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PREFACE  

 

This book theoretically studies propagation of different shear-horizontal acoustic 

waves in two-layer systems. Various configurations are treated using the cubic 

crystals Bi12SiO20 and Bi12GeO20 which possess strong piezoelectric effect. Possible 

cuts for the wave propagation are treated when an even-order symmetry axis is 

perpendicular to the sagittal plane, and when some analytical solutions can be 

obtained studying propagation direction [101] in the crystals. Calculations of the 

phase velocity Vph and the static coefficient of electromechanical coupling K2 versus 

the layer thickness were carried out. The calculation of the phase velocity Vph can be 

useful for finding new shear-horizontal surface acoustic waves (SH-SAWs). 

Numerical results on propagation of the seven-partial Love type waves were also 

introduced for different electrical boundary conditions: metallized and non-metallized 

surfaces. Also, new dispersive SAW possessing single mode confined in suitable Vph-

range was discovered concerning direction [101] in various layered systems 

consisting of the cubic crystals. It was also found that speeds of non-dispersive 

surface and interfacial waves are possible limit speeds for the new dispersive SH-

SAWs in the cases of the wavenumber k → 0 and k → ∞. However, the Vph for some 

modes of the new dispersive waves can approach other limit speeds for a large value 

of the wavenumber k. The new SH-SAW existence broadens choice of piezoelectric 

materials which can be used in SH-SAW technical devices. It is thought that the 

obtained results can be also useful in the application of inter-digital transducers for 

excitation of different SAWs in structural health monitoring. In addition, theoretical 

study of three-layer structures consisting of widely-used weak piezoelectrics 

(GaAs/GaP/GaAs and GaAs/GaP/ZnTe) was carried out concerning any possibility to 

numerically find the new dispersive SH-SAWs.  

PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld  

Keywords: piezoelectric cubic crystals, strong piezoelectric coupling, new SH-

SAWs, Love type waves.  
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INTRODUCTION  

 
It is well-known that there are two basic polarization types for surface acoustic 

waves (SAWs) in acoustics of solids such as the wave polarization in the sagittal 

plane and the polarization perpendicular to the sagittal plane. The sagittal plane is 

formed by the directional vector M and the vector N being the normal to both the free 

surface and interface shown in figure 1 along with the coordinate system for the 

layered system, consisting of a thin film (layer) on a substrate (half-space). The 

surface Rayleigh waves possessing hybridization of the displacement components U1 

and U3 along the x1- and x3-axes are polarized in the sagittal plane. These waves were 

originally discovered in 1885 by Lord Rayleigh [1]. Note that Lord Rayleigh has 

studied isotropic mono-materials, namely the case of the layer thickness h = 0 in 

figure 1. It is thought that the SAW simplest example concerning the polarization 

perpendicular to the sagittal plane is the Love wave [2] propagating in layered 

systems, consisting of two isotropic materials. Note that there is the following 

existence condition for Love waves: the speed VSH = (C44/ρ)1/2 of the bulk shear-

horizontal (SH) wave for a substrate should be higher than that for a layer, where C44 

and ρ are the shear elastic constant and material density, respectively. For the Love 

(type) waves, the displacement component U2 along the x2-axis for a substrate is 

coupled with the component U2 for a layer at the layer-substrate interface. Therefore, 

they are hybridized due to their co-influence. The Love type wave (LTW) becomes 

the bulk SH-wave for zero layer thickness and cannot exist in homogeneous 

monocrystals.  

SAWs with the Love-wave polarization can also exist in inhomogeneous media 

such as piezoelectric monocrystals. They were first discovered by Bleustein and 

Gulyaev simultaneously in the late 1960s [3, 4] studying transversely-isotropic 

piezoelectrics of class 6 mm. The surface Bleustein-Gulyaev type waves (BGTWs) 

are treated as the weakly-nonhomogeneous SAWs. They can exist only on certain 

cuts and propagate in certain directions of piezoelectric monocrystals characterized 
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by coupling between the elastic displacement component U2 and electrical potential 

U4 = φ, where φ is electrostatically defined from the electrical field Ej = ∂φ/∂xj with 

the index j = 1, 2, 3. Hence, it is thought that there must be a coupling of at least two 

displacement components in the SAW simplest cases.  

 

 

Figure 1. The right coordinate system with the directional vector M||[100] and the 

vector-normal N for the layered structure consisting of a layer on a substrate, where h 

is the layer thickness  

 

Dispersive Rayleigh type waves (RTWs) can propagate in the layered systems 

shown in figure 1 in which the LTWs can also co-exist. In layered systems consisting 

of two piezoelectric materials, the “pure” RTWs are coupled with the electrical 

potential when LTWs represent pure mechanical waves and vice versa, according to 

Refs. [5, 6, 7]. See also the famous book [8] describing applications of the RTW, 

LTW, and BGTW. Recently, interest is growing in the study of propagation of 

dispersive BGTWs in various layered structures (for example see Ref. [9]) because 

the application of layered piezoelectric structures can significantly reduce the 

penetration depth, which is 10 – 100 times larger than the wavelength λ for the 

surface BG-waves in monocrystals. It is thought that the single mode of dispersive 

BGTWs can be treated as the LTW lowest-order mode, which represents the LTW 

first type. It is also thought that the LTW higher-order modes represent the LTW 
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second type in order to have an analogy with the dispersive RTWs, of which the first 

(lowest-order mode) and second types are separately studied.  

In general, propagation of the dispersive and non-dispersive BGTWs is studied 

in the transversely-isotropic materials. Moreover, one of the BG-wave discoverers 

stated in Ref. [10] published in 2005 that the SAWs cannot exist in piezoelectric 

cubic monocrystals. Indeed, such surface waves were not found in Ref. [11] studying 

cubic piezocrystals of class 23 in propagation direction (001) [100]. It is noted that in 

1966, Kaganov and Sklovskaya [12] reported a possible existence of new surface 

waves coupled with the electrical potential in piezoelectric cubic monocrystals in 

addition to the purely mechanical surface Rayleigh waves. Treating the case of 

elastically-isotropic medium with the non-zero piezoelectric constants e14 = e25 = e36, 

they in Ref. [12] have found that the phase velocity Vph of the new (additional) 

surface wave is higher than 31/2ct/2 and lower than ct, according to the paper text (the 

abstract in Ref. [12] was incorrectly written) where ct represents the bulk shear wave 

velocity uncoupled with the electrical potential. In addition, they did not state that 

such new SAWs can propagate when the wave propagation direction is perpendicular 

to an even-order symmetry axis of a piezoelectric crystal. Indeed, utilization of cubic 

piezoelectrics in addition to the transversely-isotropic materials can broaden a list of 

suitable materials and represents an interest in engineering and design of SAW 

devices (filters, dispersive delay lines, etc.).  

According to Ref. [13] by Al’shits and Lyubimov, the BG-wave existence in 

cubic piezocrystals of classes ⎯43 m and 23 strongly depends on the piezoelectric 

constants and dielectric constant ε. Ref. [13] has discussed that existence sectors of 

the BG-waves being about π/4, when there is rotation around the axis directed along 

an even-order symmetry axis, can be significantly broadened using crystals with 

small dielectric constants. For the limit case of ε → 0 requiring small piezoelectric 

constants, the BG-waves can exist in any such propagation direction, except the 

exceptional angles 0, π/2, π, …, where the single-partial exceptional bulk waves of 

first type can exist representing the boundaries of such SAW existence sectors. Also, 

only the exceptional bulk waves can exist in piezoelectric cubic monocrystals 
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possessing a very large dielectric constant ε → ∞ [13] for the second limit case. They 

also noted that there is an analogy of existence of exceptional bulk waves in optics, 

where surface optic waves can be converted to bulk waves for some frequencies and 

propagation directions. Indeed, different electrical boundary conditions (for example, 

the surface metallization) can also alter the existence sectors of the BG-waves. It is 

thought that the interesting case of ε → ∞ can be realized due to recent discovery of 

the giant dielectric effect found in the cubic perovskite-related materials CdCu3Ti4O12 

and CaCu3Ti4O12 [14]. The latter has a tremendously high dielectric constant εs ~ 104 

at room temperatures. One of the most commonly used dielectric materials is silicon 

nitride with εs ~ 7. Materials with large static dielectric constants εs > 7 are generally 

referred to as high-dielectric constant materials and are used in memory devices 

being highly called for the microelectronics industry. That is due to the fact that 

acting as a scaling factor, the static dielectric constant εs ultimately determines the 

miniaturization level.  

The recent review paper [15] by Yamaguchi focused on early days of research 

about SH type acoustic waves. For instance, it was discussed in Ref. [15] that the 

surface skimming bulk waves (SSBWs) are closely related to the other SAWs known 

as the Bleustein-Gulyaev-Shimizu waves (BGSWs) on rotated Y-cuts of quartz, 

namely the SSBW velocities substantially coincide with those of BGSW. Also, some 

types of SH-SAWs in solids can be found in the famous review paper [16] by 

Gulyaev, see also the famous book [17] on wave phenomena in inhomogeneous 

media. A possible existence of two new types of SH-SAWs propagating in layered 

systems, consisting of a layer on a substrate, was recently introduced in Ref. [18], of 

which one can be used in addition to the Love type waves. Ref. [18] also shows the 

existence possibility of the supersonic three-partial Love type waves (LTW3) where 

the velocity equivalents for both layer and substrate, instead of the bulk SH-waves, 

should be analyzed for the wave existence condition. It is noted that the velocity 

equivalent is always lower that the bulk SH-wave speed for anisotropic materials. It 

is thought that these velocity equivalents can be also called the exceptional bulk 

waves. This paper studies different dispersive and non-dispersive waves with the 
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Love-wave polarization. The following section contains thermodynamic description 

of the material constants in the linear case. Also, the following section provides 

evolution of the piezoelectric constants caused by changes in the wave propagation 

directions when the elastic and dielectric constants are not changed.   
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CHAPTER I. Material Properties  

 

Piezoelectric ceramics are used in a variety of commercial applications due to 

their electromechanical nature displaying both a direct effect (generating effect) in 

which an electrical charge is generated by a mechanical stress, and the converse 

effect (motor effect) in which an electrical field produces a mechanical displacement. 

Note that piezoelectricity from the Greek word “piezo” means pressure electricity. 

Various solid-state or polymeric materials with piezoelectric characteristics are being 

applied to a variety of transducers and sensors, which include hydrophones, sonar, 

accelerometers, power supplies, ultrasonic motors, transformers, micropositioners, 

filters, robotic muscles, medical ultrasound, etc. Currently, piezoelectric ceramics are 

the most widely used materials, because they comparatively show the highest 

generative forces, accurate displacements, and best high frequency capabilities. When 

an AC voltage is applied to a sample piezoelectric material, it will cause vibrations 

and thus generate mechanical waves at the same frequency of the input AC field. 

Similarly, it would sense the input mechanical vibrations and produce the 

proportional charge at the matching frequency of the mechanical input. Quartz is a 

well-known single-crystal material, depicting such piezoelectric effects. The pioneer 

work by W.G. Cady [19] concerning applications of Quartz piezoelectric crystals 

attracted attention to the utilization of piezoelectric crystals in various technical 

devices. The famous review papers [20, 21] by W.P. Mason describe many 

applications of piezoelectrics over the last century, including different SAW technical 

devices.  

According to the classical works [22, 23], the thermodynamic potentials derive 

the equations of piezoelectric medium. In order to describe thermoelectroelastic 

interactions in piezoelectric crystals, eight thermodynamic potentials are currently 

used, in which energetic terms are included and are coupled with elastic (stress τij or 

strain ηij), electric (electrical field Ei or electrical induction Di) and thermal 

(temperature T or disorder value called entropy S) sub-systems [23]. General 
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equations for adiabatic rather than isothermal conditions may be obtained using the 

thermodynamic potential (electrical enthalpy Hel
a) given by the following expression:  

 

kkmmijij
a
el STEDH −−= ητ      (1) 

 

It is thought that it is convenient to naturally take the mechanical strain tensor ηij as 

an independent thermodynamic mechanical variable, because the wavelength of 

propagating acoustic waves is significantly smaller than line sizes of a sample crystal, 

and crystal vibrations as a whole can be neglected (mechanically-shorting condition). 

Also, the electrical field Em is taken as a thermodynamic electrical variable, because 

the piezoactive propagation directions can exist in piezoelectric materials where the 

electrical potential is coupled with propagating elastic waves. The perfect differential 

of equation (1) is then written in the following way:  

 

kkmmijij
a
el STEDH dddd −−= ητ     (2) 

 

Treating adiabatic processes with the constant entropy (S = const giving dS = 0) and 

leaving only linear terms, it is possible to write a Taylor series for the electrical 

enthalpy Hel
a(ηij, Em, S) relative to an equilibrium condition Hel

a(0, 0, S0):  

 

nmmnmijmijklij
E
ijkl

a
elmij

a
el EEEeCSHSEH ηεηηηη

2
1

2
1),0,0(),,( 0 −−=−   (3) 

 

With vibrating piezoelectric elements there is usually negligible heat interchange, and 

the adiabatic equations hold. Using equation (3), it is possible to write “mechanical” 

and “electrical” equations for the treated linear case. With the stress and electrical 

field as the independent variables, the equations are written as follows:  
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The elastic constants Cijkl, being components of the elastic stiffness tensor, relate 

two second-order symmetric tensors representing fourth-order tensors from equation 

(4) for linear elasticity with piezoelectric term:  
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The piezoelectric constants emij relate second-order symmetric tensors to vectors, and 

therefore they are third-order tensors, using equations (4) and (5):  
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The dielectric constants εmn, also called dielectric permittivity, relate two vectors, and 

therefore represent second-order tensors. Using equation (5), they are defined as 

follows:  

 

Sn

m
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Accounting the fact, such as the sound velocity V in a crystal is very small 

compared with the light velocity c, allows usage of the quasi-electrostatic 

approximation  

 

0rot =E  or 
m

m x
E

∂
∂

−=
ϕ     (9) 
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with φ and xm being the electrical potential and current rectangular coordinates of a 

material point, respectively. On the other hand, the electrical induction Dm must 

satisfy the Maxwell equation for a non-conducting medium  

 

0div =
∂
∂

=
m

m

x
DD      (10) 

 

Note that equation (8) gives the well-known relationship Dm = εmnEn between the 

electrical induction Dm and the electrical field En.  

The corresponding material tensors in equations from (6) to (8), being invariant 

relative to the crystallographic group of symmetry, are described in the famous book 

[24] by J.F. Nye. Note that crystal symmetry is coupled with symmetry of physical 

properties of a crystal. The fundamental postulate of crystallophysics known as the 

Neumann principle (for example see Ref. [24]) states the following: “Symmetry 

elements of any crystal physical property should include symmetry elements of 

crystal point group”. Each crystal point group has its own set of independent 

components of material tensors. For instance, piezoelectric cubic crystal Bi12SiO20 

(class 23) has the following independent material constants (in the Voigt notation): 

C11 = C22 = C33, C12 = C13 = C23, C44 = C55 = C66; e14 = e25 = e36 and ε11 = ε22 = ε33 in 

addition to the material density ρ. Material constants for cubic crystals Bi12SiO20 and 

Bi12GeO20 can be written following Ref. [25]. For Bi12SiO20 there are the following 

material constants: ρ = 9070 [kg/m3]; C11 = 12.962×1010 [N/m2], C44 = 2.451×1010 

[N/m2], and C12 = 2.985×1010 [N/m2]; e14 = 1.122 [C/m2]; ε11/ε0 = 41.1 where ε0 is the 

free space dielectric permittivity (ε0 = 8.854×10–12 [F/m]). For Bi12GeO20 there are: ρ 

= 9200 [kg/m3]; C11 = 12.852×1010 [N/m2], C44 = 2.562×1010 [N/m2], and C12 = 

2.934×1010 [N/m2]; e14 = 0.983 [C/m2]; ε11 = 3.336×10–10 [F/m]. Transformations of 

any tensor component from the original coordinate system (x1x2x3 in figure 1) to the 

“work” coordinate system (x'1x'2x'3 in figure 1) are perfectly described in the excellent 

books [8, 24]. Transformed components εij of the dielectric permittivity tensor can be 
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calculated using given original components εmn and corresponding components aim 

and ajn of the transformation matrix:  

 

mnjnimij aa εε =       (11) 

 

Analogically, components of the piezoelectric and elastic tensors after 

transformations are obtained with the following formulae:  

 

mnpkpjnimijk eaaae =      (12) 

mnpqlqkpjnimijkl CaaaaC =     (13) 

 

The crystallographic coordinates (X, Y, Z) coincide with the original coordinates 

(x1, x2, x3) in figure 1. Acoustic waves propagate along the x'1-axis in the work 

coordinate system (x'1, x'2, x'3) obtained by rotation around the x'2-axis, which must be 

directed along an even-order symmetry axis of a studied crystal. The direction of the 

cut normal is also changed with the Euler angles (0o; θ; 0o). Therefore, the coordinate 

transformations read:  

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

θθ

θθ
θ
μν

cos0sin
010

sin0cos
)(a     (14) 

 

For instance, the components of the transformation matrix (14) for the angle θ = π/4 

are as follows:  
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21021
010
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For piezoelectric cubic crystals, the transformations keep the material constants 

C44(θ) and ε11(θ), but the piezoelectric constants eij(θ) are changed as shown in figure 

2 for the cubic crystal Bi12SiO20. That conveniently allows study of piezoelectric 

properties of crystals.  

 

 

Figure 2. The dependence of the piezoelectric constants e14 = e36, e16, and e34 on the 

propagation directions with the Euler angles {0o, θ, 0o} for the cubic crystal Bi12SiO20  

 

This book describes wave propagation with the Love-wave polarization in 

various layered systems consisting of cubic crystals Bi12SiO20 and Bi12GeO20 with 

strong piezoelectric effect, when the propagation directions are perpendicular to the 

crystal second-order symmetry axis. Particularly, it will be shown below that the 

surface Bleustein-Gulyaev waves cannot exist in piezoelectric cubic crystals, 

supplementing Gulyaev’s opinion written in Ref. [10] concerning the surface waves 

in the crystals mentioned in the previous section. The following section describes 

theory of wave propagation in different cuts and propagation directions, and the 

fourth and fifth sections provide boundary-condition determinants for finding the 

phase velocity Vph of SH-waves in piezoelectric monocrystals and layered systems. 

The sixth section adds some obtained results of numerical investigations concerning 

the Vph behavior in a set of configurations for complete understanding of the problem.  

 

-1.5 

-1.0 

-0.5 

0.0 

0.5 

1.0 

1.5 

0 
[100] 

45 
[101]

90 
[001]

135 
[⎯101]

180 
[⎯100]

Degree and direction

Pi
ez

oe
le

ct
ric

 c
on

st
an

ts
, C

/m
2  

e14 = e36e16 e34



 21

 

CHAPTER II. Theory of Propagating Waves  

 

The equation of motion of an elastic medium is written as follows [6, 7]:  

 

k

iki

xt
U

∂
∂

=
∂
∂ τρ 2

2

     (16) 

 

which represents the governing equation of stress equilibrium, where ρ denotes the 

material density. Ui and τij are the mechanical displacement components and 

components of the stress tensor thermodynamically defined in equation (4), 

respectively. In equation (14), t and xk are time and the real space vector components 

r → {x1, x2, x3} using the rectangular co-ordinate system. Substituting equations (4) 

and (5) into (16) and (10), respectively, and accounting expression (9) for the 

electrical field, one can write the coupled equations of motion for a piezoelectric 

medium in the common form:  
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where the component U4 represents the electrical potential φ. Solutions of 

homogeneous partial differential equations (17) of the second order can be found in 

the following form of plane wave:  

 

( )[ ]tUU ii ω−= krjexp0      (18) 

 

where the index i runs from 1 to 4, and Ui
0 is an initial amplitude. j = (–1)1/2 and kr 

denote the imaginary unity and scalar multiplication of two vectors, respectively. In 
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equation (18), ω and k are the angular frequency and wavevector with the following 

components: {k1, k2, k3} = k{n1, n2, n3} where k and {n1, n2, n3} are the wavenumber 

in the wave propagation direction and the directional cosines.  

In the treated case of wave propagation, the sagittal plane is always 

perpendicular to an even-order symmetry axis of a crystal. Coupled equations (17) of 

motion describe propagation of “pure” waves, according to Ref. [6, 7]. Hence, the 

coupled equations of motion can be readily written in the following simplified form, 

leaving only equations for waves with polarization perpendicular to the sagittal plane 

and non-zero components of the material tensors:  
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where the single mechanical displacement component U2 is directed along the x2-axis 

in figure 1:  

 

    ( )[ ]tVxnxnkUU ph−+= 3311
0
22 jexp      

( )[ ]tVxnxnk ph−+= 3311
0 jexpϕϕ     (20) 

 

In equation (20), the phase velocity Vph is defined as follows: Vph = ω/k.  

Substituting the mechanical displacement U2 and electrical potential φ of 

equation (20) into equations (19) of motion, the equations of motion can be readily 

written in the well-known tensor form, using corresponding components of the well-

known Green-Christoffel equation [6, 7]: GL22, GL42 = GL24 and GL44. That gives the 

following system of two homogeneous equations, using n3 = k3/k:  
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where  

 

    )1(GL 2
34422 nC +=        

2
33433614164224 )(GLGL neneee +++==       

)1(GL 2
31144 n+−= ε      (22) 

 

In equations (21) and (22), the directional cosines are defined as follows: n1 ≡ 1, n2 ≡ 

0 and n3 = n3. The parameter Vt4 = (C44/ρ)1/2 represents the speed of the bulk SH-wave 

in some particular cases. Setting the determinant of the coefficient matrix in 

equations (21) equal to zero, a suitable Vph satisfying boundary conditions written in 

the following sections and four polynomial roots n3
(p)(Vph) can be determined, with 

which the unknown U2
0 and φ0 can be also determined as functions of the Vph. For 

example, they can be written in the following form, using equations (21) and (22):  

 

42
0 GL=ϕ  and 44

0
2 GL−=U     (23) 

 

Expanding the determinant of matrix in equation (22), the secular equation is 

written as follows:  
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where there are the following non-dimensional values:  

 

( )24
2 1 tpht VVA −=        

)/( 1144
2
16

2 εCeK =        

)/( 1144
2
34

2
1 εCeK =        

 )/()(2 1144361434
2
2 εCeeeK +=       

     )/(]2)[( 11443416
2

3614
2
3 εCeeeeK ++=       

 )/()(2 1144361416
2
4 εCeeeK +=        



 24

Note that K2 is called the static coefficient of electromechanical coupling (CEMC). 

Equation (24) represents the fourth order polynomial for which there is a very 

complicated procedure to determine its roots n3. Therefore, the polynomial roots are 

usually determined numerically. Notwithstanding, it is possible to treat some 

particular cases listed in table 1 in order to significantly simplify the problem for 

analytical investigations. Note that the following equalities e16 = – e34 and e14 = e36 

always occur as shown in figure 2.  

The first case in table 1 concerning propagation direction [100] was treated in 

Ref. [11], where the following equality e16 = e34 = 0 (hence K2 = K1
2 = K2

2 = K4
2 = 0) 

gives GL24 = GL42 = 2en3 with e = e14 = e36 and all completely imaginary roots of 

equation (24) for Vph < Vt. This is true for case 5 in propagation direction [001] and 

the last case in the table. However, case 5 for negative piezoelectric constants e = e14 

= e36 gives the same n3 and negative GL24 = GL42 = – 2en3 resulting in negative φ0 in 

equation (23). Hence, the electrical field E in equation (9) will change its sign. In 

these cases, the speed Vt of the bulk SH-wave is equal to the Vt4. This indicates that 

these waves in propagation direction [100] are not coupled with the electrical 

potential. It is clearly seen from the last term of equation (24) that in any other treated 

case the bulk velocity Vt is equal to the following:  

 
2/12

4 )1( KVV tt +=      (25) 

 

The second particular case listed in table 1 is more complicated than the first and 

can be studied numerically for comparison with the other cases. That is very 

interesting, because here there is an equality of absolute values of all piezoelectric 

constants giving GL24 = GL42 = e(– 1 + 2n3 + n3
2). Therefore, other analogical cases 

4, 6, and 8 in table 1 can be also studied numerically.  

Some evaluations for the third case in table 1 concerning propagation direction 

[101] can be readily done analytically making substitution in equation (24) such as m3 

= 1 + n3
2 and using the piezoelectric constants e16 = – e34 and e14 = e36 = 0, which give 

GL24 = GL42 = e(– 1 + n3
2) for the case. For case 7 in the table there is GL24 = GL42 = 
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e(1 – n3
2) that changes the electrical-field sign similarly to cases 1 and 5 discussed 

above. As the result of such transformations, the equation (24) is written in the 

following simplified form:  
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of which two roots are as follows:  
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giving the following four polynomial roots of equation (24)  

 
)2,1(

3
)4,3,2,1(

3 1 mn +−±=     (28) 

 

Table 1. The piezoelectric constants e14 = e36, e16, and e34 [C/m2] in some highly-

symmetric propagation directions for the cubic crystal Bi12SiO20  

Case Direction Degree e14 = e36 e16 e34 

1. [100] 0o 1.122 0.0 0.0 

2. – ~ 22.5o 0.793 – 0.793 0.793 

3. [101] 45o 0.0 – 1.122 1.122 

4. – ~ 67.5o – 0.793 – 0.793 0.793 

5. [001] 90o – 1.122 0.0 0.0 

6. – ~ 112.5o – 0.793 0.793 – 0.793 

7. [⎯101] 135o 0.0 1.122 – 1.122 

8. – ~ 157.5o 0.793 0.793 – 0.793 

9. [⎯100] 180o 1.122 0.0 0.0 
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Figure 3. The n3 real and imaginary parts along the x3-axis for the propagation 

directions listed in table 1: (a) cases 1, 3, 5, 7, and 9 for Bi12GeO20; (b) cases 2, 4, 6, 

and 8 with the corresponding subscripts “C26” and “C48” for Bi12GeO20  

 

The polynomial roots n3
(1,2,3,4), representing eigenvalues, are shown in figure 3 for the 

cases listed in table 1. Each eigenvalue n3 has its own eigenvector {U2
0, φ0} in 

equation (23) shown in figure 4. Figure 3a compares eigenvalues for cases 1 and 3 

listed in table 1. It is clearly seen that the eigenvalues for direction [100] are 

completely imaginary or real, while they can be complex for direction [101]. As the 

result, the eigenvectors corresponding to direction [100] are completely imaginary or 

real, but they can be complex for direction [101] as shown in figure 4a.  

Also, it is clearly seen in figure 3 that absolute values of all n3 imaginary parts 

begin to decrease with increase in Vph starting at Vph = 0. It is well-known that the 

SAW penetration depth depends on values of Im(n3). For comparison, purely 

imaginary roots for cases 2, 4, 6, and 8 listed in table 1 cannot exist that is clearly 

seen in figure 3b. That statement can be significant in order to choose crystal cuts for 
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finding SAWs. Each eigenvalue n3 shown in figure 3b possesses its own eigenvector, 

of which the real and imaginary parts are drawn in figure 4b.  

Further analyzing the roots for propagation direction [101] in equations (27) and 

(28), it can be found that all complex roots can be calculated, when sign of the 

expression under square root in equation (27) is negative. This fulfills for velocities 

Vph being lower some velocity Vph0 obtained solving the following equation:  

 

( ) 0116 222 =+− KKB     (29) 

 

The velocity Vph0 is defined by the following formula:  

 

40 tKph VaV =  with 2212 KKKaK −+=    (30) 

 

 

Figure 4. The behavior of the eigenvector {U2
0, U4

0 = φ0}: (a) propagation directions 

[100] (bold lines) and [101] (thin lines) for Bi12GeO20; (b) cases 2, 4, 6, and 8 with 

the corresponding subscripts such as “C26”, etc., for Bi12GeO20  
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Figure 5. The dependence of the non-dimensional factor aK on the non-dimensional 

value of static CEMC K2. The function (1 + K2)1/2 is shown for comparison  

 

 

It is clearly seen in equation (30) that the factor aK is a function of the CEMC K2 

shown in figure 5 together with the other function f(K2) = (1 + K2)1/2 from equation 

(25). It is clearly seen in figure 5 that about K0
2 = 1/3 the function aK(K2) approaches 

the function f(K2) = (1 + K2)1/2 giving the following equality: Vph0 = Vt. Hence, only 

complex polynomial roots can exist for Vph < Vph0. The CEMC K0
2 = 1/3 is readily 

calculated by substituting the velocity Vt from equation (25) instead of the Vph in 

equation (29). However, the form of polynomial roots depends on the K2: for K2 < K0
2 

there are all imaginary roots for Vph > Vph0, but a large K2 > K2
0 gives real roots for 

Vph > Vph0. Note that formula (30) represents the velocity Vph0, at which the complex 

roots become completely imaginary for K2 < K0
2. Moreover, the absolute values of all 

four imaginary roots are equal to each other giving the solution Vph0. Indeed, two 

equal negative imaginary roots give the same set of eigenvector components. As a 

consequence, the boundary-condition determinant written in the following section 

will become equal to zero. Note that only complex/imaginary roots with negative 

imaginary parts are chosen in order to have wave damping towards depth of a crystal 

corresponding to negative values of the x3-axis shown in figure 1. For comparison, 

table 2 lists characteristics for some weak piezoelectrics with the cubic symmetry.  
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Table 2. The characteristics of piezoelectric cubic crystals of class ⎯43m. The 

material constants C44, e14, ε11, and ρ are written here following those in Ref. [25]. 

The velocity Vph0 = aKVt4 was calculated using equation (30) for propagation direction 

[101]. The used ZnTe dielectric constant ε11 was announced in Ref. [26]. Noted that 

the SAW velocity VSAW listed in this table for the weak piezoelectrics differs from the 

Bleustein-Gulyaev wave velocity calculated with the following well-known formula: 

VBG = Vt{1 – (K2/[(1 + K2)×(1 + ε11/ε0)])2}1/2 where ε0 = 0.08854×10–10 [F/m]. Some 

of the weak piezoelectrics were also studied in Refs. [39-42]  

Crystal C44, 1010 

N/m2 

e14, C/m2 ε11, 10–10 F/m ρ, kg/m3 K2, % 

GaAs 5.940 – 0.160 1.107 5316 0.389319 

GaP 6.260 – 0.100 0.983 4301 0.162507 

β-ZnS 4.613 0.147 0.735 4091 0.637329 

ZnSe 3.920 0.049 0.779 5264 0.078626 

InSb 3.040 0.080 1.549 5790 0.135911 

ZnTe 3.120 0.0284 0.894 5636 0.028916 

Bi4(GeO4)3 4.360 0.0376 1.417 7120 0.022883 

Bi4(SiO4)3 5.180 0.0830 1.434 6800 0.092742 

Crystal aK Vt4, m/s Vt, m/s VSAW, m/s Vph0, m/s 

GaAs 0.484246 3342.725669 3349.226288 3349.226145 1618.702294

GaP 0.393547 3815.069424 3818.168042 3818.168010 1501.409546

β-ZnS 0.543005 3357.971359 3368.655030 3368.654232 1823.395247

ZnSe 0.330243 2728.884115 2729.956717 2729.956707 901.195778 

InSb 0.376999 2291.382067 2292.938660 2292.938653 863.848699 

ZnTe 0.258597 2352.836803 2353.176957 2353.176955 608.436933 

Bi4(GeO4)3 0.244132 2474.589967 2474.873085181 2474.873085 604.127170 

Bi4(SiO4)3 0.343746 2760.008525 2761.288076 2761.288069 948.741383 
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However, it is commonly thought that it is necessary to account the piezoelectric 

effect only for strong piezoelectric crystals with K2 > 1%. The interesting feature of 

cubic crystals with a weak piezoelectric effect is a slow velocity Vph0 in equation (30), 

depending on both Vt4 and aK. In general, values of the factor aK are confined between 

0.2 and 0.5 for piezoelectrics of class ⎯43m, and a small value of Vt4 (for example, 

Vt4(Tl3TaS4) ~ 687 m/s and Vt4(Tl3TaSe4) ~ 751 m/s [25]) can give a slow Vph0. 

Hence, using the factor aK of formula (30) and figure 3, one can examine that the 

penetration depth in weak piezoelectrics with the cubic symmetry can be comparable 

with that in stronger ones. Note that the Vph0 for cubic piezoelectrics with K2 < 1/3 

must be experimentally verified, because it has “latent” characteristics. In addition to 

table 2, the strong piezoelectrics of class 23 have the following CEMCs: 

K2(Bi12SiO20) ~ 0.141 and K2(Bi12GeO20) ~ 0.113.  

Note that the SAWs cannot be found in cubic crystals with a large K2 > 1/3 in 

the Vph-range: Vph0 < Vph < Vt. That can manifest a strong instability of such 

piezoelectric crystals concerning SH-SAW propagation. Here, there are all complex 

roots for Vph < Vph0, all real roots for Vph0 < Vph < Vt, and one pair of complex 

conjugated roots with two real roots for Vph > Vt. It is thought that a large K2 can be 

observed in complex compounds, as well as in simple ones including cubic 

piezoelectrics. For instance, the classic ferroelectric PbTiO3 has been known to have 

a single ferroelectric tetragonal (T) to paraelectric cubic phase transition with 

increased temperature or pressure. Results of Ref. [27] studying PbTiO3 discuss an 

unexpected tetragonal-to-monoclinic-to-rhombohedral-to-cubic phase transition 

sequence induced by hydrostatic pressure and a morphotropic phase boundary in a 

pure compound. In the transition regions, PbTiO3 can possess huge dielectric and 

piezoelectric coupling constants similar to those observed in the new complex single-

crystal solid-solution piezoelectrics Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) and 

Pb(Zn1/3Nb2/3)O3-PbTiO3 (PZN-PT) which are expected to revolutionize 

electromechanical applications. The complex piezoelectrics, for instance, the most 

widely used piezoelectric material PbZrO3-PbTiO3 (PZT), being ubiquitous in 

modern technology, have piezoelectric coefficients an order of magnitude larger than 
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those of conventional ferroelectric simple compounds [28]. In addition, Ref. [27] 

suggests that the giant piezoelectric effect can be studied in simple systems, because 

this effect as well as the morphotropic phase boundary effect does not require 

intrinsic disorder.  
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CHAPTER III. Boundary Conditions for SH-waves in Monocrystals  

 

Boundary conditions studying SH-waves in monocrystals (h = 0 in figure 1) are 

based on several requirements which must be satisfied. There is the single mechanical 

boundary condition on the normal component of the stress tensor τ32 at x3 = 0 (τ32 = 0) 

where  
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There are two electrical boundary conditions: continuity of the normal component D3 

of the electrical displacements at x3 = 0, namely at the interface between a vacuum 

(D3
f) and the crystal surface, where  
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and continuity of the electrical potential φ at x3 = 0 (φ = φ f) where  
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Therefore, the third-order boundary-condition determinant (BCD3) of a matrix 

can be readily formed from equations (31) – (33), using the weight functions F(0), F(1), 

and F(2) as unknown factors. It is noted that BCD3 can be readily reduced to BCD2 

for finding the Vph, because values of the electrical potential φ and the electrical 

displacement component D3 can be taken to be not independent, for example, see 

Refs. [6, 7, 29]. Once φ is given, a fixed value of D3 is also given. Therefore, two 
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electrical boundary conditions (32) and (33) at the free surface can be written as 

follows:  
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Figure 6. The behavior of the non-dimensional value of determinant BCD2 using the 

material constants of Bi12GeO20: (a) propagation directions [100] and [101] of cases 1 

and 3 listed in table 1; (b) cases 2, 4, 6, and 8 of table 1. Different electrical boundary 

conditions of free surface (see “f”) and surface metallization (“m”) are shown  

 

Figure 6 shows behavior of the determinants corresponding to the cases listed in 

table 1 for different electrical boundary conditions of free surface and surface 

metallization. Figure 6a compares the BCD2 behavior of cases 1, 3, and relevant 

listed in table 1 with more complicated cases 2, 4, 6, and 8 shown in figure 6b. It is 

clearly seen that the BCD2 for direction [101] equals to zero at the velocity Vph0. 

Figure 7 shows the velocity Vt of the bulk acoustic wave (BAW) using different 
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crystal cuts for both Bi12SiO20 and Bi12GeO20 as well as the found solutions Vph0 in 

direction [101].  

 

 

Figure 7. The speeds Vt of the bulk SH-waves in dependence on the propagation 

directions from [100] to [001] for cubic piezoelectric crystals Bi12SiO20 and 

Bi12GeO20  

 

The complete mechanical displacement U2
Σ and electrical potential φΣ are 

written in the plane wave form as follows, using suitable eigenvalues and 

eigenvectors of obtained Vph:  
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The weight functions F(1) and F(2) are readily determined from equation (34) and 

show the following relationship:  
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because two equal eigenvalues n3
(1) = n3

(2) give the same eigenvectors {U2
0(1), φ0(1)} 

and {U2
0(2), φ0(2)}.  
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It is obvious that the weight factors )2()1( FF −=  in equation (36) will zero the 

complete mechanical displacement U2
Σ and electrical potential φΣ in equation (35). 

That means that the Vph0 solution in equation (30) is always obtained and represents a 

“latent” possibility concerning SAW existence in piezoelectric cubic monocrystals, 

supplementing the opinion of Gulyaev written in Ref. [10]. Hence, there is a 

possibility to change boundary conditions that can be achieved by a mass loading in 

order to apply some additional perturbation to the surface of a cubic crystal for 

finding SAWs. Therefore, the following sections relate to studying dispersive SAWs 

in various layered structures consisting of cubic piezoelectrics.  
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CHAPTER IV. Boundary Conditions for SH-waves in Layered Systems  

 

Mass loading such as with a thin film on the free surface of a monocrystal 

significantly complicates the problem of finding SAWs, and one deals here with the 

layered system shown in figure 1. Therefore, boundary conditions for SH-waves must 

be written for two sides of the layer: the layer-substrate interface at x3 = 0 (see figure 

1) and the layer-vacuum interface at x3 = h. It is obvious that equality of the 

mechanical displacements U2 along the x2-axis must be at x3 = 0 (U2
S = U2

L) where  
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Here the superscripts S and L are for the substrate and layer, respectively. The second 

condition on the stress tensor normal component τ32 at x3 = 0 requires continuity 

resulting in τ32
S = τ32

L, where  
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Two electrical boundary conditions at x3 = 0 require continuity of the normal 

component D3 of the electrical displacements (D3
s = D3

l) where  
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as well as continuity of the electrical potential φ (φ S = φ L) where  
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At the free surface x3 = h there is a single mechanical boundary condition τ31
L = 0, 

where  
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as well as one electrical boundary condition, according to Ref. [29]:  

 

[ ] ( )hkkkUkekeFD pL

pL

pLpLLpLpLLLpLLf )(
3

)(

)(
01

)(
333

)(
2

)(
334136

)(
3 jexp )j()( ×−−+= ∑ φεε  (42) 

 

In equations (37) – (42), the index p runs from 1 to 2 for the substrate and from 1 to 4 

for the layer.  

The boundary-condition determinant can be readily formed using equations (37) 

– (42), which will be used for finding SH-SAWs. Such SAWs propagate in the layer 

by damping towards the substrate depth. Also, SAW propagation in piezoelectrics 

can be coupled with the electrical potential, which can be found in a vacuum and 

keeps all information about the propagating SAWs. It is thought that the electrical 

potential amplitude should decrease in a vacuum from the layer free surface. 

Accounting all partial displacement components FS(p) in the substrate and electrical 

one F(0) in a vacuum in addition to the components FL(p) for the layer, the resulting 

waves will be seven-partial. Therefore, the studied boundary-condition determinant 

(BCD) will be called below seven-order BCD7.   

Structures consisting of a layer on a substrate have an additional parameter such 

as the layer thickness h complicating theoretical investigations of wave existence. 

Therefore, it is natural to choose a constant value of h. The non-dimensional value of 

kh is commonly used, where k is the wavenumber in wave propagation direction. 

Various propagation directions and various layered systems are analyzed in figure 8 

for the same value of kh = 1, using the strong piezoelectric cubic crystals Bi12SiO20 
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and Bi12GeO20. Note that the bulk SH-wave speed for Bi12SiO20 is lower than that for 

Bi12GeO20. For instance, in direction [101], they are as follows: Vt
S = Vt(Bi12SiO20) ~ 

1756.104 m/s and Vt
G = Vt(Bi12GeO20) ~ 1760.575 m/s.  

 

 

Figure 8. The comparison of BCD7 behaviors in dependence on the Vph at kh = 1 for 

the cases of free surface (thick lines) and surface metallization (thin lines). (a) 

Propagation direction [101]: “1”, “2”, “3”, “4”, and “5” label the layered systems 

such as the layer of Bi12SiO20(case 7 in table 1) on the substrate of Bi12GeO20(case 3 

in table 1), Bi12SiO20(3)/Bi12SiO20(7), Bi12GeO20(3)/Bi12SiO20(7), 

Bi12GeO20(3)/Bi12SiO20(3), and Bi12SiO20(3)/Bi12GeO20(3), respectively, which are 

the same for (b) showing Vph-range Vph0 < Vph < Vt for purely imaginary roots in 

direction [101]; (c) propagation direction [100] with “1c”, “2c”, and “3c” being for 

the layered systems Bi12SiO20(1)/Bi12GeO20(5), Bi12SiO20(1)/Bi12SiO20(5), and 

Bi12GeO20(5)/Bi12SiO20(1); (d) combinations of the other cases listed in table 1: 

“22d”, “24d”, “26d”, and “2-6d” are for the structures Bi12SiO20(2)/Bi12GeO20(2), 

Bi12SiO20(2)/Bi12GeO20(4), Bi12SiO20(2)/Bi12GeO20(6), and Bi12SiO20(2)/Bi12SiO20(6)  
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It is possible to suggest that some surface waves can be found possessing the Vph 

< Vt
S because Vt

S < Vt
G. Concerning propagation direction [101] in the layered 

systems shown in figures 8a and 8b, some solutions of BCD7 can be obtained for 

different electrical boundary conditions (free surface and surface metallization) only 

in the Vph-range: Vph0 < Vph < Vt
S. The solutions correspond to new dispersive SH-

SAWs, because surface Bleustein-Gulyaev wave cannot exist in piezoelectric cubic 

crystals. The interesting case is the layered systems consisting of the Bi12SiO20-layer 

on the Bi12SiO20-substrate with different polarities (cases 3 and 7 in table 1) in which 

the new dispersive SH-SAWs can be also found. It is thought that this situation can 

be found as a defect of crystal growth.  

The following section discusses dispersion relations for the new SH-SAWs 

propagating in direction [101] of various layered structures. It is clearly seen in 

figures 8a, 8c, and 8d that the BCD7 has large values for small Vph in all possible 

layered systems, and possible solutions can be obtained only when the Vph approaches 

the speed Vt of bulk SH-wave. However, any solutions of surface waves were not 

revealed when the propagation direction corresponds to direction [100] for both the 

cubic crystals, for which the BCD7 behaviors are shown in figure 8c. The same 

negative result was obtained for the propagation directions and layered systems 

shown in figure 8d. Indeed, for the other cases 2, 4, 6, and 8 listed in table 1, the real 

and imaginary parts of complex BCD7 shown in figure 8d change their sign at 

different Vph for all possible structures consisting of the studied cubic crystals. Also, 

an existence possibility of dispersive SAWs, using propagation directions [101] and 

[100] for a layer and substrate, respectively, was not verified assuming that these 

two-layer structures are more complicated. Such investigations can be readily carried 

out in the future by the same method analyzing BCD7 behaviors, if such problems 

will be highlighted for possible applications.  
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CHAPTER V. Numerical Results and Discussions  

 

It is thought that dispersion relations representing dependencies Vph(kh) are the 

most impotent characteristic of dispersive waves. It is obvious that the problem of 

finding of SH-waves in layered systems, using an additional parameter such as the 

layer thickness h, is richer concerning possible obtained results. Figure 9 – showing 

dispersion relations for SH-waves propagating in piezoelectric cubic crystals – 

supports such statement, because it is thought that the new dispersive SH-SAWs can 

be observed in an array of various layered systems.  

Figure 9a introduces results for several layered systems with the Bi12SiO20-

substrate, whereas figure 9b introduces additional results for two possible 

configurations with the Bi12GeO20-substrate. SH-waves propagate in direction [101] 

or relevant (see cases 3 and 7 in table 1) for both a layer and substrate in all the cases, 

using the electrical boundary conditions of free and shorted surfaces to receive more 

information about the new dispersive waves.  

It is clearly seen in figures 9a and 9b that the new SH-SAWs possess the single 

mode in each case with the following condition for the phase velocity Vph < 

Vt(Bi12SiO20) < Vt(Bi12GeO20). Also, such peculiarities as the non-dispersive 

Zakharenko waves [30] corresponding to all the extreme points of the phase velocity 

Vph versus the non-dimensional value of kh are clearly seen in figure 9. Therefore, the 

existence of such type of the non-dispersive waves at these points in suitable layered 

structures allows utilization of the structures instead of monocrystals in different 

SAW technical devices. This was also discussed in Ref. [30]. Note that two extreme 

points of the function Vph(kh) can be found in figure 9. This is similar to the in-plane-

polarized Rayleigh type waves studied in Ref. [31], in which two non-dispersive 

Zakharenko type waves can be also found.  

Using the Bi12SiO20-substrate, the following layered systems in figure 9a can be 

discussed:  
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Figure 9. The dispersion relations in various layered systems consisting of the cubic 

crystals Bi12SiO20 and Bi12GeO20. (a) The Bi12SiO20-substrate was used: “1f”, “2f”, 

and “3f” are for the case of free surface and the layered systems Bi12GeO20(case 7 in 

table 1)/Bi12SiO20(case 3 in table 1), Bi12GeO20(3)/Bi12SiO20(3), and 

Bi12SiO20(7)/Bi12SiO20(3), respectively; “1m”, “2m”, and “3m” are for the case of 

surface metallization and the corresponding layered systems. The left and right 

insertions show the mode beginnings with the single point denoting the first non-

dispersive Zakharenko wave. (b) The Bi12GeO20-substrate was used: “4f” and “4m” 

are for the layered system Bi12SiO20(3)/Bi12GeO20(7), and “5m” is for 

Bi12SiO20(3)/Bi12GeO20(3). The non-dispersive Zakharenko waves correspond to 

extreme points of the function Vph(kh)  

 

 

1) The first structure consists of the Bi12GeO20-layer rotated according to case 7 
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1756.0896 m/s [32, 37] < Vt(Bi12SiO20) ~ 1756.104 m/s, comes to the minimum value 

of ~ 1731.650 m/s at kh ~ 1.336, and approaches the non-dispersive interfacial-wave 

velocity ~ 1747.138 m/s [37] for a large value of kh (kh → ∞). However, the different 

Vph-behavior occurs for the shorted-case mode, which begins with the velocity 

Vph
m0(Bi12SiO20) ~ 1742.609 m/s [32, 37] at zero kh and approaches the same value of 

~ 1747.138 m/s [37] for kh → ∞. The Vph has the maximum value of ~ 1742.870 m/s 

at small kh ~ 0.08 shown by the point in the right insertion in figure 9a and the 

minimum value of ~ 1723.242 m/s at kh ~ 2.26. It is thought that all the Vph extreme 

points can be readily found in experiments by a method based on sign evaluation of 

the derivative dVph/dkh. This was also discussed in Ref. [18].  

 

2) For the Bi12GeO20(3)/Bi12SiO20(3) structure, the free-surface case Vph 

originating with the Vph
f0 at zero kh increases and reaches Vt(Bi12SiO20) at kh ~ 0.27. 

This is shown in the left insertion in figure 9a. The same qualitative behavior occurs 

for the shorted-case mode, which originates with the SAW velocity Vph
m0(Bi12SiO20) 

~ 1742.609 m/s [32, 37] at kh = 0 and increases to the SAW velocity Vph
m1 

(Bi12GeO20) ~ 1751.469 m/s [32, 37].  

 

3) Probably, the most interesting configuration is Bi12SiO20(7)/Bi12SiO20(3), in 

which the same material is used for both the layer and substrate applying two 

possible polarities (possible defect of crystal growth). Indeed, here there occurs the 

open-surface mode beginning with the velocity Vph
f0 at kh = 0, and the Vph achieves 

the velocity Vph
m0 for kh → ∞. The minimum Vph has the value of ~ 1726.235 m/s at 

kh ~ 1.37. It is natural that the metallized-surface mode also starts with the velocity 

Vph
m0 at zero kh. Notwithstanding, it does not return to the Vph

m0 interrupting at kh ~ 

16.379. The minimum Vph-value for this interrupted mode is ~ 1713.989 m/s at kh ~ 

2.32.  

The following reverse configurations with the Bi12GeO20-substrate shown in 

figure 9b can be also analyzed:  
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4) For the Bi12SiO20(3)/Bi12GeO20(7) configuration with Vt(layer) < Vt(substrate), 

the free-surface mode in figure 9b commences with Vph = Vt(Bi12SiO20) at kh ~ 0.159, 

but not at zero kh. That gives the “silence” kh-zone for the waves. With increase in 

kh, the Vph runs through the minimum value of ~ 1734.207 m/s at kh ~ 1.49. For large 

values of kh > 30, the Vph approaches the interfacial-wave velocity ~ 1747.138 m/s 

[37] also calculated for the Bi12GeO20(7)/Bi12SiO20(3) structure. The shorted-surface 

mode originates with Vph(kh = 0) = Vph
m1 and, going through the minimum value of ~ 

1720.372 m/s at kh ~ 2.5, returns up to the velocity Vph
m0 for kh → ∞.  

 

5) A free-surface mode does not exist for the Bi12SiO20(3)/Bi12GeO20(3) 

configuration. However, the single mode for the shorted-surface case begins with the 

velocity Vph
m1 at zero kh and decreases to the velocity Vph

m0 for kh → ∞. Note that the 

mode behavior is reverse to that for the reverse configuration: 

Bi12GeO20(3)/Bi12SiO20(3).  

 

It is thought that the Bi12GeO20(3)/Bi12GeO20(7) structure will have similar 

dispersion relations obtained for the Bi12GeO20(3)/Bi12GeO20(7) structure. Concerning 

the studied different structures, it is obvious that each structure is unique that can be 

useful in defectoscopy of grown crystals and interface inspection of two-layer 

structures.  

For comparison, Ref. [9] particularly discusses a similar case when the layer and 

the substrate are identical LiNbO3 of class 3 m, except that they are polarized in 

opposite directions. Here, the phase velocities Vf0 and Vs0 for the surface electrically 

free and shorted conditions, respectively, were also obtained when the layer is in the 

absence of initial stresses. In Ref. [9], dispersive BG-waves were calculated in the 

layered piezoelectric LiNbO3-structure possessing a single mode. Their results show 

that for a given value of kh, the phase velocity of the free-surface case is higher than 

that of electrically shorted case. Also, in the limit of kh → 0 the wave mode tends to 

the surface BG-wave in a piezoelectric half-space with the phase velocities Vf0 ~ 4538 

m/s for the free-surface case and Vs0 ~ 4203 m/s for the shorted-surface condition. 
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With increasing the value of kh from zero, the velocities Vf0 and Vs0 rapidly decrease 

to their minimum Vph-values corresponding to the non-dispersive Zakharenko type 

waves. With increasing the value of kh to 3, the velocities Vf0 and Vs0 asymptotically 

tend to 4202 m/s.  

The non-dispersive Zakharenko waves [30], representing extreme points of the 

function Vph(kh) in dispersion relations for dispersive waves, can be described by the 

following formulas, using the following formula d(u/v)/dx = (vdu/dx – udv/dx)/v2 

which is well-known as Leibniz’s formula:  
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The relationship (43) between the Vph-derivatives shows that there is 

independence of the Vph on both the angular frequency ω and the wavenumber k in 

the same k-ω-domain with Vg ≠ 0. The formulas (44) and (45) clarify that formula 

(43) is satisfied when the phase and group velocities are equal in dispersion relations 

for the wavenumber k ≠ 0 and k < ∞. It is thought that the case of Vg = Vph → 0 (Vg = 

Vph = 0) represents the Bose-Einstein condensation (BEC). It is possible to show that 

for the BEC near zero, the following relationship Vg ~ 2Vph (Vg = 2Vph) occurs for a 

free quasi-particle propagating in a vacuum. Therefore, the BEC as dispersive waves 

can correspond to inflection points of both the Vg and Vph.  

It is possible to evaluate the coefficient of electromechanical coupling (CEMC) 

Kc
2 of the new dispersive SH-SAWs for some interesting layered systems, for which 

the dispersion relations are shown in figure 9. For the Bi12SiO20(7)/Bi12SiO20(3) 

structure with different polarities shown in figure 10, the Kc
2 approaches the 

maximum value of ~ 2% at kh ~ 4 to 5. Note that the Bi12SiO20(7)/Bi12SiO20(3) and 

Bi12SiO20(3)/Bi12SiO20(7) structures show the same dispersion relations, and 
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therefore, the same dependencies Kc
2(kh). It is also noted that the Kc

2 is interrupted 

for the structures at Kc0
2 (khc ~ 16.378) ~ 0.27% due to the mode interruption at khc 

for the case of surface metallization. When the Bi12SiO20-layer is substituted by the 

Bi12GeO20-layer with the same polarity to form the structure 

Bi12GeO20(7)/Bi12SiO20(3) with Vt(Bi12GeO20) > Vt(Bi12SiO20), the Kc
2 has the 

maximum value slightly larger than 1.43% and smaller than Kc
2(kh → 0) ~ 1.54%, 

and approaches zero already at kh = 30. This can manifest that the new dispersive 

SH-SAWs at large values of kh > 30 behave as waves propagating in non-

piezoelectric crystals with zero Kc
2. This occurs as soon as the Vph for the case 

reaches the interfacial-wave velocity Vin1 ~ 1747.138 m/s [37] which is unique for the 

structure. The value of Vin1 is significantly larger than both values of Vt
[100](Bi12SiO20) 

~ 1643 m/s and Vt
[100](Bi12GeO20) ~ 1668 m/s. Omitting the piezoelectric effect in the 

calculations for direction [101], one can also find that Vt
[101] = Vt

[100].  

 

 

Figure 10. The coefficient of electromechanical coupling (CEMC) Kc
2 (%) calculated 

with formula (46) for the layered systems such as Bi12SiO20(case 7 in table 

1)/Bi12SiO20(case 3 in table 1), Bi12GeO20(7)/Bi12SiO20(3), and 

Bi12SiO20(3)/Bi12GeO20(7) denoted by “a1”, “a2”, and “b”, respectively  

 

However, treating the reverse configuration to Bi12SiO20(3)/Bi12GeO20(7), 

namely when the Bi12SiO20-substrate is substituted by the Bi12GeO20-one to form the 

Bi12SiO20(3)/Bi12SiO20(7) structure, the Kc
2 also achieves the maximum value of ~ 2% 

at kh ~ 4 to 5. In this Bi12SiO20(3)/Bi12GeO20(7) structure in which several modes of 

Love type waves can also exist from kh = 0 to kh = 200, the Kc
2 approaches some 
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relatively small value of 0.5% for a large value of kh > 30 (see figure 10). That 

indicates some coupling with the electrical potential and can be used in addition to 

the modes of the Love waves. It is clearly seen in the figure that in these three 

calculated cases, the Kc
2 equals to zero at kh ~ 0.5 to 0.7.  

The CEMC shown in figure 10 was calculated for the single modes of the new 

dispersive SH-SAWs with the following well-known formula:  

 

f

mf
c V

VV
K

−
= 22     (46) 

 

where Vf and Vm are the velocities for the free and metallized surfaces, respectively. It 

is noted that the Kc
2 for the other configurations shown in figure 9 was not calculated, 

because the velocities for the cases of free surface are equal to the speed Vt
S = 

Vt(Bi12SiO20) or are slightly below Vt
S at small values of kh. That can mean 

disappearance of SAW dispersive modes. Note that characteristics of the new non-

dispersive SAW propagating in the monocrystals such as Bi12SiO20 and Bi12SiO20 

were investigated in Ref. [32].  

The layered structures, consisting of piezoelectric cubic crystals GaP and GaAs, 

can be readily fabricated, for example, see the work [33] on properties of interface 

and relaxation properties of grown GaP/GaAs structures by chemical beam epitaxy. 

The production technology of the structures is continuously improved. The crystals 

are widely used to fabricate multi-layered structures such as photonic crystals and 

superlattices. It is thought that they are also suitable for study of a possible existence 

of the new dispersive SAWs propagating in layered structures like GaP/GaAs. Also, 

it is noted that GaAs is used as a substrate material, for instance, in the layered 

structure ZnO/GaAs [34], which are currently of a great interest for design of 

integrated SAW filters. Indeed, GaP can be also used as a substrate material. In 

addition to thin films made from hexagonal ZnO and cubic ZnS possessing low 

toxicity and being inexpensive and easily obtained, thin films made from the cubic 

crystal ZnTe (see table 2) can be also used in layered structures for various 
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applications. Also, these materials have continuously attracted attention as potentially 

useful active optoelectronic materials.  

 

 

 

Figure 11. The Re(BCD11) behavior for the multi-layered structures 

GaAs/GaP/GaAs (see “A”) and ZnTe/GaP/GaAs (see “Z”) in dependence on the Vph, 

using both electrical boundary conditions of free surface (thick lines) and surface 

metallization (thin lines). Here there is Vph0(GaP) < Vph < Vt(GaAs) for 

GaAs/GaP/GaAs and Vph0(GaP) < Vph < Vt(ZnTe) for ZnTe/GaP/GaAs (see table 2). 

The following parameters were set: kh = 1, h1/h = 1 and h2/h = 3 where h1 is the layer 

thickness for the first layer (GaP) and h2 is the one for the second layer (GaAs or 

ZnTe). For comparison, the Re(BCD7) behavior for the GaP/GaAs structure with kh 

= 1 is also shown  

 

 

Therefore, any existence of the new dispersive SAWs was verified in such 

layered systems as GaP/GaAs, GaAs/GaP, ZnTe/GaAs, and GaAs/ZnTe. It is thought 

that the new dispersive SAWs cannot be found in such layered systems and in some 

multi-layered structures (see figure 11) consisting of the weak piezoelectrics. Note 

that for some layered structures consisting of the weak piezoelectrics listed in table 2, 

the velocity VSAW listed in the table is also found for very small values of kh ~ 10–5. 

Notwithstanding, these SAW solutions cannot be found already at kh ~ 10–4. Also, it 

is possible to investigate the new SAW existence in layered systems consisting of 
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non-cubic crystals by studying suitable propagation directions, in which the surface 

Bleustein-Gulyaev waves cannot exist. Ref. [35] discusses some cases when the 

surface BG-waves cannot exist in crystals of hexagonal class 622 and tetragonal class 

422. Therefore, theoretical investigations concerning non-cubic crystals can be 

reported in the future.  
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CHAPTER VI. Love Type Waves  

 

Concerning the existence of the seven-partial Love type waves (LTW7) 

propagating in the configuration of the Bi12SiO20-layer on the Bi12GeO20-substrate, 

the LTW7 several modes are shown in figure 12 for two possible cases such as 

normal polarity for Bi12SiO20(3)/Bi12GeO20(3) and different polarity for 

Bi12SiO20(3)/Bi12GeO20(7), using different electrical boundary conditions. It was 

found that the first non-shorted-case LTW7-mode for Bi12SiO20(3)/Bi12GeO20(3) 

begins with some velocity V1 ~ 1760.565 m/s slightly lower than the speed 

Vt(Bi12GeO20) ~ 1760.575 m/s. Note that the velocity difference ΔV = Vt – V1 ~ 10 

mm/s is significant, because the calculation accuracy was set about 1 μm/s. It is 

thought that the unshorted-case LTW7-modes for Bi12SiO20(3)/Bi12GeO20(7) start 

with the second mode as shown in figure 12, and the first mode looks like it can only 

start outside the positive values of kh. This can mean that it does not exist similar to 

the first shorted-case LTW7-modes for both the Bi12SiO20(3)/Bi12GeO20(3) and 

Bi12SiO20(3)/Bi12GeO20(7) structures. The beginnings of the all existing modes in the 

kh-range 0 < kh < 200 are listed in table 3. It is clearly seen in the table that the 

higher-order mode beginnings for Bi12SiO20(3)/Bi12GeO20(7), starting with the second 

modes of shorted and non-shorted cases, are shifted towards the smaller values of kh 

with the constant kh-step such as khs ~ 12 relative to the corresponding those for 

Bi12SiO20(3)/Bi12GeO20(3).  

It is also obvious, using both figure 12 and table 3, that a shorted-case mode 

starts at a smaller value of kh in comparison with a corresponding original kh-value 

of non-shorted-case mode providing the usual relationship Vs1/Vf1 < 1. Here, Vs1 and 

Vf1 are the velocities for shorted and non-shorted cases at the same suitable value of 

kh1, at which both modes exist. This indicates that all the LTW7 modes are very 

sensitive to an external perturbation applied to the free surface, which is widely used 

for sensor applications. It is also noted that the unusual behavior of the LTW7 lowest-

order mode of the shorted case is shown by the empty points in figure 12 for 
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Bi12SiO20(3)/Bi12GeO20(7). The mode starts with the velocity Vt(Bi12GeO20) at some 

kh0 ~ 9.61 and achieves the bulk SH-wave velocity Vt(Bi12SiO20) already at kh ~ 11.7.  

 

Table 3. The kh-positions of mode beginning for various layered systems  

Mode 

number 

Bi12SiO20(3)/ 

Bi12GeO20(3), 

free surface 

Bi12SiO20(3)/ 

Bi12GeO20(3), 

metallized surface 

Bi12SiO20(3)/ 

Bi12GeO20(7), 

free surface 

Bi12SiO20(3)/ 

Bi12GeO20(7), 

metallized surface

1 0.0 - - - 

2 30.88 21.63 18.88 9.61 

3 62.30 53.05 50.30 41.05 

4 93.72 84.47 81.72 72.47 

5 125.14 115.89 113.14 103.89 

6 156.56 147.31 144.56 135.31 

7 187.98 178.73 175.98 166.73 

     

 

 

It is also possible to discuss that a large kh-“silence” zone occurs for both the 

electrical boundary conditions in the Bi12SiO20(3)/Bi12GeO20(7) structure, see figure 

12. It is natural that for very large values of kh, the first mode of the unshorted case 

and all the higher-order modes of the treated cases approach the speed Vt(Bi12SiO20) ~ 

1756.104 m/s. It was also found that each following mode is equally distant from the 

corresponding previous mode with the kh-step: khs0 ~ 31.42, excluding the unusual 

modes such as the first mode starting at kh = 0 and the shorted-case mode starting at 

kh0 ~ 9.61 for the Bi12SiO20(3)/Bi12GeO20(7) structure listed in table 3. For 

comparison, the paper [36] by Kessenikh et al. discusses LTW7 propagation in 

layered systems, consisting of an isotropic layer on a transversely-isotropic substrate 

of classes 6, 4, 6 mm, 4 mm, 622, and 422. In Ref. [36], they introduced the dynamic 

CEMC KD
2 depending on the non-dimensional value of kh. They also discussed the 

possible cases when the KD
2 sign is positive or negative, as well as when the KD

2 sign 
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is changed at some critical kh with increase in the value of kh. Applying their 

theoretical results to the studied layered systems in this paper, it is possible to discuss 

that the KD
2 is different for the Bi12SiO20(3)/Bi12GeO20(3) and 

Bi12SiO20(3)/Bi12GeO20(7) structures, because the first non-shorted LTW7-mode for 

Bi12SiO20(3)/Bi12GeO20(3) begins with V1 < Vt(Bi12GeO20) and, because there is the 

kh-“silence” zone for the LTW7 propagating in the Bi12SiO20(3)/Bi12GeO20(7) 

structure. Note that the “silence” zone also occurs for the new SH-SAWs propagating 

in the Bi12SiO20(3)/Bi12GeO20(7) structures.  

 

 

Figure 12. (a) The LTW7 several modes. The thick and thin lines represent the cases 

of free and metallized surfaces, respectively, for the layered systems consisting of the 

layer of Bi12SiO20 (case 3 in table 1) on the substrate of Bi12GeO20 (case 3 in table 1). 

The filled and empty cycles represent the cases of free and metallized surfaces for 

Bi12SiO20(3)/Bi12GeO20(7). (b) The boundary-condition determinants (BCD7) at kh = 

200: “f” and “m” are for the free and metallized surfaces, and “33” and “73” are for 

the layered systems Bi12SiO20(3)/Bi12GeO20(3) and Bi12SiO20(7)/Bi12GeO20(3)  
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CONCLUSION  

 

These theoretical investigations of SH-SAW existence in piezoelectric cubic 

crystals when the SAWs propagate in direction [101] perpendicular to an even-order 

symmetry axis of a piezoelectrics demonstrated the following results:  

the surface Bleustein-Gulyaev waves cannot exist in piezoelectric cubic 

monocrystals that confirms Gulyaev’s statement recently written in Ref. [10]. Indeed, 

the new surface SH-waves called the ultrasonic surface Zakharenko waves (USZWs) 

can propagate in cubic piezoelectrics [32] and cubic piezomagnetics [38], which 

differ from the surface Bleustein-Gulyaev waves;  

the new dispersive SH-SAWs can be found in various layered structures 

consisting of a layer on a substrate, for instance, in strong piezoelectrics such as 

Bi12SiO20 and Bi12GeO20;  

it is thought that such dispersive SH-SAWs cannot be solidly revealed in the 

layer-on-substrate structures using weakly-piezoelectric cubic crystals such as GaAs, 

GaP, and ZnTe. The existence of the new SH-SAW was also verified by studying 

multi-layered structures consisting of the weak piezoelectrics: GaAs/GaP/GaAs and 

GaAs/GaP/ZnTe.  

Also, surface SH-waves propagating in direction [100] were not found studying 

various layer-on-substrate structures consisting of Bi12SiO20 and Bi12GeO20, as well 

as in the other directions listed in table 1 for both materials. This indicates that 

propagation direction [101] is unique concerning the new SH-SAW existence, using 

different electrical boundary conditions of free surface and surface metallization for 

strong piezoelectric cubic crystals.  

The seven-partial Love type wave (LTW7) can also exist in the 

Bi12SiO20/Bi12GeO20 layered system with Vt(Bi12GeO20) > Vt(Bi12SiO20) and in the 

same structures with the other possible polarity at the layer-substrate interface. It is 

thought that the polarity phenomenon as an interfacial defect can be readily 

distinguished in manufactured layered structures. Also, it was found that the LTW7 
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mode beginnings for the neighbour modes are equidistant from each other. It was also 

found that the LTW7 phase velocity is very sensitive to any change in the crystal 

polarity (different electrical boundary conditions). This can be used for filter and 

sensor applications.  

The theoretical investigations of the two-layer systems described in this work 

can be also applied to layered systems consisting of cubic piezomagnetics, because 

piezoelectrics and piezomagnetics can be described in the same way following Ref. 

[43]. However, the magnetoelectrical effect must be accounted when a piezoelectrics 

and a piezomagnetics are used to create piezoelectric/piezomagnetic laminated 

composites. Some works on the subject are cited in Refs. [43-57]. It is also worth 

noting that the recent book in Ref. [57] acquaints theoreticians and experimentalists 

with several new hear-horizontal surface acoustics waves (SH-SAWs) in 

piezoelectromagnetics of class 6 mm.  
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