsw are the tensor components in the modified Green-Christoffel equation. 

In the Green-Christoffel equation, s and w run from 1 to 5, δsw is the Kronecker delta 

for s < 4 and w < 4, δ44 = 0 and δ55 = 0. The eigenvector components are defined as 

follows 00
5

00
4

0
3

00
2

0
1

0 ,,,, ψϕ ==== UUUUUUU s  which correspond to each eigenvalue k3. 

Note that the Green-Christoffel equation can split into two independent sets of 

equations in many highly-symmetric directions of wave propagation. The main 

purpose of this book is to theoretically investigate shear-horizontal surface acoustic 

waves (SH-SAWs) which correspond to the one of the sets of independent equations. 

In the case of SH-SAWs, the eigenvector 000 ,, ψϕU  corresponds to an eigenvalue k3 

which represents an imaginary number (or a complex number in the common case). 

Also, it is assumed that k3 < 0 to satisfy wave damping towards the depth of a 

monocrystal. This is the surface wave condition for the co-ordinate system shown in 

figure 1.  

Using the material constants C, e, h, ε, μ, and α defined in the previous chapter, 

the GL-components which correspond to equations from (25) to (27) are as follows:  

 

)1(GL 2
322 nC +=        
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)1(GLGL 2
34224 ne +==       

)1(GLGL 2
35225 nh +==       

)1(GL 2
344 n+−= ε        

)1(GLGL 2
35445 n+−== α       

)1(GL 2
355 n+−= μ        

 

in which n3 = k3/k.  

Therefore, the following system of three homogeneous equations for the pure 

SH-wave reads:  
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where 2
31 nm += .  

It is obvious that the determinant of the coefficient matrix in equations (30) can 

be written as  

 

0

2

=
−−
−−

−
××

μα
αε

ρ

h
e

hmemVCm
mm

ph

    (31) 

 

Equation (31) is served for determination of six normalized eigenvalues n3. It is 

clearly seen in equation (31) that the first and second factors readily give the 

following four solutions:  

 

 j)4,3(
3

)2,1(
3 ±== nn      (32) 

 

Expending the determinant of the coefficient matrix in equation (31), the rest two 

eigenvalues are determined from the following equation:  
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( ) ( ) 01 2
4

2 =−+ tphem VVmK     (33) 

 

in which  

( )2

22
2 2

αεμ
αεμ

−
−+

=
C

ehheKem     (34) 

 

is called the coefficient of the magnetoelectromechanical coupling (CMEMC). Also, 

the velocity Vt4 is determined as follows:  

 

ρCVt =4      (35) 

 

which corresponds to the speed of the shear-horizontal bulk acoustic wave (SH-BAW) 

in the case of zero value of the CMEMC. Therefore, the rest two eigenvalues can be 

expressed as follows:  

 

( )2)6,5(
3 1j temph VVn −±=     (36) 

 

where the velocity Vtem is the speed of the SH-BAW coupled with both the electrical 

potential and the magnetic potential:  

 

  ( ) 2/12
4 1 emttem KVV +=      (37) 

 

Setting the material constants e, h, ε, μ, and α equal to zero in expression (34), 

the CMEMC reduces to the well-known coefficient of the electromechanical coupling 

(CEMC) for a purely piezoelectric material defined as follows:  

 

C
eKe ε

2
2 =      (38) 
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Using e = 0 and α = 0 in expression (34), the CMEMC also reduces to the coefficient 

of the magnetomechanical coupling (CMMC) for a purely piezomagnetic crystal 

defined as follows:  

 

C
hKm μ

2
2 =      (39) 

 

Note that for the problem of SH-SAW, the suitable three eigenvalues in 

equations (32) and (36) should have a negative sign. The corresponding eigenvectors 
000 ,, ψϕU  can be determined by solving the system of three equations (30). Indeed, 

it is thought that it is natural to define the eigenvector component U0 from the first 

equation in equations (30), namely  

 

    000 ψϕ
a

hm
a

emU −−=     (40) 

 

In equation (40), the parameter a is expressed as follows:  

 
2
phVmCa ρ−=     (41) 

 

Excluding the component U0 from the second and third equations in equations 

(30), one can obtain the following equations to determine a coupling between the 

components φ0 and ψ0:  
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It is apparent that the components φ0 and ψ0 can be determined from equation 

(42). In addition, the components φ0 and ψ0 can be also determined from equation 

(43). Using equation (42), one can check that the components φ0 and ψ0 are defined 

as follows:  

 

αϕ +=
a

meh0      (44) 

εψ −−=
a

me2
0     (45) 

 

For this case, it is possible to write the following useful expressions which can 

significantly simplify further theoretical investigations:  

 

0)3()1( == mm     (46) 

j)3(
3

)1(
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0)3(0)1(0 ==UU     (48) 

αϕϕ == )3(0)1(0     (49) 
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( )2)5(
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bmn j1j )5()5(
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2
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emCK
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Also, the following equality is useful for calculations:  

 

εαψϕψϕ hehehe −=+=+ )5(0)5(0)3(0)3(0    (57) 
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Notwithstanding, in the second case it is possible to state that the components φ0 

and ψ0 can be also defined from equation (43) as follows:  

 

μϕ +=
a

mh2
0     (58) 

αψ −−=
a

meh0     (59) 

 

For the second set of the eigenvector components in equations (58) and (59), it is also 

possible to write the following useful expressions for the eigenvector components 
000 ,, ψϕU  which correspond to the eigenvalues in equations (47) and (52):  

 

0)3(0)1(0 ==UU     (60) 

μϕϕ == )3(0)1(0     (61) 
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2
)5(0

emCK
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μϕ +−= 2

2
)5(0

emCK
h     (64) 

αψ −= 2
)5(0

emCK
eh     (65) 

 

For this case, the equality in expression (57) is already written in the following useful 

form:  

 

αμψϕψϕ hehehe −=+=+ )5(0)5(0)3(0)3(0    (66) 

 

Notice that the first set of the eigenvector components couples ε and α, but the 

second set couples μ and α. It is also noticed that the second set of the eigenvector 
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components can lead to interesting results when it is used in calculations instead of 

the first set. This will be analytically demonstrated below.  

For the free space, the elastic constant of a vacuum is C0 = 0.001 Pa [52]. This 

value of C0 is thirteen orders smaller than that for a solid. Therefore, it is too 

negligible to account it in calculations. Also, the free space dielectric permittivity 

constant is ε0 = 10–7/(4πCL
2) = 8.854187817×10–12 [F/m] where CL = 2.99782458×108 

[m/s] is the speed of light in a vacuum. The Laplace equation of type Δφf = 0 and the 

electrical potential can be written as follows, respectively:  

 

     ( ) 00
2
3

2
1 =+ fkk ϕ      (67) 

( ) ( )[ ]txkjxkF E
f ωϕ −−= 1131

)0(
0 expexp    (68) 

 

Also, the free space magnetic permeability constant μ0 = 4π×10–7 [H/m] = 

12.5663706144×10–7 [H/m] must be used and Laplace’s equation of type Δψf = 0 is 

written in the following form:  

 

( ) 00
2
3

2
1 =+ fkk ψ     (69) 

 

The magnetic potential in a vacuum can be written as follows:  

 

( ) ( )[ ]txkjxkF M
f ωψ −−= 1131

)0(
0 expexp    (70) 

 

Note that the electrical and magnetic potentials in expressions (68) and (70) must 

decrease for k1 > 0 with increase in the coordinate x3 > 0 (see figure 1).  

For a solid piezoelectromagnetics, the complete mechanical displacement UΣ, 

complete electrical potential φΣ, and complete magnetic potential ψΣ can be written in 

the plane wave form as follows:  
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( )[ ]∑
=

Σ −+=
5,3,1
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311
)(0)( jexp

p
ph

ppp tVxnxnkF ϕϕ    (72) 

( )[ ]∑
=

Σ −+=
5,3,1

3
)(

311
)(0)( jexp

p
ph

ppp tVxnxnkF ψψ    (73) 

 

The weight factors F(1), F(3), and F(5) can be determined from equations in which 

suitable boundary conditions are accounted. The following chapter addresses to the 

presentation of realization of the mechanical boundary condition as well as possible 

electrical and magnetic boundary conditions.  
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CHAPTER  IV.  Mechanical, Electrical, and Magnetic Boundary Conditions  

 

Indeed, it is expected that the mechanical, electrical, and magnetic boundary 

conditions of a studied piezoelectromagnetics of class 6 mm which occupies the half-

space x3 < 0 (see figure 1) must be satisfied. It is well-known that the electrical 

boundary conditions must satisfy the cases of the electrically closed surface (φ = 0) 

and electrically open surface (D3 = 0). The electrically closed surface can be realized 

by surface metallization. Also, the magnetic boundary conditions of the magnetically 

closed surface (B3 = 0) and magnetically open surface (ψ = 0) can occur. The 

realization of the mechanical, electrical, and magnetic boundary conditions is 

described in Ref. [4]. According to Ref. [4], the case of magnetically open surface 

can be realized when a crystal surface contacts with a ferromagnetic covering 

characterized by a relative magnetic susceptibility μr >> 1.  

For the mechanically free surface, the mechanical boundary condition for the 

normal component of the stress tensor σ32(x3 = 0) = 0 at the interface between the 

crystal surface and a vacuum reads:  
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   (74) 

 

where F1 = F(1), F2 = F(3), and F3 = F(5).  

The electrical boundary conditions at the interface are as follows:  

1e) continuity of the electrical displacement normal component D3 at the interface x3 

= 0, namely D3 = D3
f where  
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and the vacuum characteristics D3
f is  

 

    0103 j εϕ kFD f
E

f −=      (76) 

 

2e) continuity of the electrical potential φ at the interface, i.e. φ = φ f where  

 
)5(0

3
)3(0

2
)1(0

1 ϕϕϕϕ FFF ++=     (77) 

 

and the electrical potential φ f in a vacuum is  

 
f

E
f F 0ϕϕ =      (78) 

 

Also, the magnetic boundary conditions can be written as follows:  

1m) continuity of the magnetic flux normal component B3 at x3 = 0, namely B3 = B3
f 

where  
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   (79) 

 

and the value of B3
f for a vacuum is  

 

0103 j μψ kFB f
M

f −=      (80) 

 

2m) continuity of the magnetic potential ψ at x3 = 0, i.e. ψ = ψ f where  

 

   )5(0
3
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2

)1(0
1 ψψψψ FFF ++=     (81) 
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and the magnetic potential ψ f in a vacuum is  

 
f

M
f F 0ψψ =      (82) 

 

The following chapters study the influence of different electrical and magnetic 

boundary conditions. It is thought that the case of the electrically closed surface (φ = 

0) and the magnetically open surface (ψ = 0) is a common realization of the boundary 

conditions to commence the analysis.  
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CHAPTER  V.  The Case of σ32 = 0, φ = 0, and ψ = 0  

 

Using the mechanical boundary condition at the interface x3 = 0 (see figure 1) in 

the form of σ32 = 0 and the other conditions of φ = 0 and ψ = 0, three equations can be 

than written following equations (74), (77), and (81):  
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0)5(0
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0)5(0
3

)3(0 =+ ψψ FF       (85) 

 

where n3 = k3/k and F = F1 + F2 because two equal eigenvalues j)3(
3

)1(
3 −== nn  in 

equation (47) give equal eigenvectors. First of all, it is possible to use the first set of 

the eigenvector components and useful relations given in equations from (48) to (57). 

For this case, equations from (83) to (85) after some transformations can be written as 

follows:  

 

( ) ( )( ) 01 3
22 =+−+− FKhebCFCKhe emem εαεα    (86) 

( ) 03
222 =−− FCKeheFCKe emem αα     (87) 

( ) 03
222 =−+− FCKhheFCKh emem εε     (88) 

 

In equation (86), the factor b is defined by formula (52). It is clearly seen in equations 

from (86) to (88) that equations (87) and (88) are coupled with equation (86) through 

the factors at the weight function F. Therefore, by excluding F one can obtain the 

following simplified relation:  

 

( ) 01 22 =−+ emem KKb      (89) 
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Using formula (52) for b, the SH-SAW velocity VBGM in this case of the first set of 

the eigenvector components for the boundary conditions of the electrically closed 

surface (φ = 0) and the magnetically open surface (ψ = 0) is written as follows:  
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where the coefficient of the magnetoelectromechanical coupling (CMEMC) Kem
2 and 

the shear-horizontal bulk acoustic wave (SH-BAW) velocity Vtem are defined by 

formulae (34) and (37), respectively. Indeed, formula (90) looks like the well-known 

formula for the velocity VBGEC of surface Bleustein-Gulyaev (BG) wave [1, 2] 

propagating along the electrically closed surface (φ = 0) in a pure piezoelectrics. This 

formula for the surface BG-wave can be obtained from equation (90) by setting h = 0 

and α = 0 in Vtem and Kem
2 and reads:  

 
2/12

2

2

1
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−=
e

e
teBGEC K

KVV     (91) 

 

where the coefficient of the electromechanical coupling (CEMC) Ke
2 is defined by 

formula (38) and the SH-BAW velocity Vte in a pure piezoelectrics is as follows:  

 

( ) 2/12
4 1 ette KVV +=      (92) 

 

where the velocity Vt4 is defined in equation (35).  

Also, formula (90) looks like the well-known formula for the velocity VBGMO of 

surface BG-wave propagating along the magnetically open surface (ψ = 0) in a pure 

piezomagnetics. This formula can be obtained from equation (90) by setting e = 0 and 

α = 0 in Vtem and Kem
2. This results in the following formula:  
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where the coefficient of the magnetomechanical coupling (CMMC) Km
2 is defined by 

formula (39) and the SH-BAW velocity Vtm in a pure piezomagnetics is written as 

follows:  

 

( ) 2/12
4 1 mttm KVV +=      (94) 

 

The SH-SAW velocity VBGM in equation (90) was first obtained by Arman 

Melkumyan in his theoretical work [38, 29] published several years ago. Therefore, 

the SH-SAW propagating in a piezoelectromagnetics with the velocity VBGM is called 

the surface Bleustein-Gulyaev-Melkumyan (BGM) wave because formulae (91) and 

(93) for the surface BG-waves in a pure piezoelectrics or piezomagnetics can be 

obtained from formula (90), but not vice versa. Also, it is obvious that formula (91) 

can be readily transformed into the form of formula (93) by setting e → h and ε → μ, 

and vice versa.  

For the second set of the eigenvector components and useful relations given in 

equations from (60) to (66), one can also obtain the following simplified equations 

after several transformations applied to equations from (83) to (85):  

 

( ) ( )( ) 01 3
22 =+−+− FKhebCFCKhe emem αμαμ    (95) 

( ) 03
222 =−− FCKeehFCKe emem μμ     (96) 

( ) 03
222 =−+− FCKhehFCKh emem αα     (97) 

 

It is apparent that equations from (95) to (97) are also coupled like those in the case 

of equations from (86) to (88). Indeed, after a subtraction of equations (96) and (97) 

from equation (95) the resulting equation will be equation (89), from which the 

velocity of the surface Bleustein-Gulyaev-Melkumyan wave [38, 29] is also written 
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in the form of equation (90). The weight functions F and F3 can be also determined 

from equation (95) or (86) as follows:  

 

( )21 emKbF +=     (98) 
2

3 emKF −=      (99) 

 

where the parameter b in equation (98) for this case is as follows:  
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1 em

em

K
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+
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Using a sum of equations (96) and (97) or (87) and (88), the functions F and F3 can 

be alternatively related by 3FF −=  where F = 1. This procedure to determine the 

functions F and F3 is also applicable to the other cases described below.  

It is worth noting that the utilization of the first and second sets of the 

eigenvector components does not always lead to the same resulting velocity like that 

treated in this chapter. The following chapter treats the other electrical and magnetic 

boundary conditions described in the previous chapter and demonstrates that the two 

different sets of the eigenvector components can lead to two possible solutions for 

new SH-SAWs.  
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CHAPTER  VI.  The Case of Continuity of D3 and B3 at x3 = 0  

 

In this case of continuity of both the D3 and B3 at the crystal surface toward the 

free space, modified equations (74), (75), and (79) are written as follows:  
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where ε0 and μ0 in equations (102) and (103) are the corresponding characteristics of 

the free space.  

These three equations written above can be significantly simplified by 

application of the first set of the eigenvector components and the useful relations in 

equations from (48) to (57). After several transformations, these three equations are 

than written as follows:  
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It is overt that equations (104) and (105) are not independent from equation (106). A 

subtraction of these two equations from the third equation leads to the following 

secular equation for determination of the phase velocity of surface SH-waves:  
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Therefore, the velocity of the first new SH-SAW can be written in the following 

explicit form:  
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where the following constant  

 

00

2 1
με

=LC      (109) 

 

represents the squared speed of light in a vacuum. In equation (108), the CMEMC 

Kem
2, the CEMC Ke

2, and the SH-BAW velocity Vtem are defined by formulae (34), 

(38), and (37), respectively. It is thought that equation (108) represents the velocity of 

the new SH-SAWs for the coupled piezomagnetic phase. This is actually true because 

the term 22
eem KK −  represents a subtraction of the purely piezoelectric phase from the 

coupled piezoelectromagnetic phase. The second complicated term at the following 

factor )( 0
22 εεα LC  represents a subtraction of the piezoelectromagnetic exchange 

phase from the coupled piezoelectromagnetic phase. Also, the value of ε0/ε in 

)( 0
22 εεα LC  can represent a weight parameter coming from the purely piezoelectric 

phase and can be very small in the case of a large value of the dielectric permittivity 

coefficient ε for a piezoelectromagnetics.  

In general, a value of the electromagnetic constant α is very small. 

Notwithstanding, this is not always true. Nevertheless, it is possible to write the 

velocity of the first new SH-SAW for the case of the material constant α = 0 in the 

following simplified form:  
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where the velocity Vtem0 of the shear-horizontal bulk acoustic wave (SH-BAW) is 

defined by the following expression:  

 

( ) 2/122
40 1 mettem KKVV ++=     (111) 

 

In equation (111), the CMMC Km
2 and the SH-BAW velocity Vt4 are defined by 

formulas (39) and (35), respectively. It is clearly seen in equations (110) and (111) 

that when the piezoelectric constant e = 0, than equation (110) reduces to the well-

known velocity VBGpm of the surface Bleustein-Gulyaev waves [1, 2] in a pure 

piezomagnetics:  
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In equation (112), the SH-BAW velocity Vtm is defined by equation (94). Note that it 

is well-known that the velocity VBGpm is situated slightly below the velocity Vtm. 

However, in the case of zero piezomagnetic coefficient, h = 0, equation (110) reduces 

to the SH-BAW velocity Vte defined by equation (92) which is a wave characteristics 

for a pure piezoelectrics. Therefore, it is expected that the velocities of the new SH-

SAWs in equations (108) and (110) can probably lie within the phase velocity 

interval between the SH-BAW velocity Vte for a pure piezoelectrics and the SH-SAW 

velocity VBGpm (or the SH-BAW velocity Vtm in the case of a weak piezomagnetics) 

for a pure piezomagnetics. Moreover, it doesn’t matter that Vte > VBGpm (Vte > Vtm) or 

Vte < VBGpm (Vte < Vtm). This can mean that a piezoelectromagnetics can possess 

incorporative properties of the piezoelectric phase and the piezomagnetic phase.  
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For this case of the first set of the eigenvector components, the weight functions 

F and F3 can be also determined. Indeed, a sum of equations (104) and (105) gives a 

new equation with the same factor at the function F like that in equation (106). 

Therefore, the functions F and F3 are determined from this new equation as follows:  

 

( )( )2
0

22 1 emem KCbCKehF +++−= μμεαα    (113) 

( )[ ] 22
03 emCKF αμμε −+−=      (114) 

 

where the parameter b is written in equation (108) as follows:  
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It is worth here noting that the functions F and F3 defined by equations (113) and 

(114) are those for substitutions in equations from (71) to (73).  

For comparison with the first set of the eigenvector components in equations 

from (48) to (57), the second set of the eigenvector components and the useful 

relations given in equations from (60) to (66) can be used. The utilization of them for 

the substitutions into equations from (101) to (103) and further transformations of the 

equations result in the following coupled equations:  

 

( ) ( ) ( ) 01 3
2

0
2

0 =++++ FKCbFCK emem μεεμεε    (116) 

( )[ ] ( ) 03
22

0
22

0 =−−−+ FCKhFCK emem μεαμεε    (117) 

( ) 03
2222 =−+− FCKehFCK emem ααα      (118) 

 

It is also blatant that equations (116) and (118) are not independent from equation 

(117). A subtraction of these two equations from equation (117) results in the 

following equation for determination of the phase velocity of surface SH-waves:  
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( ) ( ) ( ) 01 2
0

2222
0 =+++−+− ememem KCbCKehCKh μεεααμε   (119) 

 

Equation (119) reveals the velocity of the second new SH-SAW written in the 

following form:  
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where the speed of light CL in a vacuum is also defined by equation (109). It is also 

thought that equation (116) represents the velocity of the new SH-SAW for the 

coupled piezoelectric phase. This is also true because the term 22
mem KK −  represents a 

subtraction of the purely piezomagnetic phase from the coupled piezoelectromagnetic 

phase. In equation (120), the second term at the following factor )( 0
22 μμα LC  has the 

same exchange function like that in equation (108) with the weight parameter μ0/μ 

instead of ε0/ε. Indeed, the value of μ0/μ in )( 0
22 μμα LC  can also represent a weight 

parameter of the purely piezomagnetic phase. This value can be very small in the case 

of a large value of the magnetic permeability coefficient μ for a 

piezoelectromagnetics. Also, in the case of a very small value of the electromagnetic 

constant α, it is possible to write the velocity of the second new SH-SAW in the 

following simplified form:  
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where the SH-BAW velocity Vtem0 is defined by equation (111). For the 

piezomagnetic coefficient h = 0 or h → 0, equation (121) also reduces to the well-



 40

known velocity VBGpe of the surface Bleustein-Gulyaev waves [1, 2] in a purely 

piezoelectric crystal:  
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It is also noticed that it is well-known that the velocity VBGpe is situated slightly below 

the velocity Vte. However, in the case of piezoelectric constant e = 0, equation (121) 

reduces to the SH-BAW velocity Vtm defined by equation (94) which is a wave 

characteristics for a pure piezomagnetics. Therefore, it is expected that the velocities 

of the second new SH-SAWs in equations (120) and (121) can probably lie within the 

phase velocity interval between the SH-BAW velocity Vtm for a pure piezomagnetics 

and the SH-SAW velocity VBGpe (or the SH-BAW velocity Vte in the case of a weak 

piezoelectrics) for a pure piezoelectrics. In this case, a piezoelectromagnetics can also 

possess incorporative properties of the piezoelectric phase and the piezomagnetic 

phase.  

For the second set of the eigenvector components, the functions F and F3 can be 

also determined. Using a sum of equations (116) and (118), the resulting new 

equation gives the same factor at F like that in equation (117). Therefore, the 

functions F and F3 can be defined as follows:  

 

( ) ( )2
0

22 1 emem KCbCKehF +++−= μεεαα    (123) 

( )[ ] 22
03 emCKF αμεε −+−=      (124) 

 

where the parameter b is written in equation (120) as follows:  
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Indeed, the functions F and F3 defined by equations (123) and (124) also serve 

for substitutions in equations from (71) to (73). The following chapter studies the 

wave characteristics for a combination of the electrical and magnetic boundary 

conditions written in this and previous chapters.  
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CHAPTER  VII.  The Case of φ = 0 and Continuity of B3  

 

In the case of the electrically closed surface (φ = 0) and continuity of the B3 

above the crystal surface toward the free space, the three equations are written as 

follows:  
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One can check here that equations from (126) to (128) can be also reduced to 

equations from (104) to (106) in the case of the first set of the eigenvector 

components and the useful relations in equations from (48) to (57). This is true 

because equation (87) transforms into equation (105) by multiplication with a factor 

of α/e. Therefore, the results in this case are the same to the velocities of the first new 

SH-SAWs defined by equations (108) and (110) obtained in the previous chapter.  

However, utilizing the second set of the eigenvector components and the useful 

relations given in equations from (60) to (66), one can obtain three equations in the 

following forms:  

 

( ) ( )( ) 01 3
2222 =+−+− FKbCFCK emem αεμαεμ    (129) 

( ) 03
222 =−− FCKhFCK emem εμεεμ     (130) 

( ) 03
2222 =−+− FCKehFCK emem ααα     (131) 

 

It is clearly seen in equations from (129) to (131) that equation (131) is identical to 

equation (115). Therefore, equation (130) can transform into equation (96) by a factor 

of ε/e, and equation (129) can be also transformed into equation (113) by a 
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corresponding factor. It is flagrant that these three equations are also not independent. 

A subtraction of equations (130) and (131) from equation (129) results in the 

following:  

 

( )( ) 01 222222 =+−−++− ememem CKehCKhKbC ααεμεαεμ   (132) 

 

It is interesting that equation (132) does not contain the characteristics of the free 

space such as the dielectric permittivity constant ε0 and the magnetic permeability 

constant μ0. As the result, equation (132) reveals the following explicit form for the 

velocity of the third new SH-SAW:  
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where the velocities VEMα, VEM, and Vα represent the material properties of a 

piezoelectromagnetics and are defined as follows:  

 

2
2 1

αεμα −
=EMV     (134) 

εμ
12 =EMV      (135) 

2
2 1

αα =V      (136) 

 

Note that the velocities VEMα and VEM can represent the speeds of the electromagnetic 

waves in a piezoelectromagnetics with and without accounting of the constant α for 

the electromagnetic effect, respectively. With α = 0, equation (133) can also reduce to 

the following simplified form for the velocity of the third new SH-SAW:  
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where the SH-BAW velocity Vtem0 is defined by equation (111). With h = 0, equation 

(137) also recovers the classical BG-wave velocity VBGEC given in equation (91) for a 

pure piezoelectrics with the metallized surface (φ = 0). However, equation (137) for 

the material constant e = 0 gives the SH-BAW velocity Vtm defined by equation (94).  

The functions F and F3 can be also determined for the second set of the 

eigenvector components. Indeed, a sum of equations (130) and (131) results in the 

new equation with the same factor at F similarly to that in equation (129). Therefore, 

the functions F and F3 can be determined in this case from equation (129) as follows:  

 

( )( )22 1 emKbCF +−= αεμ     (138) 

( ) 22
3 emCKF αεμ −−=      (139) 

 

where the parameter b can be written following equation (133) as follows:  
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The F and F3 expressed in equations (138) and (139) also serve for substitutions in 

equations from (71) to (73). The following chapter studies the wave characteristics 

for the case of the magnetically open surface (ψ = 0) and continuity of D3.  
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CHAPTER  VIII.  The Case of ψ = 0 and Continuity of D3  

 

Using equations (101), (102), and (85) for the case of the magnetically open 

surface (ψ = 0) and continuity of the D3, three equations are written as follows:  
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)3(0 =+ ψψ FF       (143) 

 

Therefore, these three equations with the first set of the eigenvector components can 

be transformed for this case into the following forms:  

 

   ( ) ( )( ) 01 3
2222 =+−+− FKbCFCK emem αεμαεμ    (144) 

( ) 03
2222 =−+− FCKehFCK emem ααα     (145) 

( ) 03
222 =−− FCKeFCK emem εμμεμ     (146) 

 

The resulting equation for the coupled equations from (144) to (146) is as follows:  

 

( )( ) 01 222222 =−++−+− ememem CKeCKehKbC εμμαααεμ   (147) 

 

As the result, equation (147) leads to the following velocity of the fourth new SH-

SAW:  
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where the velocities VEMα, VEM, and Vα are defined by equations from (134) to (136), 

respectively. It is clearly seen that equations (148) and (133) are very similar. The 

single difference is that the CEMC Ke
2 is used in equation (148) instead of the 

CMMC Km
2 used in equation (133). One can also obtain that equation (148) can be 

readily simplified to the following form:  
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With e = 0, the simplified form in equation (149) for the velocity of the fourth new 

SH-SAW also recovers the classical BG-wave velocity VBGMO given by equation (93) 

for a pure piezomagnetics with the magnetically open surface (ψ = 0). However, 

equation (149) for h = 0 gives the SH-BAW velocity Vte defined by equation (92).  

The functions F and F3 can be also determined from equations (144) to (146). 

Therefore, the functions F and F3 can be determined in this case from equation (144) 

as follows:  

 

( )( )22 1 emKbCF +−= αεμ     (150) 

( ) 22
3 emCKF αεμ −−=      (151) 

 

where the parameter b can be written following equation (148) as follows:  
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The F and F3 expressed in equations (150) and (151) are also substituted into 

equations from (71) to (73).  
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Using the second set of the eigenvector components, one can also write the 

coupled three equations. These coupled equations can be also transformed into 

equations from (116) to (118) in the case of the second set of the eigenvector 

components and the useful relations in equations from (60) to (66). Therefore, the 

results in this case are the same to the velocities of the second new SH-SAWs defined 

by equations (120) and (121) obtained in the previous chapter. The following 

chapters describe the wave characteristics for the other possible combinations of the 

electrical and magnetic boundary conditions.  
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CHAPTER  IX.  The Case of D3 = 0 and ψ = 0  

 

For the case of the electrically open surface (D3 = 0) and the magnetically open 

surface (ψ = 0), three coupled equations are written following those written in 

equations from (141) to (143) with the following single difference: ε0 should be 

excluded in equation (142). Therefore, utilization of the first set of the eigenvector 

components gives the following coupled equations:  

 

( ) 01 3
22 =++ FKCbFCK emem εμεμ     (153) 

000 3 =+ FF        (154) 

( ) 03
222 =−− FCKeFCK emem εμμεμ     (155) 

 

It is clearly seen in the above written equations that equation (154) can be omitted 

from the consideration. Therefore, equations (153) and (155) reveal the following 

SH-SAW velocity:  
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This SH-SAW velocity VM1 defined by equation (156) was first obtain by Arman 

Melkumyan in his recent works [38, 29] for the case of the mechanically free, 

electrically open (D3 = 0) and magnetically open (ψ = 0) surface. Therefore, the SH-

SAW velocity VM1 in equation (156) can be called the first surface Melkumyan wave.  

The functions F and F3 for the first surface Melkumyan wave can be determined 

from equation (153). Therefore, the functions are expressed as follows:  

 

( )21 emKCbF += εμ      (157) 
2

3 emCKF εμ−=      (158) 
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where the parameter b is defined following equation (156) as follows:  
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Using the second set of the eigenvector components, the coupled three equations 

are then written as follows:  

 

( ) 01 3
22 =++ FKCbFCK emem εμεμ     (160) 

[ ] 00 3
22 =+− FFCKemαεμ      (161) 

( ) 03
2222 =−+− FCKehFCK emem ααα     (162) 

 

Therefore, equations (160) and (162) give the following velocity of the fifth new 

shear-horizontal surface acoustic wave:  
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where the velocities VEM and Vα are defined by equations (126) and (127), 

respectively. The functions F and F3 for the case of the fifth new SH-SAW can be 

determined from a sum of equations (160) and (162) as follows:  

 

( )222 1 emem KCbCKehF ++−= εμαα     (164) 

( ) 22
3 emCKF αεμ −−=      (165) 

 

where the parameter b is defined following equation (163) as follows:  
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However, equation (161) gives the following simple values for the functions F and F3 

such as F = 0 and F3 = 1. It is noticed that the functions are also substituted into 

equations from (71) to (73).  
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CHAPTER  X.  The Case of B3 = 0 and φ = 0  

 

It is also possible to treat the case of the mechanically free, electrically closed (φ 

= 0) and magnetically closed (B3 = 0) surface. Here, equations from (126) to (128) are 

used with exclusion of μ0 in equation (128). Using the first set of the eigenvector 

components, the coupled three equations can be then written after some 

simplifications in the following forms:  

 

( ) 01 3
22 =++ FKCbFCK emem εμεμ     (167) 

( ) 03
2222 =−+− FCKehFCK emem ααα     (168) 

( ) 00 3
22 =+− FFCKemαεμ      (169) 

 

These coupled equations lead to the velocity of the fifth new SH-SAW defined by 

equation (163).  

Using the second set of the eigenvector components, the coupled three equations 

are written as follows:  

 

( ) 01 3
22 =++ FKCbFCK emem εμεμ     (170) 

( ) 03
222 =−− FCKhFCK emem εμεεμ     (171) 

000 3 =+ FF        (172) 

 

Coupled equations (170) and (171) give the following SH-SAW velocity:  
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This SH-SAW velocity VM2 defined by equation (173) was also obtain by Arman 

Melkumyan in his theoretical works [38, 29] for the case of the mechanically free, 
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electrically and magnetically closed surface. Therefore, the SH-SAW velocity VM2 in 

equation (173) can be called the second surface Melkumyan wave. The functions F 

and F3 for the second surface Melkumyan wave are determined from equation (170) 

as follows:  

 

( )21 emKCbF += εμ      (174) 
2

3 emCKF εμ−=      (175) 

 

where the parameter b is defined following equation (173) as follows:  
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CHAPTER  XI.  The Case of D3 = 0 and B3 = 0  

 

For this case of the mechanically free, electrically open (D3 = 0) and 

magnetically closed (B3 = 0) surface, any SH-SAW solution cannot be found for both 

the sets of the eigenvector components. This is true because the single solution for 

this case represents the SH-BAW velocity Vtem. Note that Arman Melkumyan in his 

works [38, 29] reported the same result, namely no SH-SAW solutions for the case of 

D3 = 0 and B3 = 0.  
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CHAPTER  XII.  The Case of D3 = 0 and Continuity of B3  

 

Using the first set of the eigenvector components, the coupled three equations 

for this case are written as follows:  

 

( )[ ] ( )[ ]( ) 01 3
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0
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000 3 =+ FF       (178) 

( )[ ] ( ) 03
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0
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0 =−−−+ FCKeFCK emem εμαμμε    (179) 

 

They result in the following velocity of the sixth new SH-SAW:  
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where the speed CL of light in a vacuum is defined by equation (109). The formula 

for the velocity VEM0α reads  
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The functions F and F3 for the case of the sixth new SH-SAW can be determined 

from equation (177) as follows:  

 

( )[ ]( )22
0 1 emKbCF +−+= αμμε    (182) 

( )[ ] 22
03 emCKF αμμε −+−=     (183) 

 

where the parameter b is defined following equation (180) as follows:  
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It is worth noting here that the functions F and F3 are also substituted into equations 

from (71) to (73).  

Using the second set of the eigenvector components, the coupled three equations 

for this case can be written in the following forms:  

 

( ) 01 3
22 =+− FKCbFCK emem εμεμ    (185) 

[ ] 00 3
22 =+− FFCKemαεμ     (186) 

( ) 03
2222 =−−− FCKehFCK emem ααα    (187) 

 

Therefore, the resulting velocity represents the velocity of the fifth new SH-SAW and 

is defined by equation (163).  
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CHAPTER  XIII.  The Case of B3 = 0 and Continuity of D3  

 

Using the first set of the eigenvector components, the coupled three equations 

for this case are then written as follows:  

 

( ) 01 3
22 =++ FKCbFCK emem εμεμ    (188) 

( ) 03
2222 =−+− FCKehFCK emem ααα    (189) 

( ) 00 3
22 =+− FFCKemαεμ     (190) 

 

Therefore, the resulting velocity is also defined by equation (163) which 

demonstrates the velocity of the fifth new SH-SAW.  

For the second set of the eigenvector components, the coupled three equations 

for this case read:  

 

( )[ ] ( )[ ]( ) 01 3
22

0
22

0 =+−++−+ FKbCFCK emem αμεεαμεε   (191) 

( )[ ] ( ) 03
22

0
22

0 =−−−+ FCKhFCK emem μεαμεε    (192) 

000 3 =+ FF       (193) 

 

They also result in the following velocity of the seventh new SH-SAW:  
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KK
C

VVV α

μ
μ    (194) 

 

where the velocity VE0Mα is defined as follows:  

 

( ) 2
0

2
0

1
αμεεα −+

=MEV     (195) 
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The functions F and F3 for the case of the sixth new SH-SAW can be determined 

from equation (191) as follows:  

 

( )[ ]( )22
0 1 emKbCF +−+= αμεε    (196) 

( )[ ] 22
03 emCKF αμεε −+−=     (197) 

 

where the parameter b is defined following equation (194) as follows:  

 

( ) 2

22

2
0

0

1 em

mem

K
KKb

+
−

−+
=

αμεε
με    (198) 

 

Note that the functions F and F3 are also substituted into equations from (71) to (73).  
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CHAPTER  XIV.  Calculations and Discussion  

 

First of all, it is possible to discuss the material properties listed in table 1. The 

material constants in the table are given as percentage volume fraction of BaTiO3 in 

composites consisting of BaTiO3-CoFe2O4 [44, 53]. Note that Refs. [44, 53] give zero 

piezoelectric coefficient e for all the composites listed in table 1, but purely 

piezoelectric material BaTiO3 in the last column of the table. On the other hand, Ref. 

[54] by Wang and Mai provides the value of e = ep/2 for 50% BaTiO3 in BaTiO3-

CoFe2O4, where ep is that for the pure BaTiO3. Therefore, it is thought that it is a 

good idea to use small (see table 1) but non-zero values of e for the composites in the 

calculations. It is also noted that Refs. [44, 53] give the magnetic permeability 

coefficient μ < 0 for CoFe2O4 and the composites. Conversely, Ref. [54] provides the 

magnetic permeability coefficient μ > 0 for both CoFe2O4 and the composite. It is 

thought that μ < 0 is preferred because it is given in almost all papers concerning 

studies of the composites. However, the negative sign for the magnetic permeability 

coefficient μ results in the negative sign for the coefficient of the magnetomechanical 

coupling (CMMC) Km
2 and can also result in the negative sign for the coefficient of 

the magnetoelectromechanical coupling (CMEMC) Kem
2 in the case of Abs(Km

2) > 

Abs(Ke
2), see table 1. Therefore, this is actually an interesting case. Indeed, the 

negative sign for the magnetic permeability coefficient μ also results in the imaginary 

values for such material characteristics as the velocities VEMα, VEM, VEM0α, and VE0Mα 

also listed table 1 and defined by equations (134), (135), (181), and (195), 

respectively. Also, the electromagnetic constant α for the composites in the table is 

very small. This results in the large values of the velocity Vα defined by equation 

(136). It is worth noting that the value of the electromagnetic constant α can be miles 

larger. It is thought that a large value of the constant α can give a significant rise to 

the CMEMC Kem
2, hence, to the velocities of the surface Bleustein-Gulyaev-

Melkumyan wave defined by equation (90), to the first and second surface 

Melkumyan waves defined by equations (156) and (173), and to the seven new SH-
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SAWs correspondingly defined by equations (108), (120), (133), (148), (163), (180), 

and (194).  

 

Table 2. The wave characteristics for the piezoelectromagnetic composite materials 

of class 6 mm listed in table 1. The characteristics are given as percentage volume 

fraction (VF) of BaTiO3 in the BaTiO3-CoFe2O4 composites  
Composite VF 0% 20% 40% 60% 80% 100% 

Vt4, [m/s] 2811.71818686 2802.39239604 2802.39239604 2802.39239604 2953.98095634 2739.40924320

Vte, [m/s] 2811.71818686 2803.33580370 2803.94884848 2805.50443741 2958.70355080 3098.56369689

Vtm, [m/s] 2795.17393167 2793.14761564 2796.35764091 2795.65856397 2951.61682554 2739.40924320

Vtem, [m/s] 2795.17393167 2794.09419095 2797.91751629 2798.77824255 2956.34335715 3098.56369689

Vtem0, [m/s] 2795.17393167 2794.09414474 2797.91745041 2798.77809289 2956.34319660 3098.56369689

VBGM, [m/s] 2794.97691742 2794.04475419 2797.90317946 2798.76889633 2956.33958460 3023.77282194

VBGEC, [m/s] 2811.71818686 2803.33516894 2803.94712149 2805.49754091 2958.68849869 3023.77282194

VBGpe, [m/s] 2811.71818686 2803.33580327 2803.94884827 2805.50443675 2958.70354964 3098.56365079

VBGMO, [m/s] 2794.97691742 2793.08621536 2796.33153761 2795.62604638 2951.61303535 2739.40924320

VBGpm, [m/s] 2795.17393077 2793.14761500 2796.35764024 2795.65856165 2951.61682457 2739.40924320

Vnew1, [m/s] 2795.17393077 2794.09419031 2797.91751562 2798.77824023 2956.34335618 3098.56369689

Vnew2, [m/s] 2795.17393167 2794.09419051 2797.91751608 2798.77824189 2956.34335598 3098.56365079

Vnew3, [m/s] 2795.17393167 2794.09354984 2797.91577803 2798.77129588 2956.32826844 3023.77282190

Vnew4, [m/s] 2794.97691742 2794.03285336 2797.89145691 2798.74583429 2956.33958536 3098.56369689

VM1, [m/s] 2794.97691742 2794.03285367 2797.89145720 2798.74583501 2956.33958562 3098.56369689

Vnew5, [m/s] 2795.17393167 2794.09419095 2797.91751629 2798.77824255 2956.34335715 3098.56369689

VM2, [m/s] 2795.17393167 2794.09354981 2797.91577796 2798.77129555 2956.32826793 3023.77282194

Vnew6, [m/s] 2795.17393077 2794.09419031 2797.91751562 2798.77824024 2956.34335619 3098.56369689

Vnew7, [m/s] 2795.17393167 2794.09419051 2797.91751608 2798.77824189 2956.34335599 3098.56365079

(Knew1)2  0.00014096726 0.00003538607 0.00001024834 0.00000667720 0.00000255112 0.04827454416

(Knew2)2  0.00014096797 0.00003538678 0.00001024834 0.00000667863 0.00000255112 0.04827451518

       

 

Table 2 lists the wave characteristics of the composites. The characteristic 

velocities are calculated with the corresponding formulae written in the previous 

chapters. First of all, it is indispensable to discuss about the dependence of the first, 

second, sixth, and seventh new SH-SAWs on the speed of light in a vacuum. This can 

mean that the existence of the new waves is caused by the contact of the free surface 

of such a solid with a vacuum. It is also clearly seen in the corresponding formulas 

for these new SH-SAWs that the character of the dependence on the speed CL for the 
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first and second new SH-SAWs differs from that for the sixth and seventh new SH-

SAWs. For the first and second new SH-SAWs, the speed CL appears in the second 

term of the corresponding value of the parameter b, because the first term is 22
eem KK −  

or 22
mem KK − . It is thought that the second term can give a significant rise for a large 

value of such material parameter as the electromagnetic constant α. For the sixth and 

seventh new SH-SAWs, the corresponding parameter b depends only on the 

corresponding single term. It is certainly seen in equations (180) and (194) that the 

parameter b can be larger in these cases for small values of the material constants ε 

and μ and a large value of the CMEMC Kem
2. Note that a large value of the parameter 

b results in the position of the new SH-SAWs just below the SH-BAW velocity Vtem. 

It is well-known for such surface waves that the larger is the value of b2, the lower is 

situated the velocity of a surface wave from the SH-BAW velocity Vtem. This actually 

results in a smaller penetration depth, and more energy of such surface waves can be 

localized at the surface of a solid.  

On the other hand, the constants ε0 and μ0 of a vacuum do not participate in the 

propagation of the third, fourth, and fifth new SH-SAWs. This is also true for the 

velocities VBGM, VM1, and VM2. Indeed, these velocities and the velocities of these 

three new SH-SAWs depend only on the composite material constants, particularly 

on the dielectric permittivity coefficient ε, magnetic permeability coefficient μ, and 

the electromagnetic constant α. However, it is thought that the dependence on the 

material constants for these three new SH-SAWs is more complicated, because the 

corresponding parameters b for the velocities VBGM, VM1, and VM2 depend only on the 

coefficients Ke
2, Km

2, and Kem
2. Indeed, for the third and fourth new SH-SAWs 

defined by equations (133) and (148) there are two terms which demonstrate 

sophisticated dependencies on the εμ and α. This is also somewhat true for the fifth 

new SH-SAWs defined by equation (163), for which the parameters b depends only 

the single term.  

It is also thought that the fifth new SH-SAWs can lie significantly below the SH-

BAW velocity Vtem for a large value of the electromagnetic constant α and an enough 

small value of εμ, because the Vnew5 position just below the velocity Vtem strongly 
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depends on the following relation α2/εμ. Notwithstanding, this is still not obvious. 

The maximum value of the constant α for the composites listed in table 1 is as high as 

6.8 ps/m. According to Ref. [9], the largest magnetoelectrical coefficients α ~ 30-40 

ps/m have been observed for LiCoPO4, Y3Fe5O12 (YIG has the cubic symmetry of 

class m3m) and TbPO4. However, Refs. [44, 53] also give the largest value of α33 ~ 

2750 ps/m for 40% BaTiO3 in BaTiO3-CoFe2O4. It is worth noting that the largest 

value of α33 does not participate in calculations for the treated cases of the 

transversely-isotropic materials, because the surface waves can propagate in the 

propagation directions in which α33 → α22 and α22 → α33 to cope with the case of α11 

= α33 = α. Note that the electromagnetic response is limited by the following relation:  

 

εμα <2       (199) 

 

Therefore, the magnetoelectric (ME) effect is exhaustively studied in many 

composites consisting of hexagonal materials of class 6 mm and cubic materials of 

class m3m. It is natural that the particular purpose of many experimental 

investigations of the ME-effect is to observe a maximally-possible value of the 

electromagnetic constant α for a composite in dependence on the percentage volume 

fraction of a piezoelectrics or a piezomagnetics in two-phase composites.  

It is possible to discuss about the calculated data listed in table 2. First of all, it is 

stressed that it is trying to deal with all the cases. It is thought that it is preferable to 

compare various materials with large values of the electromagnetic constant α for a 

concrete case of the electrical and magnetic boundary conditions. This is true because 

the boundary conditions can be realized in different ways following Ref. [4]. It is 

clearly seen in table 2 that all the velocities of the new SH-SAWs for the cases of α ≠ 

0 are situated just below the SH-BAW velocity Vtem. Note that the case of α = 0 

occurs only for pure BaTiO3 and pure CoFe2O4. It is also noted that for μ < 0 (see 

20%, 40%, and 60% BaTiO3 in the composites in table 1) the SH-BAW velocity Vtem 

is smaller than the SH-BAW velocity Vt4 which serves for the case of e = 0, h = 0, 

and α = 0. For 80% BaTiO3 in the composite with μ < 0 there occurs Vtem > Vt4. Also, 
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there occurs Vtem < Vte for all the composites in table 2. For the composites with small 

α, the difference among the velocities of the new SH-SAWs can be seen only in the 

last digits after the decimal point. Also, for some cases, even the last digits cannot 

demonstrate the fact that the new SH-SAW velocities lie just below the SH-BAW 

velocity Vtem. This occasion is discussed below. It is worth noting that the new SH-

SAW velocities are defined by exact formulae obtained in this work. Therefore, any 

even very small difference between a new SH-SAW velocity and the SH-BAW 

velocity Vtem due to a very small value of α ≠ 0 is trustable. This is also true for 

comparison of one new SH-SAW velocity with the other or with the velocities VM1, 

VM2, and Vtem.  

It is emphasized that the calculated values of the velocity Vnew5 of the fifth new 

SH-SAW do not demonstrate the position of the velocity Vnew5 which should be just 

below the SH-BAW velocity Vtem. This is clearly seen in table 2 due to very small 

values of the electromagnetic constant α for the composites. However, it is possible 

to calculate the values of the velocities Vtem and Vnew5 with more digits after the 

decimal point. For example, for the percentage volume fraction of 80% BaTiO3 in 

BaTiO3-CoFe2O4, the velocities can be calculated with the following accuracy: Vtem = 

2956.3433571533(10389124) m/s and Vnew5 = 2956.3433571533(06028796) m/s, 

where the digits in the parentheses demonstrate that the velocity Vnew5 is actually 

situated just below the SH-BAW velocity Vtem. This can present a big difficulty to 

numerically find this type of the new surface waves in non-hexagonal 

piezoelectromagnetic composites, for instance, in cubic piezoelectromagnetic 

composites. Following the results of this work, it is thought that at least nine new SH-

SAWs can be numerically distinguished in cubic piezoelectromagnetic composites. It 

is also thought that all cubic piezoelectromagnetic composites can be also divided 

into two groups: the first group is for those with Kem
2 < 1/3 and the second for Kem

2 > 

1/3 following cubic piezoelectrics [7] and cubic piezomagnetics [8]. It is also offered 

that the difference ∆V5 = (Vtem – Vnew5) can serve as an indicator for the 

magnetoelectric effect in addition to evaluation of the electromagnetic constant α for 

a piezoelectromagnetic composite.  
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Also, table 2 gives sample evaluations of the coefficients Knew1 and Knew2 for the 

case of piezoelectromagnetoelastic composites, in order to have an analogy to the 

cases of purely piezoelectric phase and purely piezomagnetic phase. It is thought that 

the coefficients Knew1 and Knew2 can be evaluated with the following formulae:  

 

1

12
1 2

new

BGMnew
new V

VVK −
=      (200) 

2

22
2 2

new

BGMnew
new V

VVK −
=     (201) 

 

where the velocities VBGM, Vnew1, and Vnew2 are defined by equations (90), (108), and 

(120), respectively. Indeed, these coefficients in equations (200) and (201) are 

significantly smaller for the composites than those for pure BaTiO3 in the last column 

of table 2 and pure CoFe2O4 in the second column of the table. For the other five new 

SH-SAWs, it is thought that it is still uncertain which suitable coefficients like those 

calculated from equations (200) and (201) can be used for the evaluation. Therefore, 

they were not evaluated.  
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CONCLUSION  

 

This theoretical work demonstrated existence of seven new piezoelectromagnetic 

SH-SAWs which can propagate in a transversely-isotropic monocrystal of hexagonal 

class 6 mm. Utilizing different electrical and magnetic boundary conditions in the 

theory, a coupling of the new SH-SAWs with the surface Bleustein-Gulyaev waves 

and bulk acoustic waves was analytically shown. Also, it was analytically shown that 

the new SH-SAWs can reveal the dependence on the squared speed of light in a 

vacuum. Sample calculations were carried out for the well-known mixture of 

piezoelectrics BaTiO3 and piezomagnetics (CoO)Fe2O3. It is thought that the obtained 

results can be useful for theoreticians working with two-phase materials and 

developers of smart devices in the microwave technology.  
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