This theoretical work has the purpose to thoroughly investigate the
problems of shear-horizontal (SH) interfacial acoustic wave propagation
guided by the common interface between two dissimilar
piezoelectromagnetic hexagonal half-spaces of class 6 mm. At the
interface, the mechanical, electrical, and magnetic boundary conditions
can support the interfacial SH-wave propagation. The equality of the
mechanical displacements and the normal components of the stress tensor
(mechanically free interface) were used as the mechanical boundary
conditions. The electrical and magnetic boundary conditions can include
the electrically closed or electrically open interface, magnetically closed or
magnetically open interface, and the others. As a result, twenty two new
interfacial SH-waves can propagate in such two-layer structures. Their
propagation speeds can be evaluated using the obtained explicit forms and
the corresponding existence conditions. Some sample calculations were
performed for PZT-Terfenol-D and BaTiO3-CoFe204 composites. The
results can be useful for complete understanding of wave processes in
two-phase laminated composites in acoustoelectronics and optoelectronics.
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PREFACE

This theoretical work has the purpose to thoroughly investigate the problems of
shear-horizontal (SH) interfacial acoustic wave propagation guided by the common
interface between two dissimilar piezoelectromagnetic hexagonal half-spaces of class
6 mm. At the interface x; = 0, the mechanical, electrical, and magnetic boundary
conditions can support the interfacial SH-wave propagation. The equality of the
mechanical displacements and the normal components of the stress tensor
(mechanically free interface) were used as the mechanical boundary conditions. The
electrical and magnetic boundary conditions can be the electrically closed or
electrically open interface, magnetically closed or magnetically open interface, as
well as gol = guH, D;' = D", 1//I = 1//”, and By' = By" at x; = 0 where o, D3, w, and B;
stand for the electrical potential, electrical displacement component, magnetic
potential, and magnetic flux component, respectively, and the superscripts “I”’ and
“IT” signify the first and second piezoelectromagnetic half-spaces.

As a result, it was found that as many as twenty two new interfacial SH-waves
can propagate in such two-layer structures. Their propagation speeds can be
evaluated using the obtained explicit forms and the existence conditions. The sample
calculations were performed for some cases when PZT-Terfenol-D and BaTiOs—
CoFe,0, composites are used. It is thought that some of the obtained expressions can
be also useful for the problems of interfacial SH-wave propagation along the
interface between single-phase materials such as piezoelectrics and piezomagnetics.
It is obvious that the obtained results can be useful for complete understanding of
wave processes in two-phase laminated composite materials with the hexagonal (6
mm) symmetry in acoustoelectronics, acoustooptics, and optoelectronics. It is
expected that the obtained results can be utilized in fabricating smart materials in the
microwave technology. It is thought that the electromagnetic acoustic transducers
(EMATS) which are used for investigations of SH-SAW propagation problems can be
also exploited for studies of propagation problems of these new interfacial SH-waves.
PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.1v, 68.60.Bs, 74.25.Ld, 74.25.Ha,
75.20.En, 75.80.+q, 81.70.Cv



COMMENTS BY THE AUTHOR

This theoretical work was carried out as a research activity existing in the
International Institute of Zakharenko Waves (IIZWs). It is expected that this work
can cause an interest for researchers and students coping with the acoustic wave
propagation in the transversely-isotropic piezoelectromagnetics. It describes a
complicated problem such as the wave propagation guided by the interface between
two solid half-spaces representing two transversely-isotropic piezoelectromagnetics.
It is thought that knowledge of wave properties of such complicated system
consisting of two piezoelectromagnetics can be also beneficial to design of smart
devices, sensors, actuators, etc. Also, it can represent an interest in constitution of
piezoelectromagnetic laminate composites in the microwave technology and non-
destructive testing of the composites. This theoretical research can be also useful for
the aerospace industry which calls for innovative smart composite materials.
Therefore, it is very important to completely understand wave properties of different
composites.

This work studies propagation phenomena of the shear-horizontal (SH)
interfacial acoustic waves in the layered system consisting of two transversely-
isotropic piezoelectromagnetics of class 6 mm. This studying subject relates to the
disciplines of applied physics and electromagnetic engineering. In physics, ordinary
elastic motions in crystals are called acoustic modes. The descriptive term ”acoustic”
is used rather than elastic”. This is useful because it allows one to distinguish
acoustic and optical modes from each other. The optical modes involve internal
degrees of freedom within a crystal unit cell. The term acoustic” also reflects
common terminology among researchers and engineers engaged in developing elastic
wave devices for radar and communication systems. This arena of technological
development has been strongly influenced by the philosophy, concepts, and

techniques of microwave electromagnetics. This is also known as microwave
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acoustics. Consequently, employment of the term "acoustic" accurately describes the
aim and scope of the book.

The International Institute of Zakharenko Waves (IIZWs) was recently created to
support researches on different Zakharenko waves, as well as for monitoring the non-
dispersive Zakharenko type waves in complex systems such as layered and quantum
systems. Also, the [IZWs research is focused on treatments of many complex systems
in which dispersive waves can propagate. The well-known examples of dispersive
waves are Love and Lamb type waves. The Rayleigh and Bleustein-Gulyaev type
waves propagating in layered systems can be also dispersive. The International
Institute of Zakharenko Waves also has an interest in different applications of the
acoustic waves for signal processing (filters, sensors, etc.) and the structural health
monitoring. There are currently more than twenty research papers and books relevant
to the [IZWs. These research works also cover some problems of the propagation of
the well-known Love, Lamb, Rayleigh, and Bleustein-Gulyaev type waves and
discovered new wave phenomena.

It is worth noticing that the IIZWs possessively takes all the planets and smaller
natural space bodies in the space outside the Solar System to develop both the IIZWs
and the planets concerning economics, ecology, and population. Also, it is thought
that this is necessary in order to exclude any sale of the planets and their surfaces by
any human or other. This activity of the IIZWs was also created because of some
problems to find a spot for the [IZWs on Earth. Note that the single person, namely
Mr. Dennis Hope from the United States possesses the planets in the Solar System
(but Earth) who sells surfaces of the planets to individuals. It is obvious that the
monetary experiment on Earth during thousand years demonstrated a weak power of
the financial system to avoid financial problems which cyclically happen. As a result,
the following question presents in the air: what is the modern money? It is obvious
that monetary systems are coupled only with humans who have given power to each
other, but not with any space body such as a planet or star. It is apparent that humans
depend on money, but not planets and stars. Indeed, planets and stars are leaving their

own lifetimes and their ways of life do not depend on human activities measured in



money. Therefore, money can exist only together with the human civilizations. It is
not clear that the other civilizations can evaluate their activities in the same way
similar to the human civilization does on Earth. Nothing is soundly known about that.
It is also noted that only several thousand planets orbiting their own stars can be
currently observed in the Star Systems which are situated relatively near the Solar
System. This does not mean that only several thousand planets can exist outside the
Solar System we can observe. It is expected that in average ten planets can orbit each
star of enormous number of Star Systems in our Universe. It is thought that our

. 999
Universe can accumulate more than 107 stars.

Aleksey Anatolievich Zakharenko
Krasnoyarsk, Russia, 2012

(E-mail: aazaaz@inbox.ru)
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INTRODUCTION

It is well-known that the simplest example of the shear-horizontal surface
acoustic waves (SH-SAWs) is the dispersive Love wave. In 1911, A.E.H. Love [1]
has treated a problem of the wave propagation in the two-layer system consisting of a
thin film deposited on a substrate assuming that both materials are isotropic. He
found that such wave can be guided by the thin film and damp towards the depth of
the substrate. The Love wave displacement is perpendicular to both the propagation
direction and the surface normal (anti-plane polarization.) There is also the following
existence condition for the dispersive Love wave: the speed of the shear-horizontal
bulk acoustic wave (SH-BAW) for the thin film should be smaller than that for the
substrate. Therefore, it is possible to notice that the Love type wave (LTW)
represents a hybridization of these two SH-BAWs for the thin film and the substrate
because the LTW phase velocity is localized between these two SH-BAWSs. The
LTW can only exist in the layered systems and cannot propagate in monomaterials.

It is also well-known that three BAWSs can exist in solids such as monocrystals
and isotropic monomaterials. It is thought that the reader can reach the famous works
cited in Refs. [2-8]. These works are useful to find out more about BAWs and SAWs
and their applications. Three BAWs are distinguished as follows: the SH-BAW,
shear-vertical BAW, and longitudinal BAW. It is worth noting that the SV-BAW and
the LBAW can be also hybridized in order to form a SAW. This problem of the SAW
propagation guided by the free surface of an isotropic medium was first studied in
1885 by Lord Rayleigh [9] in connection with the problem of earthquakes. The
SAWs called the Rayleigh type waves (RTW) have displacements in the sagittal
plane (in-plane polarization) and can exist in isotropic media, monocrystals, and
layered systems. Concerning the RTW propagation in isotropic media and crystals,
one can find the RTW existence conditions discovered in the recently published

paper cited in Ref. [10]. The conditions are written in explicit forms. Dispersive
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RTWs propagating in the layered systems were also studied by the author in Refs [11,
12], of which the second studies the piezoelectric case and is available in an on-line
open access.

To study anisotropic media is frequently a very complicated business. It is well-
known that the phase velocities (V,;) of the elastic waves propagating in isotropic
media do not depend on the propagation direction. In general, natural solids are
anisotropic, namely V,, depends on the propagation direction in crystals. The
propagation problems of BAWs and SAWs can be significantly complicated in the
case when a crystal possesses the piezoelectric or piezomagnetic properties. This is
also true for the SH-BAWSs and SH-SAWs. However, there are piezoelectrics called
the transversely isotropic materials. Some of them possess the hexagonal symmetry
of class 6 mm. Using the piezoelectrics of this class, Bleustein [13] and Gulyaev [14]
in 1960s have discovered the new SH-SAW guided by the free surface of the
transversely isotropic piezoelectrics when the propagation direction is perpendicular
to the sixfold axis of crystal symmetry. This new SH-SAW called the surface
Bleustein-Gulyaev (BG) wave is now well-known and can be treated as instability of
the SH-BAW in piezoelectrics. This is also true for piezomagnetics. It is necessary to
state that piezoelectrics and piezomagnetics represent the single-phase materials and
they are used for transducer applications [15]. It is also indispensable to mention that
the BG-wave can be dispersive [16] when the layer-on-substrate structure is treated
and the LTW can also exist in the layered systems [17-20] consisting of
piezoelectrics. It is also noted that the LTWs are widely used in dispersive SAW
filters and sensors, and LTW SAW devices can have the highest sensitivity [21-24].
Some reviews on the subject can be found in Refs. [25-30] and the properties of
crystals are perfectly described in excellent and classical books [31, 32].

To complicate the problem of the wave propagation, it is possible to treat two-
phase materials. These materials can possess both the piezoelectric and
piezomagnetic phases and are therefore called piezoelectromagnetics. In 1990,
Al’shits and Lyubimov [33] have performed a crystallographic study of crystal

classes. They have the purpose to conveniently describe the properties of crystals and
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textures as well as co-existence of piezoelectricity and piezomagnetism. As a result,
they demonstrated that the two-phase materials such as the transversely isotropic
piezoelectromagnetics of class 6 mm can exist. Also, piezoelectromagnetics of class 6
mm can represent composite materials. The measured material characteristics of the
piezoelectromagnetic composites of class 6 mm such as BaTiO;-CoFe,0, are given in
Refs. [34, 35]. The following material parameters can be measured in dependence on
the percentage volume fraction (VF) of the piezoelectric phase (BaTiO;) in the
BaTi0;-CoFe,0, composites: the elastic stiffness constant C, piezoelectric constant e,
piezomagnetic coefficient /4, dielectric permittivity coefficient &, magnetic
permeability coefficient x4, and electromagnetic constant a. Also, it is natural that a
two-phase composite can have an average mass density p. Also, it is worth
mentioning that the piezoelectromagnetics (PEM) possess the magnetoelectric (ME)
effect that can be evaluated by measurements of the magnetoelectric constant a. In
PEM composite systems, a linear behavior is usually observed by means of AC
magnetic field application. The non-linear ME effect can be also observed in the case
of bias magnetic field application. The value of a can be expressed in s/m in SI units.
However, it represents a non-dimensional value in Gaussian units. The value of a is
very small and can usually reach only several ps/m. For instant, the following value
of a is given for crominium oxide: a(Cr,O3) = 4.13 ps/m [36]. The ME coefficients
for some monocrystals can have significantly larger values: o = 30.6 ps/m for
LiCoPOQOy4 [37], and a = 36.7 ps/m for TbPO, [38]. According to review [36], the value
of o can be restricted and this limitation can be written as the following inequality: o’
< gu. In general, the electromagnetic constants o are written in a tensor form, a;;.
With the well-known notations used by Nye [31], Schmid [39] provides the tensor
forms of the 58 point groups permitting the linear magnetoelectric effect.

Concerning the wave propagation in the piezoelectromagnetics, theoretical work
[40] carried out in 1992 by Al’shits, Darinskii, and Lothe has discussed some
problems of SAW existence in the two-phase materials, using different mechanical,
electrical, and magnetic boundary conditions. In the case of the wave propagation in

the PEMs, the governing equations can couple the mechanical displacements with
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both the electrical potential ¢ and the magnetic potential y [40-45]. Based on the
theoretical treatments developed in the last decades, Arman Melkumyan [45] has
discovered twelve new SH-SAWSs propagating in the two-phase transversely isotropic
materials of class 6 mm. He discovered his wide spectrum of the new SH-SAW
velocities in 2007. Using different sets of the boundary conditions, he demonstrated
the relatively simple explicit forms for each of the twelve new SH-SAW velocities. It
is thought that one of the twelve new SH-SAWs discovered by Melkumyan [45] and
called the Bleustein-Gulyaev-Melkumyan (BGM) wave [46-48] represents a special
interest because the BGM-wave can propagate in both the cubic
piezoelectromagnetics [46] and the transversely isotropic piezoelectromagnetic
materials [48]. This is true using the same boundary conditions such as the
mechanically free, electrically closed, and magnetically open surface. Using the other
possible sets of the boundary conditions, recent book [48] revealed the explicit forms
for the second spectrum of the seven new SH-SAW velocities existing in the
piezoelectromagnetics of class 6 mm. To theoretically study the cubic
piezoelectromagnetics is significantly more complicated problem and therefore,
explicit forms for the new SH-SAW velocities were not demonstrated in recently
published book [46]. However, it was possible in work [46] to obtain a convenient
common form for the third spectrum of the other seven new SH-SAW velocities to
compare them with each other and with the transversely isotropic case.

There are conventional and laminated two-phase composite materials. The space
and aircraft technologies have an uninterrupted interest in the composites for various
applications. Several books and handbooks on composite materials are cited in Refs.
[49-54]. The structure of created composite materials can be complicated and some
basic knowledge in crystallography [55, 56] is useful to experimentally determine
symmetry classes of obtained new composites. Also, the geometry of a two-phase
composite material can be denoted by the following connectivities: 0-0, 0-1, 0-2, 0-3,
1-1, 1-2, 1-3, 2-2, 2-3, and 3-3, where 0, 1, 2, and 3 are the dimensions of
piezoelectric-piezomagnetic phases. The laminated composites can be described by

the (2-2) connectivity. In the case of thick films it is possible to cope with bulk
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piezoelectric and piezomagnetic materials and the (3-3) connectivity for the
piezoelectric and piezomagnetic phases. However, it is possible that a bulk
piezoelectromagnetic monocrystal can have a common interface with another and the
mechanical, electrical, and magnetic properties of two  contacted
piezoelectromagnetic monocrystals (two half-spaces) are different. This can be also
true for two different bulk piezoelectromagnetic composites.

This research arena is rapidly developed and therefore, reviews are yearly
published to discuss most recent advances in the physics of ME interactions in
layered composites and nanostructures. Potential device applications are also
reviewed. For instance, the magnetic-field sensors, dual electric-field- and magnetic-
field-tunable microwave and millimetre-wave devices can be the potential device
applications for the composites. Review works [36, 57-91] on the magnetoelectric
effect and composites are recommended for the reader to receive complete
information on the subject. Also, it is necessary to mention pioneer works [92-96] on
the ME composites. Generally, a continuous interest occurs to study the
magnetoelectric effect in composites for development of smart materials in the
microwave technology. According to works cited in Refs. [96, 97], modern industry
can have an increasing interest in the following possible applications of
magnetoelectric materials:

% light computing;

« solid state non-volatile memory;

< magnetic-electric energy converting components;

« multi-state memory which can find application in quantum computing area;

« electrical/optical polarization components which can find applications in
communication;

« solid state memories based on spintronics.

Indeed, two-phase materials are multi-promising and therefore, laminated
composites of them cause a big interest among different research groups. So, it is
necessary to review some achievements in this research field. First of all, it is crucial

to mention some important researches carried out with pure piezoelectrics. In 1971,
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Maerfeld and Tournois [98] have published their collaborative theoretical work on
new interfacial SH-wave guided by the common interface of two dissimilar
piezoelectrics (semi-infinite media or half-spaces) of class 6 mm. This is the single-
phase case because both media are pure piezoelectrics. They have also found the
existence condition for the new interfacial SH-waves later called the interfacial
Maerfeld-Tournois (MT) wave. They stated that the mechanical displacement
amplitude of the MT-wave decreases with distance away from the common interface
into both media. They also demonstrated the case when the interfacial wave can
propagate with the speed of the surface BG-wave [13, 14]. The MT-wave can also
propagate along the interface when one of two media is isotropic. It is obvious that
one also deals with the BG-wave when a vacuum is used in the theoretical treatments
instead of the second piezoelectrics or isotropic half-space. However, the problem of
wave propagation is significantly complicated when one medium is piezoelectric and
the second medium is piezomagnetic instead of a vacuum or the isotropic medium. It
is thought that this case represents the simplest laminated piezoelectromagnetic
composite consisting of piezoelectric and piezomagnetic half-spaces with the
common interface. The theory developed by Maerfeld and Tournois for the single-
phase materials is not suitable for the two-phase composites. Therefore, it is possible
to review some papers in which laminated composites were investigated.

To start a review of recent achievements of researchers coping with the
laminated composites, it is needed to state that the modern studies of the composites
can relate to not only two-layer systems, but also multi-layer structures (sandwich-
like systems). Soh and Liu [99] have a purpose to theoretically investigate
propagation of interfacial SH-waves along the common interface in a piezoelectric-
piezomagnetic bi-material. The piezoelectric half-space is perfectly bonded with the
piezomagnetic half-space and both the materials are hexagonal crystals of class 6 mm
(transversely isotropic materials.) For this case, they have obtained the dispersion
relation in an explicit form and discussed two existence conditions for the interfacial
SH-waves. Also, they have soundly exhibited that the dispersion relation reduces to

that for the surface BG-wave propagation in a pure piezoelectrics as soon as a
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vacuum is considered instead of the piezomagnetic half-space. However, they did not
demonstrated that the dispersion relation obtained by them can reduce to that for the
interfacial MT-wave propagation when the second medium is piezoelectric, but not
piezomagnetic. Moreover, they even did not cite this excellent and classical work
[98]. Probably, they did not know about the existence of the work by Maerfeld and
Tournois.

Concerning an imperfect interface, Huang, Li, and Lee [100] have also
developed a theory describing interfacial SH-wave propagation in a two-phase
piezoelectric/piezomagnetic structure when both the hexagonal materials pertain to
class 6 mm. They have solidly obtained an exact dispersion relation and the existence
condition for the interfacial SH-wave propagation in such bi-material and found that
the interfacial imperfection can strongly affect the wave velocity. It is noted that one
copes with more complicated case of dispersive waves in the case of the interfacial
imperfection. In particular, they stated that for certain combined magnetoelectric
composites, interfacial SH-waves cannot exist for perfect interface and exist only for
imperfect interface. For the perfectly bonded interface, they stated that their result
agrees with that derived in Ref. [99] when the interface is grounded. They have also
found that the wave speed always lies between the smaller BG-wave of two
constituents, and the smaller SH-BAW (or the interfacial SH-wave for a perfect
interface if it exists). Refs. [99, 100] also stated that the findings can be useful for the
two-phase composites in the microwave technology. However, Ref. [100] like Ref.
[99] did not mention the interfacial MT-wave [98].

In general, the interface of two dissimilar piezoelectrics (piezomagnetics) is
assumed to be either bonded perfectly or debonded completely. Ref. [100] also
discussed that the interface between any two dissimilar materials cannot be perfectly
bonded because of various causes such as microinhomogeneities, microdefects,
microdebonding, etc. An interfacial imperfection can weaken the interfacial
continuity, and further affect the performance of the composites, in particular the
interfacial characteristics. For instance, the effects of the interfacial imperfection on

wave propagation in an isotropic elastic bi-material have been analysed in Refs. [101,
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102]. Furthermore, the influences of the imperfect interface on the interfacial SH-
wave speed have been studied in [103] for two bonded piezoelectrics. Influence of
imperfect bonding on interfacial waves propagating along the common interface
between bonded piezoelectric and piezomagnetic half-spaces was also studied in
work [104] by Melkumyan and Mai. They discussed the cases of absorbent and
permeable interfaces and stated that an interfacial imperfection has a significant
impact on the interfacial wave existence and on their velocities of propagation. A
more complicated case of the interfacial imperfection in an A-B-A heterostructure
was considered in recent paper [105] taking into account the geometric symmetry of
the system. They have studied surface SH-waves propagating in the multi-layered
system with magnetoelectroelastic properties and imperfect (electromagnetically
permeable or absorbent, mechanically spring-type) bonding at the interfaces and
considered different limit cases. They have numerically obtained the symmetric and
asymmetric modes and found that the propagation velocities of the SH waves are
limited by the velocities on the homogeneous phases A and B. Indeed, there is an
increasing interest in various studies of different multi-layered structures, for instance,
see Refs. [106, 107].

It is possible to list some promising two-layer systems which can represent a big
experimental and theoretical interest. It is crucial to state that the modern researches
on the laminated composites utilise the transversely isotropic materials and materials
with the other symmetries, for example, cubic. Since 2000, dramatically enhanced
values of the magnetoelectric voltage coefficient (o) have been found in laminated
composites [108-112] consisting of magnetostrictive and piezoelectric layers epoxied
together. The laminated composites can have ayg values of up to 500 larger than any
other ME materials. This phenomenon is known as a giant ME effect. It is very
popular that the piezomagnetic phase can be represented by NiFe,O4 [113, 114] or
CoFe,04 [115, 116] in the laminated piezoelectromagnetic composites. Some cubic
piezomagnetics such as the Fe-Ga alloy called Galfenol [109, 119] and the FeBSiC
alloy called Metglas [111, 117, 118] are also used. Also, it is possible to meet some
works in which the piezoelectric Lithium Niobate (LiNbO3) [44] of trigonal class 3m
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can be utilized. It is thought that the most popular piezomagnetics is the unique alloy
called Terfenol-D [108, 110, 120-122]. The most popular piezoelectric phase is
BaTiOs, PbTiO;, PZT, and relevant [108, 109, 113-117, 119-122]. There is also an
interest in various studies of ring-type piezoelectric-piezomagnetic laminated
composites [123-127] and wave propagation in such layered cylinders [123, 124].
This also represents an important problem in addition to those for wave propagation
in laminated rectangular plates and half-spaces possessing the common interfaces.

Since 1960 when the soviet physicist Astrov [128] has published his work
concerning the magnetoelectric effect in antiferromagnets, much work on the subject
can be found. The recent book published in 2011 and cited in Ref. [46] has referred to
255 works including the excellent pioneer papers [92-96, 128-130]. The 2011 review
cited in Ref. [57] has mentioned 186 articles, and 2010 and 2009 reviews [58, 59]
have 150 and 192 citations, correspondingly. Also, the very famous review paper
published in 2005 by Fiebig [36] with 304 references has solidly demonstrated that
this research arena is extremely popular. This list of works is far uncompleted. Indeed,
the reader can found thousands of works relevant to the magnetoelectric effect and
composite materials. In general, these experimental and theoretical works pertain to
laborious studies of the magnetoelectric effect and different types of composites
consisting of the piezoelectric and piezomagnetic phases. However, there is a lacuna
in investigations of the wave propagation problems occurring in the laminated
systems of two dissimilar piezoelectromagnetic (composite) materials of class 6 mm
which have the common interface perfectly bonded.

Following theoretical work [48] written by the author, it is hoped that the
theoretical results, which will be obtained in this work below, can fill up this lacuna
and demonstrate that this problem of interfacial wave propagation can be resolved in
the case of the transversely isotropic piezoelectromagnetics of class 6 mm. It is
thought that there are many possibilities for the SH-wave propagation along the
common interface of two dissimilar piezoelectromagnetics. These possibilities must
be demonstrated. Therefore, Chapter I describes thermodynamics, corresponding

constitutive relations, the equations of motion for the treated case, and possible
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boundary conditions. The following chapters have the purpose to exhibit the
dispersion relations for the interfacial waves along the perfectly bonded interface.

The final chapter serves for some discussions about the obtained theoretical results.
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CHAPTER1

Theory

This first chapter acquaints the reader with the theory utilized for the wave
propagation problems when the two-phase materials are studied. For a bulk
piezoelectromagnetics, it is necessary to describe the thermodynamics of the medium
for the case, constitutive relations, and corresponding equations of motion. Indeed, to
review possible mechanical, electrical, and magnetic boundary conditions also
represents an important thing for the further theoretical investigations which will be
carried out in the following chapters. It is worth noting that this work copes with
some suitable problems of the interfacial wave propagation along the common
interface of two dissimilar piezoelectromagnetic (composite) materials of class 6 mm
(transversely isotropic materials.) First of all, a theory will be given which is valid for
both piezoelectromagnetics when they can be treated separately. Therefore, no
superscript will be used in this case. The superscripts “I” and “II”” will be used for the
dissimilar piezoelectromagnetics to distinguish them from each other as soon as this

will be necessary. It is usual to start with the thermodynamics.

I.1. Thermodynamics and Constitutive Relations

Consider a bulk solid possessing the piezoelectric, piezomagnetic, and
magnetoelectric effects simultaneously. To thermodynamically describe this complex
system, it is possible to use one suitable thermodynamic potential of eight ones used
for this purpose. The chosen thermodynamic potential must properly describe
thermoelectromagnetoelastic interactions in a piezoelectromagnetic solid. Using one
of the thermodynamic potentials called the enthalpy H, general equations for

adiabatic rather than isothermal conditions may be obtained. Indeed, the
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corresponding thermodynamic potentials can derive the equations of piezoelectric,
piezomagnetic, and piezoelectromagnetic media [15, 48, 131]. Adiabatic processes
can be considered as those with the constant entropy S, where the last represents a
level of disorder in the system. It is clear that S = const gives dS = 0. For a linear
case, it is possible to account only linear terms in a Taylor series for the enthalpy H
relative to an equilibrium condition H(Sp).

These linear terms can contain the following thermodynamic variables
frequently written in the tensor forms: stress oy, strain #;;, electrical field E;, electrical
induction D; (electrical displacement), magnetic field H;, magnetic flux B; (magnetic
displacement) where the indexes i and j run from 1 to 3. For a piezoelectromagnetics,
energetic terms of such complex system described by a thermodynamic potential can
be naturally coupled with the following sub-systems:

o elastic sub-system (thermodynamic variable o;; or 7;);
o electric sub-system (variable D; or E));

o magnetic sub-system (variable B; or H;);

o thermal sub-system (temperature T or entropy ).

It is thought that for the problem of wave propagation in a piezoelectromagnetic
solid, it is natural to use the thermodynamic functions of which each depends of three

independent thermodynamic variables such as the strain 7;, electrical field E;, and

ijs

magnetic field H;. These functions are written as follows:

Gi/:fl(nk/’Ek’Hk) (L1)
Di:fz(nkz’EkaHk) (12)
Bi:fs(nkzaEkaHk) (13)

Using these independent thermodynamic mechanical, electrical, and magnetic
variables, it is possible to use the thermodynamic potential G = G(#;, E;, H;) for a
three-dimensional piezoelectromagnetic solid [46, 48, 132-135]. As a result, the
coupled constitutive relations for a linearly-piezoelectromagnetic solid [46, 48, 136]

can be written as follows:
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0, = Cylly — ey B, — by H, (L4)

kij
D, =eymy, + €, B, + 05, H, (L5)

B, =hyly + 0 By + 1y H, (L6)

where the indices i, j, k, and / run from 1 to 3. It is clearly seen in equations from (1.4)
to (I1.6) that the material parameters of such a piezoelectromagnetic (composite)
material are as follows: the elastic stiffness constants Cy, piezoelectric constants ey,
piezomagnetic coefficients 4y, dielectric permittivity coefficients &y, magnetic
permeability coefficients y;;, and electromagnetic constants a.

In equations from (I.4) to (1.6), the first independent thermodynamic variable
such as the mechanical strain tensor #; can be defined by the following well-known

strain-displacement relation:

- —l[an +8Uf] (L7)

2 ox,

where the indices i and j run from 1 to 3. Expression (I.7) represents the well-known
dependence of the strain tensor components #; on the corresponding partial first
derivatives of the mechanical displacement components Uj, U,, and U; with respect
to the real space components x, x,, and x;.

Also, the second and third independent thermodynamic variables such as the
electrical field £; and the magnetic field H; , respectively, in equations from (1.4) to
(I.6) can be also defined by corresponding partial first derivatives. Using the
electrical potential ¢ and the magnetic potential  in the quasi-static (irrotational field)
approximation, the components of the electrical field E; and the magnetic field H; are
determined as the following partial first derivatives with respect to the real space

components xi, X,, and x3, respectively:
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£=-92 (L8)

H=-2Y (19)

In the coupled constitutive relations defined by expressions from (1.4) to (1.6),
all the material parameters such as Cyu, exj, hijp & M, and oy can be also
thermodynamically defined. With equations (I.5) and (I.6), the electromagnetic

constants a;;, can be then written using the following thermodynamic relations:

a, = 22 -[ 2 (.10)
aH" 1,E=const aE/‘ 1.H=const

Using equation (I.6), it is obvious that the magnetic permeability coefficients 1

can be thermodynamically defined as follows:

dB,
L= = .11
i ( aHk J/],Econst ( )

Utilizing equation (I.5), the thermodynamic definition for the dielectric

permittivity coefficients ¢ reads:

oD,
= == .12
SIA (aE’» JmH:consl ( )

With equations (I.4) and (1.6), it is also apparent that the thermodynamic forms

of the piezomagnetic coefficients 4, can be obtained as follows:

do, oB J
By = —2 = hyy =| (1.13)
" [aH k ]ﬂ,Econst ! [877/{1 E,H=const
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Exploiting equations (I.4) and (I.5), the thermodynamic description of the

piezoelectric constants ey; can be given by the following definitions:

do;, oD,
| —e =| 25 L.14
el/]( { aE/‘ ]U‘Hconsl elk] [an}c[ jE,HconSl ( )

Finally, expression (I1.4) can be solidly used for the thermodynamic definition of

the elastic stiffness constants Cj;,. They can be naturally written as follows:

a0,
c,, =| 2% (L15)
jk’ [ankl JE,H:consl

Thermodynamic definition (1.15) for the elastic stiffness constants Cyy, states that
they can be determined at constant electrical and magnetic fields. Symmetry
arguments allow some simplifications of the quantity of the constants Cyy, because
the stress and strain tensors are symmetric: o; = o; and #; = 7;. Therefore, the
stiffness tensor Cj; must also have a corresponding degree of symmetry which

results in the following simplifications:

C

ikl

=Cy; =Cu =G

Kji

=C

ik

=C

Ikij

=C,

itk = C[/c/i (I- 1 6)

jikl

Using the Voigt notation, the (3x3x3%3) tensor form for the elastic stiffness
constants Cyy defined by equalities (I.15) and (I1.16) can be compactly written in a
form of (6x6) matrix [15, 31, 32, 131, 137, 138]. The transformation procedure of a
tensor form into a matrix is well-known. For this purpose, the following rules are
used for the indices: 11 — 1,22 — 2,33 — 3,23 —5 4, 13 —» 5, 12 — 6. So, the
indices are changed as ijkl — PQ where the new indices P and Q run from 1 to 6.
Consequently, one can get the following C;; — Cpo. It is thought that it is

unnecessary to give complete theory because the reader can find many excellent and
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classical books concerning the crystal symmetries and wave propagation in solids
such as cited in Refs. [139-144].

The quantities of both the piezomagnetic coefficients 4, and the piezoelectric
constants ey; must be also reduced in the similar manner. The symmetry arguments
such as o; = 0; and 5; = 1;; in equations (I.13) and (I.14) can also demonstrate the
corresponding degrees of symmetry for the tensors ey and hy;. The symmetry

influences can result in the following equalities:

€ = €k = Cii = €k (L.17)

Iy = hye = hy, = hyy (I.18)
With the Voigt notation, the (3x3%3) tensor forms for the piezoelectric constants ey;
and piezomagnetic coefficients A, can be rewritten as the asymmetric (6x3) or (3%6)
matrices: ey; — exp OT e — epy, iy — hyp OF hyr — hpy.

In the thermodynamic relations from (I.10) to (I.12), the electromagnetic
constants oy, magnetic permeability coefficients uy, and dielectric permittivity
coefficients ¢; stand for the following symmetric tensors of the second rank
(matrices): a, =, 4, =M, , & =€, Indeed, the components of the tensors &y, i,
and a;; can be also written as (3%3) matrices [31, 32].

It is worth noting that all the tensors defined by thermodynamic relations from
(1.10) to (I.15) can be transformed from an original coordinate system (usually, it is a
crystallographic coordinate system) into a required one. As soon as coordinate system
is changed, the number of independent material constants and their values must be
also changed. The values of the new material constants are obtained using the values
of the old ones. Exploiting the rules for tensor transformations [5-7], some new
values of the material constants with the indexes i, j, k, and / can be obtained by
application of the transformation matrices such as d;,, @, ax, and a,, to the original
values of the material constants with the indexes m, n, p, and q. Therefore, the

transformation formulae are written as follows:
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Cyu = a,,0,,0,,0,C,,,.., (1.19)
by, = a,,a,a.h,, (1.20)
€y = 0,0, (1.21)
o;=a,a,0d,, (1.22)
Uy =a,a,, (1.23)
£ =a,,d,E,, (1.24)

As soon as these complicated transformations are completed, all the tensors of the
material parameters in equations from (1.19) to (I.24) can be anew written in their
corresponding matrix forms discussed above. It is thought that these matrix forms are

convenient for the following theoretical descriptions.

L.2. Equations of Motion

It is well-known in physical acoustics that acoustic waves propagating in solids
are extremely slow compared with electromagnetic waves propagating in the same
materials. The speed of the electromagnetic waves is approximately five orders larger
than that of the acoustic waves. However, the acoustic waves can be coupled with
both the electrical potential ¢ and the magnetic potential  in the quasi-static
(irrotational field) approximation. Therefore, the Maxwell four field equations [145]
of the electromagnetic theory must be naturally used. Maxwell has creatively
formulated the laws of electrostatics, magnetostatics, and electromagnetism. The
Maxwell equations can be also applied to the piezoelectromagnetic solid. The
electrostatic and magnetostatic equilibrium equations can be written using the

differential forms of the following Maxwell equations:

divD=0 (1.25)
divB=0 (1.26)
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Equation (1.25) also represents Gauss’s law without free charge and currents.
Exploiting the Maxwell equations written above, the governing electrostatic and

magnetostatic equilibrium equations respectively read:

9D _ (127)
ox,
9B, _o (1.28)
ox

These equations represent the partial first derivatives of the components of the
electrical and magnetic displacements, i.e. D; and B;, with respect to the real space
components x;, where the index i runs from 1 to 3.

Besides, the governing mechanical equilibrium equation is also written as the

following partial first derivative:

99 _y (1.29)
ox

where the stress tensor ¢y, is expanded in equation (1.4).
Using equation (I1.29), wave motions of a piezoelectromagnetic material in
dependence on time ¢ can be described by the equation of motion written in the

following well-known form [2, 5, 6]:

i p? (1.30)

where p is the mass density of the piezoelectromagnetics. On the right-hand side in
equation (I.30), the partial second derivatives of the mechanical displacement
components U; with respect to time ¢ represent corresponding accelerations.

In addition to equation of motion (I.30), it is necessary to account the

electrostatics and magnetostatics in the quasi-static approximation:
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: 1.31
= (131)
9B _ (132)
ox

where D; and B; are defined by equations (1.5) and (1.6), respectively.

Using equations from (1.29) to (1.32), it is possible to write down the coupled
equations of motion for a piezoelectromagnetics when the wave propagation can be
coupled with both the electrical and magnetic potentials. It is natural to use the
electrical (£;) and magnetic (H;) fields defined by equations (I.8) and (1.9) for
equations from (I.4) to (1.6) in order to write the coupled equations of motion in an
expanded form. Employing all these equations mentioned above, the coupled
equations of motion, which constitute the wave propagation in a
piezoelectromagnetics  possessing the  piezoelectric, piezomagnetic, and

piezoelectromagnetic effects, are then composed as follows:

U, 9°U, g o’y

L=C, Iy, 133
o Maxax,  axar, M axd, (133)
°U, 0’ 0’
O=e,otg o0 g "V (1.34)
O, 0x; ox,0x; ox,0x;
2 2 2
o=n, Y o 00 Iy (135)

o ox,0x; 7 dx,x, Hy 0x;0x;

where the indexes i, j, k, and / run from 1 to 3.
It is well-known that these homogeneous partial differential equations of the
second order written above must have solutions in the plane wave forms [2, 5, 6].

Therefore, these solutions read:

U, =U? expljlk,x, + kyx, +kyx; — or)] (1.36)
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where the index / runs from 1 to 5. In equation (I1.36) there is the following: U; = U;
for /=i, Uy=¢,and Us =

Also, U/, j = (—1)1/2, and o stand for the initial amplitudes, imaginary unity
[146], and angular frequency, respectively. The initial amplitudes such as U, U,’,
Uy, Uy = ¢°, and Us” = y° should be determined further, and the angular frequency is
defined by w = 2mv where v is the linear frequency. In equation (I1.36), the parameters
such as ki, ky, and k; are the components of the wavevector K directed towards the
wave propagation: (k,,k,,k, )= k(n,,n,,n,) where the directional cosines denoted by n,,
ny, and n; are introduced. For convenience, they can be defined as follows: n; =1, n,
=0, and n3 = n3. It is also noted that the wavenumber k& in the direction of wave
propagation can be naturally normalized by the wavelength A as follows: k4 = 2.

It is blatant that the utilization of solutions (I.36) and the directional cosines for
corresponding substitutions into coupled equations from (I.33) to (I.35) can lead to
the five homogeneous equations. These five homogeneous equations can be naturally

combined in the following compact form [46, 48]:

(GL, 8,07, U0 =0 (1.37)

where p is the mass density and the indices / and J run from 1 to 5. In the parentheses
on the left-hand side in equation (I.37), GL; stands for the components of the
modified tensor in the well-known Green-Christoffel equation [46, 48], J;; represents
the well-known Kronecker delta-function such as d;;= 1 for I =J, d;;= 0 for I # J,
and d44 =055 =0

Also, the phase velocity denoted by V), in equation (1.37) symbolizes the
relationship between the angular frequency w and the wavenumber k in the direction

of wave propagation:
V=alk (1.38)
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In equation (1.37), the suitable phase velocity can be revealed as soon as several
procedures can be completed. First of all, it is necessary to find all the eigenvalues
and the corresponding eigenvector for each eigenvalue. In this case, the eigenvalues
represent all the suitable values of n; and the eigenvector can be expressed in the

following common form:
(R RR R (1.39)

It is worth noting that compact tensor form (I.37) of the coupled equations of
motion is well-known and can be found in many research publications concerning the
wave propagation problems in solids. It is also central to state that the modified
Green-Christoffel tensor GL;; is symmetric, i.e. GL;; = GL,;. For that reason, it has
only 15 independent tensor components. It is thought that exploiting coupled
equations from (I.33) to (I.35), it is practical for the reader to obtain the explicit
forms for all the tensor components. However, this is not the purpose of this work
because it studies the problems of the SH-wave propagation in the
piezoelectromagnetic materials. Therefore, the following subsection demonstrates the
simplifications for the case. Indeed, some GL-tensor components can become equal

to zero when acoustic waves propagate in certain directions on certain cuts.
1.3. SH-Wave Propagation in PEMs of Class 6 mm

There are certain cuts and certain propagation directions in the transversely
isotropic piezoelectromagnetic (PEM) materials [45, 48, 99, 100, 147-149] in which
the pure SH-waves coupled with both the electrical and magnetic potentials can
propagate. This is true for the SH-waves guided by the interface between a vacuum
and the piezoelectromagnetics [45, 48, 147-149] and when the second
piezoelectromagnetics is treated instead of a vacuum [99, 100]. However, the second

case is significantly more complicated and therefore, still incompletely studied. This

31



study corresponds to the SH-wave propagation along the perfectly bonded interface
between two dissimilar PEMs. The problems of the different interfacial imperfections
are not included in this research because they represent complicated theoretical

investigations which must be separately studied.

Piezoelectromagnetic

Y half-space IT | //erface

X2

X1

Piezoelectromagnetic | -
half-space I |

Figure I.1. The rectangular coordinate system for the layered system consisting of
two dissimilar piezoelectromagnetic half-spaces solidly coupled at the common
interface. For both the transversely isotropic materials of class 6 mm, the propagation
direction is along the x;-axis and perpendicular to the sixfold symmetry axis directed
along the x,-axis. The anti-plane polarized interfacial SH-waves can damp towards
the positive values of the x;-axis in half-space II and towards the negative values of

the x3-axis in half-space 1.

Figure 1.1 shows the configuration for the two-layer structure. The propagating
SH-wave can be guided by the common interface, is directed along the x;-axis, and
must damp towards the depth of either solid. The anti-plane polarization of the
interfacial SH-wave represents the mechanical displacements directed along the
sixfold symmetry axis of either piezoelectromagnetics of class 6 mm. The studied
propagation direction leads to the fact that the coupled equations of motion written in
compact tensor form (I.37) can be decomposed. This decomposition allows one to
separately treat the equations of motion for the in-plane polarized waves and those for
the anti-plane polarized waves. Using equation (1.37), the SH-wave propagation can
be then expressed by the following three homogeneous equations:
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GLy,,—p szh GL,, GLzs U’
GL, GL,, GL, @
GLs, GLs, GLs; 14

(140)

where U° = U,. In equations (1.40), the eigenvector has the following components:

©°0'¥")

(L41)

The eigenvalues can be found when the determinant of the coefficient matrix in

equations (1.40) equals to zero. Therefore, it is possible to inscribe the following:

GLy,-p szh GL,, GLys
GL, GL,, GL,
GL,, GLs, GLss

where the GL-components are expressed as follows:

GL,, =C(1+n})

GL,, =—&(1+n})

GLy, =—p(1+n?)
GL,,=GL, =e(l+n})
GL,; =GL, =h(1+n3)

GL,s = GL,, =—a(1+n?)

=0

(1.42)

(1.43)
(1.44)
(1.45)
(1.46)
1.47)
1.48)

In expressions from (1.43) to (1.48), the directional cosine is defined by n; = k3/k and

the independent material constants for the case are C, e, A, ¢, 1, and a where C = Cyy

=Ce, € =e16= €34, h =h15= h3s, e =11 = &33, 0= U1 T Uz, and a = oy = az3 [48].

Expanding the GL-tensor components defined by equations from (I1.43) to (1.48),

it is obvious that determinant (1.42) of the coefficient matrix can be written as follows:

33



Cm—prz,, em hm
e —& —axmxm=0 (1.49)

where m=1+n;.

It is blatant that m = 0 in equation (I.49) can soundly satisfy the equality.
Therefore, two the same factors such as m can determine four of six normalized

eigenvalues n;. They read:
P =Y =4 (1.50)

Also, the determinant in equation (1.49) can reveal the rest two eigenvalues #;.

Expanding the determinant, the following secular equation can be obtained:
(+K2 )=, /v, f =0 (L51)

In equation (1.51), the phase velocity V), is defined by expression (I1.38). Also, ¥V,
and K, stand for the speed of the shear-horizontal bulk acoustic wave (SH-BAW)

em

uncoupled with both the electrical and magnetic potentials and the coefficient of the

magnetoelectromechanical coupling (CMEMC), respectively. They read:

v, =Clp (152)

, e’ +eh’ —20eh

K. = 1.53
om W (1.53)

As a result, equation (I.51) can provide the rest two eigenvalues obtained in the

following form:
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O =i 1=V, V. } (154)

where the velocity V., is the speed of the SH-BAW coupled with both the electrical

and magnetic potential. It is defined by the following formula:

Vew =Vull+ K3, ) (1.55)

So, the first problem such as the determination of the eigenvalues is resolved.
Employing the obtained eigenvalues for equations (I1.40), it is possible to obtain all
the explicit forms of the corresponding eigenvectors. Equation (1.40) can be rewritten

in the following form:

Cm— przh em  hm (U’ 0
em —em —om| ¢ |=|0 (1.56)
hm —am —um )y’ ) \0

where the eigenvector (U °,(p°,y/°) must be found.

It is thought that it is natural to define the eigenvector component U° from the
first equation in equations (I.56). As a result, U° can be expressed as the following

dependence on both ¢” and y":

o__em o _hﬂ 0
U’= yEdmid (1.57)
where
a=Cln-,,7.)] (158)
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Utilizing definition (1.57) for the second and third equations in equations (1.56),
one can obtain the following equations which demonstrate the coupling between the

components ¢’ and "

2
(mj+g}o° +[m7fh+ajy/° =0 (1.59)
mek | oo o[ ™4 N0 =
( Y +aj(p -{ y +ﬂ]y/ =0 (1.60)

It is necessary to state that equations (1.57), (I1.59), and (1.60) can reveal all the
eigenvector components. For the two equal eigenvalues obtained from the following

equation m = 0, equations (1.56) can be written in the following simplified form:

0-pv; 0 0YU") (0
0 0 0f¢"|=|0 (1.61)
0 0 o)\y’) Lo

It is obvious in equation (I.61) that the single possibility to have a wavevector of
non-zero length for the non-zero eigenvalue is the situation when U° = 0 and there are
uncertain non-zero values for both ¢° and y°. Indeed, U° = 0 for m = 0 agrees with
expression (I.57). The certain values of both ¢° and ¥’ can be determined from
equations (I.59) and (1.60). Also, the value of the phase velocity V,,, for m = 0 and v
= 0 in equation (I.61) is uncertain and can therefore have any non-zero value. It is
thought that it is natural to couple these two uncertain eigenvectors for m = 0 with the
third eigenvector corresponding to the eigenvalues defined by expression (I1.54). The
following useful expressions can be written for eigenvalues (I.54) coupled with the

phase velocity V,:

m =V, [V ] (1.62)

n& = +j\1-m®® =+jb (1.63)
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AGO :_m(S,G)CKZ (164)

em

Also, one can check that for m # 0, equalities (1.59) and (1.60) are satisfied when

the eigenvector components ¢° and y” are expressed as follows, using equation (I.59):

(pO:’”Tfhm (L65)
o me®
yl=-— ¢ (1.66)

Using the eigenvector components defined by expressions (1.57), (1.65), and (1.66),
the first eigenvector for eigenvalues (1.63) can be formed.

There is however the second case to satisfy equalities (1.59) and (1.60). Using
equation (1.60), it is blatant that the eigenvector components ¢° and ¥’ can be also

defined as follows:

2
o = ’”j i (L67)
W' = —’”Tfh—a (L68)

Thus, the eigenvector components defined by expressions (1.57), (1.67), and (1.68)
can form the second eigenvector for the same eigenvalues defined by expression
(1.63).

It is necessary to state that to know these two sets of the eigenvector components
is very important because they can lead to two different solutions for the phase
velocity V,,. This fact was first revealed in book [48] for the problems of the
propagation of the shear-horizontal surface acoustic wave guide by the free surface of
the transversely isotropic piezoelectromagnetic material. This fact can also
complicate the investigations of the interfacial SH-wave propagation along the

common interface of two hexagonal PEMs. Indeed, it is indispensable to distinguish

37



two dissimilar PEMs in the theory. The superscripts “I” will be used below to
distinguish the eigenvalues and eigenvectors for the first PEM half-space from those
for the second PEM half-space marked by the superscripts “II”.

For the first PEM half-space, three eigenvalues are purely imaginary and must
have negative signs because the SH-wave must damp towards the depth of the PEM1
with x3 <0, see figure I.1. This will be demonstrated in the formulae for the complete
displacements in this subsection below. Therefore, the PEM1 eigenvalues can be

written as follows:

PO =l = _j (1.69)

nl® :_jm:_jb‘ (1.70)

Using the ¢’ and y° defined by equations (1.65) and (1.66), the corresponding
eigenvectors for the eigenvalues (1.69) and (I.70) are respectively composed as

follows:

(UOI(I),(DOI(I),I//OI(I))Z (UOI(S):(/)OI(S'J//OM)): (Oyal7_gl) (I7 1)

2
(UOI(S),q)OI'S),l//OI(S)): da' —n'e _ e'h! +a (el) ——¢! (1.72)

clknf kL ; k)
where the non-zero eigenvector components in expression (I1.71) were also obtained
by using equations (1.65) and (1.66) because the same equations were used to obtain
eigenvector components (I1.72). This results in the following equalities:

1, .01(3)

EIQ)OI(S) +h '// =€I¢01(5) +hIWOI(S) — elal —hIEI (1.73)

It is worth noting that expressions (I.71) and (I.72) define the first set of the

eigenvector components for the first PEM half-space.

38



Using the ¢° and y° defined by equations (1.67) and (1.68), it is possible to form
the second set of the eigenvector components for the same eigenvalues defined by

expressions (1.69) and (1.70). The eigenvectors respectively read:

(U01(1) ¢01(1) I/IOI(I)) (Uous) ¢01(3) 1/101(3))2(0,/11,—0(1) (174)
e'u' —n' 0( hl)z e'h'
(Uor<5) o) OI(S) ( Un , (KI )2 +#]’CI([(JM)2 —o' (1.75)

One can check that the following useful equalities, which can significantly simplify
the further analytics, also occur for these eigenvector components:

L, 01(3)

el¢01(3) +h V/ _ e[(pol(s) +hll//m(5) :el‘[ll _hlal (1'76)

It is necessary to state that all the eigenvector components for the first PEM half-
space defined by expressions (I.71), (I1.72), (1.74), and (1.75) do not depend on the
phase velocity V. This is also true for the second PEM half-space.

For the second PEM half-space shown in figure 1.1, it is crucial to exploit the
superscript “II” in order to distinguish it from the first PEM half-space. It is also
central to state that for this PEM half-space occupying the space with x; > 0 in the
figure, it is necessary to choose only the eigenvalues with positive signs. Such choice
of the positive signs for the eigenvalues is caused by the fact that the interfacial SH-
wave must also damp towards the depth of this PEM. Consequently, three
eigenvalues read:

e
;

O (177)

113"(6) :+j\/m:+jb“ (178)

Utilizing equations (1.57), (1.65), and (1.66) for this case, the corresponding

eigenvectors and the useful equalities are respectively written as follows:
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(Uou(Z)’(oou(z),y/ou(Z)): (UOII(4),¢0][(4),I,I/U[I(4) ): (0,0!" ,—8“) (1.79)

non pu o )2
(Uou(s) 011(6) 0[1(6))_ ea —he eh I (e ) 1 1.80
Sl d - C“(K“ )2 > C[[(Kn )2 + ’Cu(Ku )2 —€ ( : )

em em em
M) 4 Rl V) — gl 0IIO) 4 ity O16) _ pllpyIl i gl (1.81)

With equations (1.57), (1.67), and (1.68), they can be expressed as follows:

(UOII(Z)’ ¢011(2) ,l//on(Z)): <U011(4) ,(0011(4)’ V/UII(4) ): (O,ﬂ“ ,—0(“) (182)
w0 g1, 0 '\ gy n
(UOH(G),won(ﬁ)sl//ou(é)): ¢ élu (Kﬁ )? > C[fIZK)H )2 +I[IH’ C116<Kh{1 )2 —anj (183)

eII¢OII(4) + h”l//mM) :eII¢OII(6) + hIIV/OII(ﬁ) _ e",u” I (1.84)

Finally, it is possible to state that the obtained eigenvalues and eigenvectors for

both piezoelectromagnetics are used to determine the suitable phase velocities for all

the interfacial SH-waves guided by the common interface. Various electrical and

magnetic boundary conditions applied to the common interface can reveal the

suitable SH-wave velocities. This is the problem of the following chapters. The

following subsection of this chapter will review the possible electrical and magnetic

boundary conditions. It is also needed to write down the complete mechanical

displacement, complete electrical potential, and complete magnetic potential denoted

by U, ¢~, and v, respectively, for both half-spaces shown in figure I.1.

Using the superscript “I”” for the first PEM half-space, these complete parameters

can be written in the following plane wave forms:

U™ = FOU" explik(x, - jb'x, — V1] (1.85)

(0[): = (FI(” + FI(S})¢OH3) exp[ik(xl —jx; = Vpht)]+ FNS)¢7OI(S) exp[ik(xl _jblxs _Vpht)] (186)

'™ = (F'O+ PO Y explik(x, - jx, = 7,0 )]+ FOp " explik(x, - ib'x, —7,)]  (1.87)

ph
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where x; < 0, ' > 0, and n, = 1 are accounted. In equation (I.85), it was also
accounted that U*'" = "' = 0. Also, the """ = " and y" = "™ are used in
equations (1.86) and (1.87), respectively. This significantly simplifies the complete
parameters. The weight factors such as F' = F'V + F'® and F? = F'® can be
determined from equations in which suitable boundary conditions are exploited. It is
also noted that equations from (I.85) to (I.87) are true for both the sets of the
eigenvector components.

Employing the superscript “II” for the second PEM half-space, the complete

parameters written below can be expressed in the same manner:

U — O exphk(xl +jb"x, —Vpht)] (1.88)

o = (P 4 Ol ek, + , — )] PO explikl, + i85, ~ )] (1.89)

ph

™ = (O FIOY 0 axplikls, + 7o)} O explibly, + b, )] (190)
where x; > 0, JALES 0,m=1, (IO — o) 0, (0011(2) _ ¢OII(4), and Won(z) _ 1//011(4) are
also utilized. Using various electrical and magnetic boundary conditions, the explicit
forms of the following weight factors F'' = F'® + F'® and F'™ = F'"© must be also
found for this case. Also, equations from (1.88) to (1.90) are true for both the sets of

the eigenvector components.

1.4. Mechanical, Electrical, and Magnetic Boundary Conditions at the

Common Interface

It is expected that the common interface between two dissimilar hexagonal (6
mm) piezoelectromagnetics can allow the propagation of the interfacial SH-waves.
However, this is still unclear. In this theoretical work, some mechanical boundary
conditions will be applied. Besides, the applied electrical and magnetic boundary
conditions at the interface x; = 0 (see figure 1.1) can be different. The following

electrical boundary conditions can occur: the electrically closed interface (p = 0),
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electrically open interface (D; = 0), and the continuity of both ¢ and D; at the
common interface between two dissimilar PEM half-spaces, i.e. ¢' = ¢" and (D;)' =
(D5)", where Dj is the normal component of the electrical displacements. Also, the
magnetic boundary conditions are as follows: the magnetically closed interface (B; =
0), magnetically open interface (7 = 0), and the continuity of both y and B; at x; = 0,
i.e. ' =" and (B;)' = (B;)", where B; is the normal component of the magnetic flux.
The realization of the mechanical, electrical, and magnetic boundary conditions is
perfectly described in Ref. [40] by Al’shits, Darinskii, and Lothe.

First of all, it is basic to write down the mechanical boundary conditions. It is
obvious that it is natural to require the equality of the mechanical displacements at
the common interface x; = 0, see figure I.1. This condition can be written as the

following equality:

FIOp00 4 O | pIE)yols) — @0 | pi@p o) | pil6) o) (1'91)

Using the fact such as 0"V = 0" = 0 and U"™® = ™® = 0, the mechanical

boundary condition in equation (I1.91) reduces to the following:

FRyos) — puzgyone) (1'92)

where F> = F'® and F'"* = F'® were used.

The second mechanical boundary condition involves the normal component of
the stress tensor o3, at the interface x3 = 0. It is also possible to require the continuity
the stress tensor component o3, at x; = 0. This condition can be demonstrated by the

following equality:

oy, =00 (1.93)

where
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0'312 =Flkn3l(3) [CIUOI(S) +el¢01(3) +hll//01(3):|+Flzkn;(s)[CIUOI(S) +el¢01(5| +hll//01(5)] (194)

O_:lz =F”kn3“(4)[C“U0H(4) +eu(pon(4) +hIIl//OIIM)]_'_Fllzkn;l(é)[cl[Uol[(é) +eu¢ou(e) +h11y/on(o)] (1_95)

In equation (1.94), F' = F'V' + F'® and F? = F'® were used. Also, F'' = F'® + p'®
and F'> = F""© were utilized in equation (1.95).
One of the electrical boundary conditions can represent the following

requirement for the electrical potential at the common interface x; = 0:

9 =9" (1.96)

where
(pl :Fl(pm(s) +F12(p0145) (197)
¢11 :anooum +F112¢011(6) (198)

0I(1) _  0I(3) 011(2)
( =g (

In equations (1.97) and (1.9), it was respectively accounted that ¢ and ¢

=™ Besides, ¢' = 0 and ¢" = 0 can be used instead of condition (1.96).

The other electrical boundary condition at the common interface x; = 0 couples
the normal components (Ds)' and (Ds)" of the electrical displacements for the first
and second PEM half-spaces. The continuity requirement at the interface x; = 0 can

be expressed as follows:
D} =D} 1.99)
where

D! = F'n'® [eluou}) —glg"® —0{[1/10”3)]+Fukn;<5)[e[U°”5) —elgh® _a[l/IOI(S)] (1.100)

D311 _ FIIkn;IW[eHUO"W _811(/)011(4) _aIIyIOII(A)]+FIIan3II(6] [eHUon(a) _gn(pon(a) _an‘//on(m] (1'101)
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It is also essential to state that (Ds)' = 0 and (Ds)" = 0 can be used as the possible

electrical boundary conditions at x; = 0. This is the case of the electrically open
interface.

Besides, it is fundamental to treat the magnetic boundary conditions at the
common interface x; = 0. It is natural that the continuity requirement for the magnetic
potential can be also used. As a result, it is possible to demonstrate this requirement

as the following equality:

' =y" (1.102)
where
y'=Fly"® + plyt® (1.103)
p' = Fly " 4 ity O (1.104)
The following equalities y”" = " and p™"® = ™ were taken into account in

equations (I.103) and (I1.104), respectively.

Finally, the following magnetic boundary condition is written for the normal
component of the magnetic flux denoted by B;. At x; = 0, the continuity condition for
the magnetic flux component B; must be fulfilled, namely

By =B (1.105)

where

B! = F'kn!® [honu}) —alg"® _ﬂ[W01(3)]+Fllknzl(S)[h[UOI(S) — ol —ﬂ[l//mm] (1.106)

3311 _ Fnknzn(zu[hnUonm) _an(pon(zt) _#IIWOII(4)]+ F"zkni’“) [hIIUmum _all(pﬂllm _#UWOIK")] (1.107)
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Employing (B;)' = 0 and (B;)" = 0 in equations (1.106) and (I.107), these equations
can also represent a set of the magnetic boundary conditions. This is the well-known
case of the magnetically closed interface.

It is thought that it is important to briefly discuss the hexagonal
piezoelectromagnetic (composite) materials which can be used to perfectly bond
together. The following final subsection of this chapter provides the discussion. It is
stated that in this work, the numerical calculations of the velocities of the interfacial
SH-waves will be not carried out for a large number of such structures because this is
not the main purpose. The purpose of this study is to obtain the explicit forms of the
interfacial SH-wave velocities and the possible existence conditions. This is the

basics which can be used in the further researches.

L5. Piezoelectromagnetic Composite Materials

It is thought that the most popular hexagonal (6 mm) piezoelectromagnetic
composite materials are BaTiO;—CoFe,0, and PZT-Terfenol-D. They are well-know
already for the last two decades [150]. These two-phase composites possess both the
piezoelectric and piezomagnetic phases. The piezoelectric phase of these composites
consists of the well-known hexagonal piezoelectrics such as BaTiO; and PZT,
respectively. The piezomagnetic phase of these composites is formed by the
hexagonal piezomagnetics such as CoFe,O, and Terfenol-D, respectively. Such
composite materials can find broaden applications in ultrasonic imaging devices,
sensors and actuators for system control, transducers, and many other emerging
components. Also, various theories providing characteristics of such complex
materials, as well as “smart” composites and structures composed of them can
represent a large interest.

The average material properties of these two popular composites [150-154] are
listed in table I.1. It can be assumed that there is approximately equal volume fraction
of one phase (inclusions) into the other phase called matrix. This is the 3-0 or 0-3

connectivity for the two-phase materials. Besides, the 2-2 connectivity of the
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laminated composites is also very popular because such composites can exhibit very
large values of the electromagnetic constant a. It is worth noting that the value of « is
restricted by the following inequality [36, 59]: * < gu. Using the table data, one can
check that the value of eu for PZT-Terfenol-D is approximately one order smaller
than that for the BaTiO;—CoFe,O, composite. Thus, it is obvious that it is practical to
compare both values of o’ and gu among different composites. The corresponding
values of the electromagnetic constant a for the composites are not given in the table.
This constant can have either positive or negative sign. This can depend on the
preparation method and connectivity. It is also noted that the sign of « can depend on
the direction of the magnetic field. It is also well-known that the values of a for
composites can be several orders larger than those for some native magnetoelectric
monocrystals. The piezoelectromagnetic monocrystals such as LiCoPO,, TbPO,,
TbMnO;, TbMn,0s, BiFeO;, Cr,0;, and BiMnOs, which possess simultaneously both
the ferroelectric and ferromagnetic properties, are known already for the last decades.
They demonstrate very small magnetoelectric coupling to be practical. However, very
small values of a for the piezoelectromagnetic monocrystals are not critical in the
case of investigation of wave propagation guided by the common interface of two
dissimilar piezoelectromagnetic half-spaces. It is expected that to know wave
parameters is very important because existence conditions for interfacial SH-waves
can frequently require some similarity for the wave characteristics of two dissimilar

PEM half-spaces. This statement can be verified in the following chapters.

Table 1.1. The material constants for the hexagonal (6 mm) piezoelectromagnetic

composite materials such as BaTiO3;—CoFe,0, and PZT-5H-Terfenol-D.

Composite p c, 10" e h £ 10710 u,107°

material [kgm®] [N/m?’] [C/m*] [T] [F/m] IN/AY]
BaTiOs—CoFe,0, 5730 4.40 580 275 56.4 81.0
PZT-5H-Terfenol-D 8500 1.45 850 83.8 75.0 2.61
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The purpose of this work is to obtain the explicit forms for velocities of all the
new interfacial SH-waves propagating along the common interface between two
dissimilar piezoelectromagnetics and to discuss obtained existence conditions. Also,
it is important to compare obtained results with the previous achievements. So, it is
necessary to start theoretical investigations of the influence of different electrical and
magnetic boundary conditions on the existence of the interfacial SH-waves. It is
thought that it is natural to commence the analysis with the case of the electrically
closed (p = 0) and magnetically open (w = 0) interface. This is the main purpose of
the following chapter.
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CHAPTER II

The Case of ¢' = ¢" = 0 and y' = y"' = 0 at the Interface

This chapter provides the theoretical investigations of the interfacial SH-waves
guided by the common interface between two dissimilar PEM half-spaces shown in
figure 1.1. The interfacial waves propagate along the electrically closed and
magnetically open interface. The mechanical boundary conditions include the
continuity of both the mechanical displacement and the normal component of the
stress tensor at the interface x; = 0: U' = U" and (03,)' = (032)". They are defined by
conditions (1.92) and (1.93) from the previous chapter, respectively. The electrically
closed interface results in the following conditions: ¢' = 0 and ¢" = 0, where ¢' and
¢" are correspondingly defined by expressions (1.97) and (1.98). Also, equations
(I.103) and (I.104) can provide the following two magnetic boundary conditions for
the magnetically open interface: ' = 0 and y"' =0,

As a result, six homogeneous equations based on the mechanical, electrical, and

magnetic boundary conditions are composed as follows:

FROS) _ pizgone _ g (IL1)

FUle'e"® + 'y |+ ! [CU0 469" + iy | (11.2)

+ Pl 4y O |y rRp e g ey gy ] g
Flg"® 4 FReohe) — (IL.3)
FlpWl® 4 2o o (I1.4)
Flyi) 4 Fi2y06) _ (IL.5)
Fly i) 4 piizg, one _ (I1.6)
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Equations from (II.1) to (I1I.6) are served for the determination of the phase
velocity V,,, of the interfacial SH-wave. Also, these equations are responsible for the
determination of the explicit forms of six weight factors such as F’ i pe e @)
FH(4), and FII(G) because FI — FI(I) +FI(3), FIZ _ FI(S), FII — FII(Z) + FH(4), and FIIZ — FH(6).
So, it is necessary to find the explicit forms of these four weight factors used in
equations from (II.1) to (IL.6) instead of six ones.

Also, it is indispensable to state that the corresponding eigenvalues and
eigenvector components must be substituted into these equations. The extra difficulty
in these theoretical treatments is the fact that there are two different sets of the
eigenvector components for either of two PEM half-spaces. As a result, it is apparent
that the following three possible configurations must be theoretically treated: (i) the
corresponding first sets of the eigenvector components are used for two dissimilar
PEM half-spaces; (ii) the corresponding second sets of the eigenvector components
are used for them; and (iii) the first set is used for the first PEM half-space and the
second set is used for the second PEM half-space. The third case represents the
combination of the sets of the eigenvector components. This is actually possible
because one copes here with two dissimilar PEM half-spaces. Also, it is possible to
mention the fourth case when the second set can be used for the first PEM half-space
and the first set can be used for the second PEM half-space. However, it is flagrant
that the third and fourth cases are the same because the first PEM half-space can be
readily replaced by the second, or vice versa. Therefore, three possibilities are
recorded in this chapter below as well as in the following chapters for the other

boundary conditions.
ILI.1. The first sets of the eigenvector components
Using the corresponding eigenvalues and the first sets of the eigenvector

components for the first and second PEM half-spaces, namely equations from (1.69)

to (I.73) for the first half-space and equations from (1.77) to (I.81) for the second
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half-space, equations from (II.1) to (II.6) composed in the common forms can be

rewritten for this case as follows:

i o —hle! Cm el — pligh _

CI(K] )2 CII(KII )2 (11'7)
[ 1 1 g1, ] aea —h'e 11 g1l
F[ea —h€]+F b Cw"’ea —-he
C'\K
e 11.8
e[la][ _h|]€[[ ( )
+FII[eIIaII _hII€II]+F112bII fo H( . )2 Ll — el =g
C KL’m
121
[R5 A (IL9)
c'(k. )
ny,u
F”e”a”—F”z[ e () h) —e"a”]:O (IL.10)
C Kt’m
121
—F‘h‘£‘+F"[ (f<) Ih>2 —h‘gljzo (IL11)
C Kt’”‘l
2
—F"ple" + F™2 7(6”) B —h'e" =0 (I1.12)
C“(K“ )2

It is clearly seen in equations from (I1.9) to (II.12) that the electrical and
magnetic boundary conditions for the first and second PEM half-spaces such as ¢' =0,
9" =0, y' =0, and y" = 0 are written in corresponding modified forms. It is apparent
that expression (I1.7) can determine the coupling between the weight factors F'* and
F"™. Using the known factors F*> and F'™* for equation (IL.8), it is possible to reveal
the relationship between the other two weight factor, F' and F"'. The explicit forms of
the weight factors will be demonstrated below. To determine the phase velocity of the
interfacial SH-wave, it is obvious that it is necessary to successively subtract all the
equations from (I1.9) to (II.12) from equation (II.8). Consequently, in order to
determine the phase velocity, it is necessary and enough to deal only with the

following forms of the obtained two equations:
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_ ol — pligh CI(KJMY
2

12
F ea'—n'e" (k")

(IL.13)

Fl{bc'eahg +(' —1)(ea—h[£1)}

Cl (KU71 )

I1.14
Mg _ pligh ( )
L | puon ( 1l 1xeu 1l h”g“) -0

C”(K“ )2

Equation (II.13) or (II.14) can represent the relationship between the weight
factors F** and F'”. Using equations (IL8), (IL.11) and (II.12), the rest two weight
factors such as ' and F'' can be also written as some dependencies on F'*. Therefore,
all the values of the weight factors can be determined because it is natural to choose

F"™ = 1. On the other hand, all the weight factors can be normalized by the factor of
((FI)2 +(F2Y (P ) + () Tl/ to get the following vector (F', F7, F"', F'"*) of the unit

length. Thus, /' and F"' can have the following definite values:

/_\

(K”)Z_IJ_FHZC'Z,I{ ! )2} F"Zb”{ ! +1} (IL.15)

e 7 ka ke (k2
FU__pm CI(K:m)ZZ (Kel)zz -1 _F"ZC—:Ib' 1 ~+ (Kl)z Fpt -+1| (IL.16)
(o f (ks k) (k) (K:;,)

Also, it is possible to account the relationship between F'> and F'"* defined by
expression (I1.13). Accounting this relationship, equation (II.14) can readily reduce to

the following simplified form:

[b‘ (k! J ]+ c“[b" (&M o “—1)] =0 (I1.17)

em

In equation (IL.17), the velocity V., of the first new interfacial SH-wave is defined

by X = ( !V, ,) and the functions 5" and b" depend on the velocity Ve, as follows:
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b =A1-X (IL.18)

b =1-x(, V5] (I1.19)

It is understandable that X < 1 must occur because the eigenvalues defined by
expressions (1.70) and (I.78) from the previous chapter should be always imaginary.
It was discussed that the imaginary eigenvalues are required because the interfacial
SH-wave must damp toward the depth of either piezoelectromagnetics (PEM). It is
apparently seen in expressions (I.70) and (I.78) that these eigenvalues can be always

imaginary when both conditions such as v,,, <V, and v, 6 <V, are satisfied, where

newl tem newl tem

7! and 7" stand for the SH-BAW velocities for the first and second

piezoelectromagnetics denoted by PEM1 and PEM2, respectively. For simplicity, it is
possible to choose?, <7 . It is blatant that the case of ! >V" can be rearranged,

i.e. PEM1 — PEM2 and PEM2 — PEMI, to have V! <p"

tem tem

again. Also, the value of

the velocity V.1 must unequal to zero because X = 0 due to V1 = 0 is undesirable.

Therefore, the following existence conditions for the velocity V., can exist:

0<X<l1 (11.20)

1—[0( K + CU{E )” o J < vy <1 121

i+ (k1)

Besides, equation (I1.17) for determination of the velocity V., of the first new

interfacial SH-wave can be rewritten as follows:

S akny 122

em

2] b”[1+ K"y

2 m

b [1+

z m

To have no square roots in equation (I1.22), it is necessary to square both the

left-hand and right-hand sides, to combine all the terms without the square roots on
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the right-hand side, and to square anew. As a result, the following quadratic equation

for the determination of the explicit form for the velocity V., can be obtained:

X2 +0X +W =0 (I1.23)
where
P=lp2+ 2072, V2 VS -apip2(rt, it ¥ (1124)
Q pl _p )[p + lun I/ILIIIH) ] +4pl pZ [1+ /em I//iiﬂ) ] (11'25)
W= (p§ —pi-pi) —4pip: (I1.26)
1 1
P =%[1+ ] p=1+(KL), b :%(ij F+(krY 127

It is well-known that a quadratic equation can have two solutions. For this case,

they can be introduced as follows:

X, :(V} _—0%Q -4PW. (I1.28)

Ven 2P

This does not mean that two solutions can exist because the parameters P, Q,

and W are very complicated. They can result in complex values of X. However, the

value of X should be real. Moreover, the value of X is restricted by inequality (I1.20)

and existence condition (II.21) must be accounted. When this existence condition is

fulfilled, the solution with a positive sign before the square root in expression (I1.28)
can satisfy equation (I1.22).

It is also possible to evaluate the possibility of propagation of this new

interfacial SH-wave along the common interface between two transversely isotropic

piezoelectromagnetic composite materials listed in table 1.1 from the previous chapter.

It is necessary to choose PZT-Terfenol-D and BaTiO;—CoFe,0,4 as the first and
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second PEM half-spaces, respectively, because the SH-BAW speed for PEMI is

slower than that for PEM2. Therefore, the following parameters must be calculated

for the two-layer system: C'/C" ~ 0.33, ¥\ /v" ~0.59, (k!,] ~0.82, (k") ~ 0.16,

em em

a'=0.01/e'u' , and a" =0.01y/¢"¢" . Using existence condition (IL.21), it was found

that the new interfacial SH-wave cannot propagate in the configuration consisting of

PZT-Terfenol-D and BaTiOs—CoFe,0,. This is true because the value of V! /¥/!

tem tem iS
significantly smaller than unity for the structure. In order that the new interfacial SH-

wave can exist in this case, the value of C'/C" must be significantly larger, namely

C'/c" > 1 or even C'/C" >> 1. If the values of (k!,) and (k" )’ are also very small

in addition to such small value of ¥ /¥ , the large value of C'/C" must be also
increased to compensate these small values of the other parameters. In configurations
with suitable large values of C'/C", the new interfacial SH-wave can propagate even
in the case of V!, /¥’ ~ 0.1 or less when existence condition (I1.20) is satisfied. In

such cases, the value of the velocity V., of the new interfacial SH-wave can be very

close to the value of the SH-BAW velocity V. : V,.../V.. ~ 0.999 or even 0.9999.

em

This can actually result in such a situation when the PEM1 eigenvalue, which
depends on the velocity V.1, will be several orders smaller than the corresponding
PEM2 cigenvalue. This can mean that the wave penetration depth in PEM1 can be
significantly deeper than that in PEM2.

It is also possible to discuss some particular cases. Consider the case when the
first half-space represents a pure piezomagnetics (e = 0) and the second is purely
piezoelectric (A = 0). However, it is thought that it is possible to account the
electromagnetic constant a, i.e. a # 0 at the common interface between two media,
because the piezoelectric phase is in a contact with the piezomagnetic phase. Also, it
is assumed that the corresponding SH-BAW speed in the piezomagnetics is slower
than that in the piezoelectrics. For this configuration, equation (I1.22) for
determination of the propagation velocity of the interfacial SH-wave reduces to the

following equation:
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b [1+ m)z]+b“[1+ K" 2] K‘ J (k) (11.29)

ma

where the corresponding non-dimensional coefficients denoted by (k') and (k" )

are expressed as follows:

11 12

e'n”
Kho) W, ) W (I1.30)

It is clearly seen in expressions (I1.30) that these coefficients will be slightly larger
for the case of non-zero values of the electromagnetic constants «' and «'. In equation
(I1.29), the following functions »' and A" depend on the corresponding SH-BAW

velocities written below:

vi vl P v v (ke f) (I1.31)

tea

where the SH-BAW velocities ¥, and 7} uncoupled with both the electrical and
magnetic potentials can be defined by expression (I.52) from the previous chapter
when the corresponding superscripts “I” and “II” are used. It is apparent that the
values of the velocities defined by expressions (II.31) will be also slightly higher due
to the slightly larger values of the coefficients defined by expressions (I1.30).
Consider the reverse case when the corresponding SH-BAW speed in the
piezoelectrics is slower than that in the piezomagnetics. For this configuration,

equation (I1.22) reduces to the following equation:

oot Pleorboten Pl Sotes o+ e, (1132)

ma ma

where the corresponding coefficients and the corresponding SH-BAW velocities are

defined by
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(k. ) = o (K2 = . (1133)

AL BEISN ) RN/ PSR (11.34)
In this case, the parameters given in expressions (I1.33) and (I1.34) will also have
slightly larger values for non-zero values of the electromagnetic constants «' and o'

It is worth noticing that when o' = 0 and " = 0 occur, equations (I1.29) and
(I1.32) can reduce to the well-known equation for the case of the grounded interface
obtained by Huang, Li, and Lee [100], see equation (20) in Ref. [100]. Huang, Li, and
Lee [100] have studied the interfacial SH-wave propagation in a two-phase
piezoelectric/piezomagnetic structure with an imperfect interface and introduced
formula (20) for the case of the perfect bonding at the interface. It is thought that the
interfacial SH-wave described by formula (20) in Ref. [100] can be called the
interfacial Huang-Li-Lee wave or HLL-wave because this wave characteristic can be
very important for the problems of wave propagation in laminated
piezoelectric/piezomagnetic composite materials. Thus, it is necessary to distinguish
such composites from the others and the interfacial HLL-wave can serve for this
purpose. It is also noted that Ref. [100] has mentioned the results obtained by Soh
and Liu [99], see formula (12) in Ref. [99]. However, Soh and Liu [99] have studied
the case of interfacial SH-wave propagation along the non-metalized interface and
did not receive the formula for the case of grounded interface introduced by formula
(20) in Ref. [100]. As a result, the interfacial SH-wave propagating along the non-
metalized interface between the hexagonal piezoelectrics and the hexagonal
piezomagnetics can be called the interfacial Soh-Liu wave or SL-wave.

Consider the case of two dissimilar hexagonal (6 mm) piezoelectrics with the
grounded interface. The media are perfectly bonded at the common interface. In this
configuration, the piezomagnetic and magnetoelectric effects are absent, and

therefore, the well-known interfacial Maerfeld-Tournois wave [98] can propagate.

57



Indeed, equation (I1.22) reduces to the following equality for determination of the

propagation speed of the interfacial MT-wave:

el eyl Sty ey (11.35)
where
12 e12 2 6”2
K! =it K, =g (I1.36)
R Bl RARA Sl (I1137)

In definitions (I1.36), either of two parameters is called the coefficient of the
electromechanical coupling (CEMC). The following functions 4" and 5" in equation
(I.35) depend on the corresponding speeds of the SH-BAWSs coupled with the
electrical potential ¢ and are defined by expressions (I1.37). It is also noted that
formula (I1.35) corresponds to formula (15) with existence condition (16) obtained by
Maerfeld and Tournois in Ref. [98]. However, formula (15) in Ref. [98] was
incorrectly written and it is vital to use the left-hand side of formula (9) instead of
that in formula (15) to correct it.

Consider the case of two dissimilar transversely isotropic piezomagnetic
materials of class 6 mm. They are also perfectly bonded at their common interface. In
this structure, the piezoelectric and magnetoelectric effects are absent. For this case,
equation (I.22) then reduces to the following formula for determination of the

interfacial MT-wave speed:

Sl Teorh ey l= ot + (2 (IL38)

il m

In expression (I1.38), the corresponding parameters are defined as follows:
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R . (I1.39)
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v =rale k) =l (11.40)
The parameters in expressions (I[.39) are called the coefficients of the
magnetomechanical coupling (CMMC) which characterize pure piezomagnetics. The
parameters in expressions (I[.40) represent the corresponding speeds of the SH-

BAWSs coupled with the magnetic potential y. Also, the SH-BAW velocities ¥, and
V4 uncoupled with the magnetic potential can be derived using expression (1.52)

from the previous chapter.

Ref. [98] has discussed that formula (I1.35) can reduce to the well-known
formula for determination of the speed of the slower surface BG-wave guided by the
metalized surface of pure piezoelectrics contacting with a vacuum. Indeed, the
interfacial SH-wave can propagate with the BG-wave speed when the wave is guided
by the common interface between two identical piezoelectrics. These piezoelectrics
must be perfectly bonded at the interface and their corresponding symmetry axes are
in opposite directions. The electrically closed (¢ = 0) surface of the pure
piezoelectrics can reveal the following formula for the speed of the slower surface

BG-wave [13, 14, 45, 46, 48, 98, 100]:

, 2
K

Vieoee =V | 1— ¢ 11.41

BGEC m[ (1+K3J:| ( )

The magnetically open (v = 0) surface of the pure piezomagnetics can also

support the propagation of the slower surface BG-wave [46, 48]. Also, it is obvious
that this BG-wave can propagate along the interface of two similar piezomagnetics

when they are perfectly bonded and their corresponding symmetry axes are
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oppositely directed. Consequently, formula (II.38) can reduce to the following

formula for determination of the slower surface BG-wave speed [46, 48]:

1/2

k2 Y
VBGMO = Vtm 1_[1 + }22 J (II'42)

It is possible to state that this subsection has acquainted the reader with the new
result. The velocity V., of the new interfacial SH-wave was obtained and the
obtained result was compared with the previous findings. However, the problem of
the theoretical investigations of the SH-wave propagation is more complicated in the
two-phase materials. Indeed, the second possibility exists which must be also treated.
This possibility relates to the second set of the eigenvector components. Therefore,
the following subsection describes the second possibility for the wave propagation in

the transversely isotropic piezoelectromagnetics.
I1.2. The second sets of the eigenvector components

For the first PEM half-space, the second sets of the eigenvector components are
given by expressions (1.74) and (1.75) from the first chapter. They correspond to the
eigenvalues defined by expressions (1.69) and (1.70). Also, the coupling between
these two eigenvectors is demonstrated by equality (I.76). For the second PEM half-
space, the explicit forms of the eigenvalues are determined in equations (I.77) and
(I.78) and the second eigenvectors are defined by expressions (I1.82) and (1.83). Also,
useful equality (1.84) demonstrates that these two eigenvectors are not independent.
Using all the definitions for the eigenvalues and the second eigenvectors mentioned
above, the six homogeneous equations composed in expressions from (II.1) to (I1.6)

can be rewritten in the following forms:

0 g1 w,u g
neH —hO{_ meld —ho _

CI(KI )2 CII(KII )2 (H43)

em em
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CI CIH
1
_FUpN uz[ : KH . hIIaIIJZO (11.48)

It is blatant that these sex homogeneous equations written above also lead to the
result obtained in the previous subsection. Indeed, the procedure for the
determination of the phase velocity is the same. It is necessary and enough to cope
with equations (I1.43) and (I1.44), where the second equation must be modified by a
successive subtraction of all equations from (I1.45) to (11.48). As a result, the velocity
Vw1 Of the first new interracial SH-wave can be also obtained. Accounting existence
condition (I1.21), the value of the velocity V,.,1 can be also calculated with formula
(I1.22) or (I1.28). It is also possible to find explicit forms for the weight factors F, F**,
F", and F'. It is natural to express the first tree weight factors as some dependencies
on the fourth. It is obvious that expression (I1.43) can reveal the relationship between

F? and F™. Using equations from (IL.43) to (IL.46), it is possible to obtain the explicit
forms of the weight factors F'and F" as dependencies on both F° 112 and Viyewt- So, they

can be written in the following non-dimensional forms:

1m0 it ol 2
12 me M c (Kun)
F°=F >

S W k)

(11.49)
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(I1.50)
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(k.
(2,

Fl—_pm CI(KeIm)Z
ey

The weight factors written above can be normalized by the factor of
((F‘)2 +(F2Y +(F) + () Tm to get the following vector (F', F, F"', F'"®) of the unit
length.

There is also the third case when the first and second sets of the eigenvector
components are mixed. The purpose of the following subsection is to demonstrate for
the reader that this third case can agree with the first and second cases treated in this

and the previous subsections.
I1.3. The combination of both the sets of the eigenvector components

Consider the third possibility in the problem of the SH-wave propagation guided
by the electrically closed (¢ = 0) and magnetically open (y = 0) interface. This is the
case when the first sets of the eigenvector components are used for the first PEM
half-space and the second sets are chosen for the second PEM half-space. So, it is
indispensable to utilize PEM1 eigenvectors (I.71) and (1.72) for PEM1 eigenvalues
(1.69) and (1.70) and PEM2 eigenvectors (1.82) and (1.83) for PEM2 eigenvalues (1.77)

and (1.78). In this case, the six homogeneous equations read as follows:

zelal_hlgl o e",u”—h"a” ~
CI(KI )2 CII(KII )2

em

(11.52)
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Exploiting the same procedures described in the previous subsections, one can
find that the phase velocity representing the velocity V., of the first new interracial
SH-wave can be also calculated with formula (I1.22) or (II.28), see also existence
condition (I.21). Also, it is blatant that equation (II/52) can reveal the relationship
between F*> and F'. Using this relationship and equations (II.55) and (I1.56), it is
possible to find the other two dependencies of F' and F" on F™. It was also

mentioned in the previous subsections that all the weight factors can be normalized
by the factor of ((F‘)2 +(FPT +(F") +(F™) )7”2 to get the following vector (F', F*, F",
F"™) of the unit length. As a result, all the weight factors can have the following

definite values different from those obtained in the previous two subsections:

2 e u —n"e" CI(K;m )2
Fo=F L2010 o1
o' -n'e" ¢ (K )

em

_1]_1:”26'117{ 1 +(Kelm)2
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(IL.58)

} —F”zb”{lz-kl} (I1.59)
(k2,)

2
L ela'-h'e __pm (Kj:)
e U —hao

1,1 1,10 " )2
(Kem

63



Fl=_Fm2 CI(KeIm)Z (K:)z —1|-F™ gbl 1 +(K:m)2
i (KH )Z (KH )2

em

} —F“zb{:lzﬂ} (IL.60)
(k2)

It is possible to treat the other possible electrical and magnetic boundary
conditions at the interface x; = 0. This is the main purpose of the following chapters.
The following chapter studies the case of D' = D" = 0 and By' = B = 0 at the

common interface.
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CHAPTER III

The Case of D;' = D;" = 0 and B;' = B;" = 0 at the Interface

Concerning the problem of interfacial SH-wave propagation along the
electrically open (D;' = 0 and D;" = 0) and magnetically closed (B;' = 0 and B;" = 0)
interface between two dissimilar PEM half-spaces, the mechanical boundary
conditions such as U' = U" and (032)I = (032)" at the common interface x; = 0 can be
borrowed from the previous chapter, see equations (II.1) and (I.2). They are written
below in equations (II1.1) and (II1.2). The electrical displacements D;' and D," are
defined by expressions (I.100) and (I.101) and the magnetic flux components such as
B;' and B;" are defined by expressions (I.106) and (I.107) from Chapter I,
respectively. Therefore, the corresponding six homogeneous equations can be written

for the case as follows:

FREOG) _ plizgone _ (1IL1)
Fl[el¢01(3] +hrl//01(31]+Flsz[CIUous) +eI¢0I(5) +hll//01(5)] -

LU [ell¢()ll(4) +h“l//0“(4)]+F“2b“ [CIIUOII(()) +ellp® +h”l/luu(6)] -0 (11.2)
FI[EI(DOM) +all//()Im]_Flzbl[elUm(S) — £l _all//01<5)] -0 (11L.3)

_pn [8“¢0“(4) +0(III,VOH(4)]+F”21)” [quou(e) — gl _alll//oll(é)] =0 (I1IL4)
Fl[al(pOI(B) +#I'//01(3)]_Flzbl[hIUOI(S) — ' _#lwmm] -0 (111.5)

_pn [0(“¢)0H'4) +,UHI//0H(4)]+FHZbH [hnUon(é) _aII¢OII(6) —/IIII/IOII(6)] -0 (IH6)

These equations written above can reveal the phase velocity of the interfacial

SH-wave in this electrically open and magnetically closed case. Three possibilities,
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namely the first eigenvectors, the second ones, and the mixture of them must be also

considered. This is the main aim of this chapter.

I1.1. The first sets of the eigenvector components

Consider the case of the PEMI first eigenvectors defined by expressions (I.71)
and (1.72) and the PEM2 first eigenvectors defined by expressions (I1.79) and (1.80)
from Chapter 1. It is apparent that two equations corresponding to the mechanical
boundary conditions can be borrowed from equations (II.7) and (I1.8) written in the
previous chapter. Utilizing the corresponding first eigenvectors, all equations from
(II1.3) to (II1.6) can be significantly simplified. As a result, the six homogeneous

equations for determination of the phase velocity of the interfacial SH-wave read:

11 g1l RS P
B eg(KIh)f -FmE g'([('];l )f = (1I1.7)
L g1
Flea _hlgl]wb{cle He' | g h}
C (Kem) (1118)
oL [euau —h“é‘“]-&—Fmb“ ol e'a" _hufu Ll el =0
c(k.)
F'x0-F"'x0=0 (111.9)
F"x0-F™p"x0=0 (I11.10)
F'le'a' —h'e")+ F*p' x0=0 (II1.11)
F'"a" = h"e")+ F™b" x0=0 (I11.12)

where equations (III.11) and (III.12) were multiplied by the factors of
('a’ —h‘e‘)/(e‘y‘ —(a‘)z) and (¢"a" —h"e" )/(e“y“ —(" )2), respectively. Using equations
(II1.11) and (II1.12), two weight factors such as F' and F'' must be equal to zero. Also,
F and F'™ are defined by expression (I11.7).
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Consequently, equations (II1.7) and (II1.8) with F' = F"' = 0 can reveal the

following equation for determination of the phase velocity of the interfacial SH-wave:

C'(k,)

) 1 1
S i Myl SO

em

It is flagrant that equation (III.13) cannot have solutions because all the

parameters can have definitely positive values. However there is a small probability

that either (!, ) or (k" can have a negative sign due to a suitably large value of a

em em

where o > 0. Also, it is well-known that for bulk metamaterials, ¢ < 0 and u < 0
resulting in gu > 0 can occur. This can also lead to a negative sign for (ij )2 when

PEM1 is treated as a bulk metamaterial. In those cases, one can check that the

equation cannot also have solutions.
I1.2. The second sets of the eigenvector components

This is the case when the PEM1 second eigenvectors defined by expressions
(I1.74) and (1.75) and the PEM2 second eigenvectors defined by expressions (1.82) and
(I1.83) from Chapter I are employed. The equations corresponding to the mechanical
boundary conditions can be written following equations (11.43) and (11.44) from the
previous chapter. Utilizing the corresponding second eigenvectors, equations from
(II1.3) to (II1.6) can be also written in significantly simplified forms. Therefore, the

corresponding six homogeneous equations can be introduced for the case as follows:

I, I m_ 1

prei e ppelu’ —hlal (IIL.14)

(k) c'(kn)
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For  convenience, the factors of (c'a'—i'e') (gl i (o) ) and

(e“a“ -h"e" )/ (g“,u“ —(a“ )2) were respectively used for equations (I11.16) and (II1.17).
Exploiting equations (II1.16) and (II1.17), weight factors F' and F"' must equal to zero.
Also, F** and F'"* can be defined by expression (II1.14). Accounting these facts, it is
obvious that the phase velocity of the interfacial SH-wave can be also determined by
equation (II1.13) which certainly has no solutions. Therefore, the interfacial SH-wave
guided by electrically open and magnetically closed interface cannot propagate. This

fact was found and briefly discussed in the previous subsection.
I1.3. The combination of both the sets of the eigenvector components

For the combination of two possible eigenvectors, equations (III.1) and (III.2)
corresponding to the mechanical boundary conditions can be also transformed into
equations (I1.52) and (I1.53) from the previous chapter. Using the first eigenvectors
for the first PEM half-space, the electrical and magnetic boundary conditions such as
Dy' = 0 and B;' = 0 are defined by equations (I11.9) and (II.11), correspondingly.
Exploiting the second eigenvectors for the second PEM half-space, D" = 0 and B;" =
0 are defined by equations (III.17) and (II.19). The reader can check that this case
also leads to equation (III.13) which has no solution for the phase velocity of the

interfacial SH-wave.
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CHAPTER 1V

The Case of ¢' = ¢" = 0 and B;' = B;" = 0 at the Interface

Consider the problem of interfacial SH-wave propagation along the electrically
closed (¢' = 0 and ¢" = 0) and magnetically closed (B;' = 0 and B;" = 0) interface at
x3 = 0. For this case, equations (III.1) and (II1.2) describe the mechanical boundary
conditions such as U' = U" and (03,)" = (03,)", equations (I.3) and (I1.4) represent the
electrical boundary conditions, and equations (III.5) and (II1.6) correspond to the

magnetic boundary conditions. They can be written as follows:

FROS) _ piizgone) _ g (Iv.1
F'le'g"® + 'y |+ FR [C'UYO + 9" + 1y ] (IV.2)
+ F"[e" "M 4y O [ FIRp OO 4 M) 4ty MO ] < .
Flo"® 4 Fl2g00) — (Iv.3)
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Fllalg"® + gy |- FR0 U™ - 1" — ity ] =0 (Iv-3)

_pn [an(pou(A) +/1"1//°”‘“]+F”2b” [huuon(s) _au(pon(s) _/1111//011(6)] -0 (IV6)

These six homogeneous equations written above can actually reveal the phase
velocity of the interfacial SH-wave. Two-phase materials such as
piezoelectromagnetics can possess several possibilities to treat the problem. Indeed,
the first PEM half-space has two different sets of the components and the second
PEM half-space also has its own two different eigenvectors. These different cases are

treated below in this chapter.
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IV.1. The first sets of the eigenvector components

In the case of the first sets of the eigenvector components for both the PEM1 and
PEM2, the six homogeneous equations written above can respectively transformed
into equations (II1.7), (I11.8), (11.9), (II.10), (III.11), and (II.12). For convenience,

they are written here below:

F[z eIaI —hISI m eIIaII hIISII 3 (IV 7)
(g1 P n(pu ’
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FUR"e" + Fp" %0 =0 IV.12)
where the corresponding factors such as —h'e'/ (s‘,ul (@' ) and —i"¢"/ ( "t (a“)z)

were utilized for equations (IV.11) and (IV.12). Using equations (IV.11) and (IV.12),
it is possible that two weight factors such as /' and F"' must be equal to zero and this
is not obligatory. Also, F** and F'** can be defined by expression (IV.7).

For further theoretical treatments, it is possible to use only equations (IV.7) and

(IV.8) written in the following modified forms:

1,10 n,n i1 B
Fmea -he C(Km)

12
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(IV.13)
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where the second equation was obtained by a successive subtraction of four equations

from (IV.9) to (IV.12). In equation (IV.14), the non-dimensional coefficients such as

(K . )2 and (K “Z‘)Z are respectively defined by the following formulae:

e’ a'e'h’

1y _ _
(.} = oY (IV.15)
IIhII 11 IIhI]
(K;rl )2 = Ce'HaH = Cau(eall )2 (IV.16)

These coefficients were first introduced in Ref. [46] and connect two terms

containing &' and «" in the CMEMCs (K . )2 and (K" Y, respectively.
Exploiting the relationship between F*> and F'* defined by expression (IV.13),
equation (IV.14) can certainly reveal the following relatively compact equation for

the determination of the velocity V.., of the second new interfacial SH-wave:

CI 1+(Kelm )2 1 V»mwz ’ 1 erewl ’
Ch 1+<K” )2 - % RN L pu
em tem tem (IV 17 )
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— a em
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em em

where the CMEMCs (k!,) and (k" ) and the SH-BAW velocities 7, and 7", can

be defined by using the corresponding superscripts “I”” and “II” in expressions (1.53)
and (1.55) from the first chapter.

It is natural that equation (IV.17) can have the following existence conditions:
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>0 and (7!, /v} ) >1-7 (IV.18)
where
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em em

It is blatant that the piezoelectric effect is responsible for the existence of such
new interfacial SH-wave because e' = 0 and ¢" = 0 in equation (IV.17) certainly result
in the case treated in the previous chapter when no solutions can exist. For the case of
both #' =0 and A" = 0 or both o' = 0 and o' = 0, one can check that the interfacial SH-
wave can exist because Y > 0 occurs. Also, it is well-known that the values of the
electromagnetic constants o' and o can be very small resulting in ¥ > 0. However,
both existence conditions (IV.18) must be satisfied. For some larger values of both '
and o, a small probability can exist for some piezoelectromagnetics that ¥ < 0 can
occur, see expression (IV.19). For very large values of o' and o', it is possible that
Y > 0 occurs again. This situation discussed above relates to positive values of the
electromagnetic constants. Also, e'a' =h'e' or e"a" =h"e" in expression (IV.19) can
result in ¥ — oo and such new interfacial SH-wave cannot propagate.

Exploiting the composite materials listed in table 1.1 from Chapter I, one can
evaluate the possibility of propagation of such new interfacial SH-wave. It was
mentioned in Chapter II that PZT-Terfenol-D and BaTiO;—CoFe,0, must be used as
the first and second PEM half-spaces, respectively, because the SH-BAW speed for
PEM1 is slower than that for PEM2. Therefore, the calculated parameters are as

~ 059, (k'] ~ 082, (k"f ~ 0.16, (K.} ~ 7.27,

em

follows: ¢C'/c" ~ 0.33, v! /v!
(KM} ~ 536, a'/lea'-h'e') ~ — 0.10, and e"o"/(e"a" -A"¢") ~ — 0.03 for
a'=0.01e'y' and o" =0.01W. It was numerically found that for these relatively

small values of o' and ", existence conditions (IV.18) cannot be satisfied. On the

other hand, using a very large value of a" such as o"=098¢"4" and all the
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recalculated values of the corresponding parameters, existence conditions (IV.18) can
be satisfied and therefore, such new interfacial SH-wave can propagate. However,

such extremely large value of a" for BaTiO;~CoFe,0, is questionable.

IV.2. The second sets of the eigenvector components

Consider the other possible case when the corresponding second eigenvectors for
both the first and second PEM half-spaces are used. For this case, the mechanical,
electrical, and magnetic boundary conditions are defined by equations (I11.14) and
(II1.15), equations (I1.45) and (I1.46), and equations (I11.18) and (I11.19), respectively.

For convenience, the corresponding six homogeneous equations are written below:

U0 il W g
Fueul( Ih)? _pme /J“( ﬁ)f‘ -0 (IV.20)
C(K,, C'K,,
101
Fl[ellul _h1a1]+F12b1|:C1 eéll(th)(f +ely! —hlal:|
o (Iv.21)
M~ "
L ph [enluu —h”OtH]+FHZb“ cn H( . )2 +ely —pa" =0
C Ke’”
11\
Fle'y! —F"[Cﬁ((zl))z —e[,u[]:() (IV.22)
u(puy
Fle'u" —F“Z[e“ éh H))z —e“u“]:o (IV.23)
C K{{m
F'x0-F"p'x0=0 (Iv.24)
F"x0-F™p"x0=0 (Iv.25)

It is flagrant that equations (IV.24) and (IV.25) can be surely excluded from the
further analysis. So, the rest four homogeneous equations can certainly define three
weight factors such as ', F"', F> for F'> = 1 and the phase velocity of the interfacial
SH-wave. The following equation can determine the velocity V,.,; of the third new

interfacial SH-wave:
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em

C'1+(kMY

em

(kL)

J(J . HJ - -y

Vi A N R O

The existence conditions for the third new SH-wave are those defined by
expression (IV.18) from the previous subsection. However, the value of Y for
equation (IV.26) differs from that used for equation (IV.17). For the case of this

subsection, the value of Y reads:

em m

" (kMY 1+ (k" Y

em em

o L) e () v

It is necessary to state that in expression (IV.27), ' = 0 and o' = 0 together with " =
0 and &" = 0 can result in ¥ = 0, and therefore, the new interfacial SH-wave cannot
propagate. This fact can mean that the piezoelectric and magnetoelectric effects can
define the existence of such new interfacial SH-wave.

The following subsection studies the case of the mixture of the first and second
sets of the eigenvector components. This is the third possibility that must be also

treated for these mechanical, electrical, and magnetic boundary conditions.
IV.3. The combination of both the sets of the eigenvector components

Consider the combination of the eigenvectors when the first sets of the
eigenvector components are used for the first PEM half-space and the second ones
are utilized for the second PEM half-space. It is obvious that six homogeneous
equations from (IV.1) to (IV.6) must be properly transformed for this case of the
mechanical, electrical, and magnetic boundary conditions. It is also natural that the
transformed equations can be readily borrowed from the previously studied cases. For
instance, the mechanical and electrical boundary conditions can be written following

equations from (I1.52) to (I1.55) from Chapter II and the magnetic boundary
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conditions are described by equations (I1I.11) and (II1.19) from Chapter III. As a
result, the following transformed forms of the six homogeneous equations must be

used:

Ll il W, g
pree e pumed —ha (IV.28)
c'(K.) c'(k%,)
Ll 1l
Fl[elal_hlgl]mzb{cle @-be ah}
C(K
o (IV.29)
LU [enluu —h“OtH]+FHZb“ ! e'u" _hnlzxn +eu" — R |=0
c'(kt,)
121
Flea' —F® M-elal 0 (1V.30)
c'(k.,)
1y m)?
Freny! —F“Z[e“ ((h ,,))2 —ellﬂlljzo (V.31
C K{’m
_FUE + FB 0 =0 (IV.32)
F"x0-F"™p"x0=0 (Iv.33)

It was found that these six homogeneous equations written above can reveal the
velocity V.. of the fourth new interfacial SH-wave which can propagate along the
common interface between two dissimilar piezoelectromagnetic half-spaces. The
obtained equation for the determination of the value of the velocity V., is expressed

as follows:

c" l+<K“ )2 y! yh
(IV.34)

o (kLF (P (L F - (k)
_elal_hlel CII 1+<KH )2 1+(K:£n)2

em

where the coefficient (K . )2 is defined by expression (IV.15).
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It is clearly seen in equation (IV.34) that when ' = 0 occurs, the first term on the
right-hand side vanishes and the second term on the same side can also vanish as
soon as ¢ = 0 and a" = 0. These facts can mean that the piezoelectric properties can
define the existence of such new interfacial SH-wave. The existence condition is

defined by expressions (IV.18), where the value of Y for the case is as follows:

em m

o —n'e" " 1y (knY 1+ (k" ¥

em

yodot KLY -(KF (KL - (K2 (IV.35)

Also, e'a'=h'e" in expressions (IV.34) and (IV.35) can actually lead to ¥ — oo and

such new interfacial SH-wave cannot propagate.
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CHAPTER V

The Case of D;' = D;" = 0 and y' = " = 0 at the Interface

Consider the interfacial SH-wave propagation guided by the electrically open
(Ds' = 0 and D;" = 0) and magnetically open (' = 0 and y" = 0) interface at x3 = 0.
For this case, it is possible to borrow two equations corresponding to the mechanical
boundary conditions such as U' = U" and (o3,)' = (63,)" from the previous chapter. It
is obvious that the electrical and magnetic boundary conditions are those used in
Chapters III and II, respectively. Therefore, the corresponding six homogeneous

equations read:

FRUYG) _ pli2goue _ (V 1)

Fl[el(por(z) +hIl//m(3)]+ FIZbI[CIUOI(S) +elg!® +hIl//°“5)] V2
L FU [enq)orm) +h“l//0n(4)]+Fusz [CIIUOIHGJ 4 ellwon((,) +hH‘/IOII(6]:| o .
F1[€1¢0|(3> +a[V/0[(3 ] lzb[[e[Um(S) £|(pm 0[(5)] -0 (V.3)
_pn [gll¢011(4) +any/011<4)]+F112b11 [eIIUOII((:) £lp® _ 111//011(6)] —0 (V4
Fly™® 4 Fizy06 — (V.5)

F“l//on (4) +F1|2W0|[(6) (V6)

These six homogeneous equations written above must be transformed into
corresponding convenient forms for further analysis. Using different sets of the
eigenvector components there are three possibility to transform these equations. It is
possible to treat the first case when the first eigenvectors are applied to get the phase

velocity of the interfacial SH-wave and the corresponding existence conditions.
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V.1. The first sets of the eigenvector components

It is usual for this work to start the further analysis with the case when the
corresponding first eigenvectors are used for both the first and second PEM half-
spaces. Following the same case studied in Chapter III, the mechanical and electrical
boundary conditions are given in equations from (II1.7) to (III.10). Also, equations
(II.11) and (II.12) can be borrowed from Chapter II to describe the corresponding
magnetic boundary conditions. It is natural to use these transformed six homogeneous

equations mentioned above for this case. They read:

Ll gl no N pu
F‘zeg(K]h)f - "2egf[(Kf)f - (V.7)
Ll il
F‘[e‘a'—h‘e‘]+F‘2b‘{C‘e Of( Ih)f +e'a‘—h‘£‘}
CK
o (V.8)
+Fll[ellall —h”é‘“]+F“2b”|:C” e“a,:[(_f“)fu Lot —h”é‘”:|=0
C'\K,,
F'x0-F"b'x0=0 (V.9)
F"x0-F™p"x0=0 (V.10)
121
ORI B G LS (V.11)
C'(kL ]
2
I B L (V.12)
c'(k%,)

It is clearly seen in equations from (V.7) to (V.12) that one actually deals here
with four homogeneous equations because equations (V.9) and (V.10) become
negligible. Therefore, these four equations can be readily used to determine the
explicit forms for the weight factors, see Chapter II. Also, these four equations have
revealed the following equation for the calculation of the velocity V,.,s of the fifth

new interfacial SH-wave:
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Indeed, equation (V.13) can also have the existence conditions written in the
following form used in the previous chapter:
F>1-v (V.14)

Y>0 and (7., /v"

tem
where

_C ko) &) (ko) - (&)
SO L] reRe (V1)

em

It is possible to discuss the existence conditions for this case. It is assumed that
usually ¥ > 0 always occurs. However, this not obligatory and there can be some
cases when Y can have a negative sign. Also, 2 = 0 and a = 0 for the first and second
piezoelectromagnetics certainly results in ¥ = 0. As a result, such interfacial SH-

waves cannot propagate.
V.2. The second sets of the eigenvector components

Using the corresponding second eigenvectors for the first and second PEM half-
spaces, it is also essential to write the corresponding transformed equations. For this
case, equations from (V.1) to (V.2) can be properly transformed into equations
(111.14), (I1L.15), (11.16), (I11.17), (I1.47), and (I1.48). Therefore, the suitable six

homogeneous equations are composed as follows:

(IR e n,n g
Flze,u_ha_Fnze;u —ha _

clef ke o
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Ll gl
Fl[ellul —hlal]+F12bI|:CI e ﬂl( lh)? +elu! _hlal}
C K
(V.17)
+FH[eH,UH —hHO{H]+FHZbH|:CH e“,u:(_f:“;!” +ely" _hllall:| -0
C'\K,,
Fle' s = Foh 0= 0 (V.18)
FUe - F7 %0 =0 (V.19)
1(p1)
et s o € 0) —_Ka =0 (V.20)
c'(k.)
-F"R"e" + P e”(h“)zz -h"a" |=0 (V.21)
c'(ks,)

It is apparent that it is necessary to successively subtract equations from (V.18)
to (V.21) from equation (V.17) and then to use the relationship between the weight
factors F'> and F' defined in equation (V.16) for equation (V.17). The resulting
equation can be further simplified. So, the final equation for the calculation of the
velocity V,..¢ of the sixth new interfacial SH-wave can be introduced in the following

form:

C' 1+(K:m )2 Views ’ Views ’
C" 1+(K“ )2 1= P 1= yu
O X rim)z (K.} b g (k" - (k" (V.22)
h C K —-\K h K —(K
= o = 00 = T 3

I T N R A 8

where the coefficients (K ;)2 and (K s )2 are defined by expressions (IV.15) and (IV.16),
respectively.

Existence conditions (V.14) can be also utilized here. However, it is apparent
that for this case, the value of Y in existence conditions (V.14) is different from that
defined in equation (V.15). For this case, the parameter Y is equal to the right-hand

side in equation (V.22). It is clearly seen in equation (V.22) that ¥ = 0 occurs as soon
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as h' = 0 and 4" = 0 and therefore, existence conditions (V.14) cannot be satisfied.

Thus, it is possible to state that the presence of the piezomagnetic effect in the two-

phase composites can cause the propagation of such new interfacial SH-wave. Also,
m,, 10

eu'=h'a" or e"y" =h"a" in expression (V.22) can lead to ¥ — oo and such new

interfacial SH-wave cannot propagate.

V.3. The combination of both the sets of the eigenvector components

For comparison, it is indispensable to treat the third possible case that mixtures
the first and second sets of the eigenvector components. This means that the first
eigenvectors can be chosen for the first PEM half-space and the second ones for the
second PEM half-space. Exploiting them, the mechanical, electrical, and magnetic
boundary conditions can result in equations (I1.52), (IL.53), (V.9), (V.19), (V.11), and
(V.21) which can be used for this case. These six homogeneous equations can be then

written down as follows:

L, gl W, gl
Fré UI’( Ih)f _Fmf /“‘H( fl’)f’ -0 (V.23)
CIK,, C'\K,,
1 g1
Flea _hlgl]wb{cie I v h}
C (K
(V.24)
gy [ellﬂll —h”a”]+F“2b“{C” eH,u]I[I(—f:H)?{H +el " _hllall:|:0
C\Ke
F'x0-F"p'x0=0 (V.25)
Flel i — F 00 (V.26)
121
ORI B GO s (V.27)
(&)
~F"n"a" +F™ 76” (h” )2 -h"a" |=0 (V.28)
CII(KII )2
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It is overt that equation (V.25) does not participate in the analysis. Also, it is
needed to subtract equations (V.26) and (V.28) from equation (V.24). As a result, this
modified equation together with equations (V.23) and (V.27) can be transform to the

following equation:

¢ 1+(K:m )2 Views ’ Views ’
C" 1+(K“ )2 1- pl + /1= pu
em tem tem (V 29)
C! (Kl )2—(K:)2 R (K" )2—([([[)2

em em o

_F 1+(KH )2 _e”/l”—h”a” 1+(K£”)z

em

where the coefficient (K a )2 is defined by expression (IV.16).

Equation (V.29) can definitely reveal the velocity V,..; of the seventh new
interfacial SH-wave propagating along the common interface of two dissimilar
piezoelectromagnetics when they are perfectly bonded. It is obvious that the
existence conditions defined by inequalities (V.14) must be also used. Indeed, in
order that such new interfacial SH-wave can propagate, the parameter Y representing

the right-hand side in equation (V.29) must have a positive sign. Also, ¢"u" =2#"¢" in

expression (V.29) can lead to Y — o and such new interfacial SH-wave cannot
propagate. It is also possible to mention the situation when Y = 0 occurs. This
situation can happen when 4' = 0, ¢' = 0, and A" = 0. This can also mean that the
piezomagnetic effect is mainly responsible for the existence of such new interfacial
SH-wave. Like the cases studied in the previous subsections of this chapter, o' = 0
and «" = 0 can significantly simplify the form of the parameter Y which reads

B ) B %)

m

Y=—"1
CU14+(K" P+ (kY 1+ (k" + (k"

(V.30)
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CHAPTER VI

The Case of ' = 9", D;'=D,", y' =", and By' = B," at x; =0

In this chapter, the applied mechanical boundary conditions such as U' = U" and
(03)' = (032)" are similar to those used in Chapters from II to V. The superscripts “I”
and “II” are used for the first and second PEM half-spaces, respectively. The
electrical boundary conditions at x3 = 0 such as ¢' = " and D;' = D;" are defined by
equations from (1.96) to (I.101) in Chapter I. Also, the magnetic boundary conditions
such as y' = y" and B;' = B;" are defined by equations from (I.102) to (1.107). As a

result, one can compose the following six homogeneous equations:

FRyOS) _ pli2gone _ g (VI.I)

Fl[el(pom) +hIl//m(3)]+ FIZbI[CIUOI(S) +el(por(5) +hll//m(5)]

+FH[ I 0l(4) , o1 011(4)] 2 1[Iy o1e6) | 1 01(6) , 71, 01(6) ] _ (V12)
e "V +hy +F7bT|CTU +e oV +hy =0
Flgl®) 4 FRehe) _ pllfieh) _ pliz o) _ (V1.3)
F1[81¢01(3) +all//01(3)]_F12bI[eIUOI(S) _€I¢01(5) —Otll//(ms)]
L pn [£II¢OII(4) +aIIV/OII(4)]_F112bII [eIIUOII(()) _811¢01l(6) _alll//ou(o)] -0 (VI4)
Flyl0) 4 f2010) _ iy, 016 _ iz, 000 _ (VL5)
Fl[al¢01(3) +'UII//OI(3)]_F12bI[hIUOI(S) _a1¢01(5) _Iull//ous)]
(VL6)

L pn [a11¢011(4) +ﬂlll//011(4)]_F112bII [hlonu(o) _a11¢011(o) _ﬂlll/loll((:)] -0

It is clearly seen that this system of the six homogeneous equations written
above can be significantly more complicated compared with the cases treaded in the
previous chapters. However, it is necessary to treat this case by the same way carried

out earlier.
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VI.1. The first sets of the eigenvector components

Employing the first eigenvectors for both the first and second PEM half-spaces,
equations (VI.1) and (V1.2) can be readily transformed into equations (I1.7) and (I1.8),
respectively. Therefore, it is natural to borrow these two equations from Chapter II.
Using the corresponding first eigenvectors, equations from (VI.3) and (V1.6) can be
properly transformed and introduced in the corresponding simplified forms.
Subsequently, the explicit forms of the six homogeneous equations written above can

be written as follows:

ISR PN nou Il
nea —he mea —he
F el (- P (VI7)
C (K(’r" ) C (K(’n‘l )
i1 1 g1 | aea —h'e 11 g1l
F[ea—h£]+Fb Cw+ea—h€
C\K,

am (VL8)

o Mol — plgh
PO (K" )2

em

L [ellall _hII€II]+FIIZbII|: sl —pliel (=0

Flelg! +Flzelalw_lyllelall _Fll2elaﬂwzo (VIL.9)

(., ) (k2 )

F'x0-F"b'x0+F"x0-F™p"x0=0 (VIL.10)

2 2 2 2
_Fliplel _ prplgl (K;”’(Ll_)(zK}) Uil 4 pu2gin (KCI,I»;()K; gfgu) -0 (VL11)
>
Ft +F‘L(0{I)2+F‘2b‘ X0+ F"p" 50 =0 (VL.12)

m,

£'u" - (e")

It is blatant that equation (VI.10) can be readily neglected and equation (VI.12)
gives the explicit relationship between the weight factors F' and F'. It is natural to
use this relationship for equations (VL.8), (V1.9), and (VI.11) to properly transform
these three equations. Next, the certain relationship between the weight factors F'*
and F'" defined by equation (V1.7) can be used for these three transformed equations

and the second and third equations can be subtracted from the first. The result of
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these several complicated mathematical operations is given below in equation (VI.13).
It is certain that equation (VI.13) can reveal the velocity V,.,s of the eighth new

interfacial SH-wave.

J ; ;g oK gy ')
C[IIH(K;"!)Z\/l_(VM;tSj +\/]_(VM1TSJ _ o' -h'e Illull ( 2)
C1+(kn) Vien v L da e e ]

e'a'-h'e' II‘uII_(aII)

( (k) pe' (KLY -(K'f o (K:;)z—(Ks)z}

X C" 1+(K" )z Mo —plet 1+(Kf1 )z el — et l+(K” )2

(VL13)

where the coefficient (K ! )2 is defined by expression (IV.16).

In equation (VI.13), it is natural that the complicated right-hand side represents
the parameter denoted by Y. Consequently, the existence conditions can be written in

the following forms used in the previous chapter:

Y>0 and (7., /" )} >1 (VI.14)

Also, one can find that equation (VI.13) can be significantly simplified as soon
as ' =0 and " = 0. It is necessary to state that ¢' = 0 and €' = 0 can further simplify
equation (VI.13). Also, ¢"a" =h"¢" in expression (V1.13) can lead to ¥ — oo and such
new interfacial SH-wave cannot propagate. Besides, it is also possible to treat the

other cases.
VI1.2. The second sets of the eigenvector components

Consider the second possible case when the corresponding second eigenvectors
are used for both the first and second PEM half-spaces having the common interface
at x3 = 0, see figure I.1. For this case, equations (I1.43) and (I1.44) corresponding to

the mechanical boundary conditions can be borrowed from Chapter II. Using the
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corresponding second eigenvectors, equations (VI.3) and (VI1.4) corresponding to the
electrical boundary conditions and equations (VI.5) and (VI.6) corresponding to the
magnetic ones can be readily transformed and introduced in some suitable forms.
Therefore, these six homogeneous equations can be represented in the following

forms:

L1l W g1l
pre# e peei —he (VL15)
c'(k.,) (k%)
IR P
Fl[el/ul —hlal]+Flzbl|:C[ e,ul( lh)Oz( +ely! —h[al:|
C'(K
(VL16)
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(k2 (k5 )
1,0 (1)
F"+F"?‘“7(’)’32—F'2b'x0—1~"“2b"x0=0 (VL.18)
" (")

_F' —FlthaIM+F“h[0{H +F112h1a“M:o (VL.19)

(x:,f (k2 )

F'x0-F"2p'x0+F"x0-F"p"x0=0 (VL.20)

It is clearly seen that equation (VI.20) can be excluded from the further analysis
and equation (VI.18) provides the relationship between the weight factors F' and F".
Using this relationship and that given by equation (VI.15), it is possible to properly
transform equations (VI.16), (VI.17), and (VI.19). After that, the latter two equations
can be subtracted from equation (VI.16) which can be further transformed. After all
the complicated transformations, the resulting equation for the determination of the
velocity V..o of the ninth new interfacial SH-wave can be represented in the

following form:
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em

(VI.21)

where the coefficient (K a )2 is defined by expression (IV.16).

It is obvious that the right-hand side in equation (VI.21) represents the parameter
Y and using this parameter, the existence conditions are those given by inequalities
(VI1.14) from the previous subsection. One can also find that equation (VI.21) can be

.. . . 1 i . .
significantly simplified as soon as @ =0 and & = 0. Also, ¢"¢" =h"a" in expression

(VI.21) can lead to Y — o« and such new interfacial SH-wave cannot propagate. It is

also possible to treat the third case that mixes the first and second eigenvectors.
V1.3. The combination of the first and second sets

Consider the case when the first eigenvectors are exploited for the first PEM
half-space and the second eigenvectors are employed for the second PEM half-space.
For this case, it is useful to borrow equations (I1.52) and (I1.53) responsible for the
mechanical boundary conditions. Using the corresponding eigenvectors, equations
from (VL.3) to (VIL.6) can be transformed again to get suitable equations
corresponding to the electrical and magnetic boundary conditions. Thus, the explicit

forms of the six homogeneous equations read:

1.1 1.1 m, 1 m 1
nea —he me M —ha
F S -F YR =0 (VL.22)
C'(:, c"(ks,)
1,0 plal
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Fle"y" — F™p" %0+ F'x0— F2p'x0=0 (VL25)
v LAY g o T 12
—F'R'e' —Fp'x0+ F"x0-F™bp"x0=0 (VI1.27)

It is natural to successively subtract equations (VI.24), (V1.25), (V1.26), and
(V1.27) from equation (VI.23). Then, it is necessary to use relationship (VI.22)
between the weight factors F*> and F'. The resulting expression can also have a
complicated form. For simplicity, it is possible however to use the following two

equations instead of four ones:

F (e a hI€I)+F12 I I(K (K(L)z —FUe " — Fel " (KeIL() (KI) =0 (VI.298)

L)
(k) Ko )

FH(KH,UH W 11) F2pl gy IIM+F el 4 Flpie I( ) (K) -0 (V129)

(k5 ) (k.,f

§=

These two equations can be further modified to have only the weight factor F' in
the first and only the weight factor ' in the second. As a result, they can have the

following forms:

h“ I I, n
Fl(elotI —hlé‘l{l + o _gh pu e“,ui #huau]
[ FU2ply “W—Flzhuel (Kun() : )(ZKI) ] “#ﬁlﬂ;”a“ (VIL.30)
Kl Ko

2 2 2
+ F2e! 1( glm()Kl gz ,Iz) —F”zel/l”( L[,[n()Kggz r[nI) =0
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m_1 1,1
Fu 11 0 _ gl 1+ h eu }

m, I _ lI 1

h'e' e"u
[F““ oS -] (K”> ~Fila I(K“I’")z_(K”l’fJ = (VL31)

K5 (&2,)
Fnzhu I (K:,[,,)z _(K[LI) +F12h11 I (Kelm)z _(Ke[ )Z =0
n 2 K:m )2

em

Therefore, these two modified equations must be subtracted from equation
(VI1.23) and the equation for the determination of the velocity V.19 of the tenth new

interfacial SH-wave can be written in the following final form:

em i 1— Vento : + 1= Vewto ’ 1+ h"e' el,u" -
]] 2 I 11 - m,, 1 I
¢ (Kf]r[n) Vf‘”" Vlem e a h g e u -ho

X{[ o ody (KcIm )2 —(K; )2 B e'u" (Kj,',, )2 - (Kr]n[ )Z J(l_ [ h'e' J (VL32)
e

c'1+(x!)

C[[ e[a[—h[é‘[ 1+(KEI’]”)2 e“ﬂ” h”a“ 1+(K“ )2 al_h[gl

oot [ Sty
h

“ﬂ” lal —hlgl Cll 1+(KE[:")2 e”,u“ h[l 1 1+(K::n)2

em

where the coefficients (K . )2 and (K p )2 are defined by expressions (IV.15) and (IV.16),
respectively.

The existence conditions of such new interfacial SH-wave are those
demonstrated in inequalities (VI.14), where the parameter Y for this case is equal to
the right-hand side of equation (VI1.32). According to the existence conditions, the
value of the parameter ¥ must be larger than zero. However, ¢' = 0 and A" = 0
definitely results in ¥ = 0, see the equation (VI1.32), and therefore, no solution can be
found. This can mean that such interfacial SH-wave cannot propagate when the
piezoelectric phase of the first PEM half-space and the piezomagnetic phase of the
second PEM half-space vanish. On the other hand, o' = 0 and a" = 0 cannot lead to ¥

=0, see the explicit form of the parameter Y in expression (VI.33) written below.
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(oY (e (&) e (k! "
Y—(l_hleﬂ] X{[C"H—(K:I)z +(K,:1[)2 _j1+(KBU)2 +(K:,[)2 {I‘FhIJ
&Y At (kL) )
+(1+e”J[_h‘C“1+(KE“ J+ (&) ' (! + (0

(V1.33)
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CHAPTER VII

The Case of ' =", D,'=D,", and By'=B," =0 atx; =0

For this case, the mechanical and electrical boundary conditions are those used
in the previous chapter, see equations from (VI.1) to (V1.4). The magnetic boundary
conditions represent the magnetically closed interface, namely By' = 0 and By" = 0 at
x3 = 0 and therefore, the corresponding equations such as equations (II1.5) and (I11.6)
can be borrowed from Chapter III. These six homogeneous equations can be then

written as follows:

FRUM® _ puzgone _ (VIL)
F [e,¢0](3) " h[wm(})]_l_Flzbl [C[U01<5) +e[(p0[(5) + hll//mm] (VIL.2)
L0 [en(ponm +h”l//0“(4)]+F”2b" [CIIUOII(6} +ell(pou(6> +h"l//“”(ﬁ)] =0 .
F'o"® + F2"® _ pllpil® _ pll2g0©) — (VIL3)
Fl[gl(pm(3) +aIV/OIu)]—Flsz[eIUOI(S} —glp"® _aIWOI(S)] (VIL4)
L [€|1¢011(4) +0(Hl//on(4)]—Fmb" [enUon(m _gII¢OII(6) _anl//on(ﬁ)] -0 .
Fl [algoous) +,1111//01<3>]—F”bI [h[U‘”(S’ -o'p"® —ﬂ[‘//OI(S)] =0 (VILS)

_pn [au(pmm) +#IIW0II(4)]+FIIZbII [hnUou(m _au(pon(s) _lunl//on((\)] -0 (VH6)

These six fundamental equations written above must be further transformed.
There are three possibilities to transform them in different ways due to the existence
of different sets of the eigenvector components. Therefore, three following

subsections are responsible for the studies of these three possibilities.
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VIIL.1. The first sets of the eigenvector components

In the case of the first eigenvectors for the first and second PEM half-spaces

shown in figure 1.1, it is convenient that the first four equations can be borrowed from

the previous chapter, namely equations from (VI.7) to (VI.10). In the same manner,

the last two equations can be borrowed from Chapter III, namely equations (III.11)

and (III.12). Consequently, they can be rewritten as follows:

s ot —hle! o Mgt gt ~
CI(KI )2 C“(K“ )2
L1 710
Fl[e‘a‘—h‘e‘]+F”b'{C‘e Of( Ih)f +e‘a‘—h‘e‘}
C\K,,

U0 g
+F"[e”0{” _hII€II]+FIIZb]I cné o —he i
CII(KII )2
em

la + Fl%'o! (Kgm)z _(K(L)z _Flgl 2l (Kem )2 _(K/[z[ )2 —
(k.. ) (k5.

Fea +
F'x0-F"'x0+F"x0-F"™p"x0=0
—F'h'e"+ F®'x0=0

Fl[(el[all —h“&‘”)+F“2b“ «0=0

+e'a" —n"e" |=0

(VIL7)

(VILS)

0 (VIL9)

(VIL10)
(VIL11)
(VIL12)

It is usual in this theoretical study to successively subtract equations (VIL9),

(VIL.10), (VIL.11), and (VIIL.12) from equation (VIIL.8). Also, it is crucial to account

expression (VIL.7) and the following equality F' = F'' = 0, see equations (VIL.11) and

(VIL.12). As a result, modified equation (VIL.8) can be represented in the following

form for determination of the velocity V.11 of the eleventh new interfacial SH-wave:

2 2 2
gt f (b (b
" 1+(k") Ven Vien
dot (kL) -k ele" (kE)-(kE)

T ela —hE! F 1+(K::n)2 _eIIaII _ el 1+(K£n)2
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where the coefficients (K L)z and (K u )2 are defined by expressions (IV.15) and (IV.16),
respectively.
Equation (VIL.13) must also satisfy the following well-known existence

conditions:

y>0and (v, /v J >1-v? (VIL14)

tem tem

where the parameter Y can be defined by

em

=TI 1,1 ~I 2 0 i, 0 TP 2
ea'—h'e' C 1+(th;) "o —h"e 1+(K”)

em

elal Cl (Kelm )2 —(K‘L )2 el e[[all (K” )Z _(KDI!I )2 (VII.IS)

It is clearly seen in expression (VII.15) that the value of the parameter Y is equal
to zero as soon as the piezoelectric constant ' of the first piezoelectromagnetics
equals to zero. This can mean that the piezoelectric phase of the first
piezoelectromagnetics, which should possesses the smaller value of SH-BAW

velocity 7!

rem

can completely response for the existence of such new interfacial SH-

wave. On the other hand, o' = 0 and o = 0 lead to the following simplified form of

the parameter Y-

IR ) S (o)
R e R D e e

m

(VIL16)

VIL.2. The second sets of the eigenvector components

In this case of the second eigenvectors for the first and second PEM half-spaces,
it is also convenient to borrow four equations from (VI.15) to (VI.18) from the

previous chapter. These equations correspond to the mechanical and electrical
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boundary conditions for this case. The magnetic boundary conditions are described

by equations (II1.18) and (II1.19) from Chapter III and therefore, they can be also

borrowed. Thus, the corresponding system of the six homogeneous equations is

composed as follows:

Ayt — g Syl plight
T e Ty (ILm
F‘[el,u‘ ]+F”b C[M+eﬂ ~h'a’
'k, ) (VIL18)
I gyl ’
+F“[e‘“,u“ W 11] Fu2pn Cue H ey —plg" =0
C”(K“ )2
1 1 )
Flyfpn (K Ll (sz) Fuilt _pm iil (KU"<)1<[[ gfm) =0 (VIL19)
' —(a 1?2
F'4+F' gﬂ“n((")) — %' x0— F"p"x0=0 (VIL.20)
& u
F'x0-F"'x0=0 (VIL.21)
F"x0-F"™p"x0=0 (VIL.22)

It is obvious that equations (VIL.21) and (VII.22) vanish and equation (VII.20)

defines the relationship between the weight factors F' and F'. Employing this

relationship and the other relationship defined by expression (VII.17), equation

(VIL.18) can be transformed into the following relatively compact form which can

determine the velocity V.1, of the twelfth new interfacial SH-wave:

C' l+(Ke[m)2 \/1 [ nulZJ +\/1_[V/w12j2 _[ ( 'y _ ey -n'a ]

= 2 1l oI 1\ 11 I il

(e View N (VIL23)
(KII) ( 1) 1 11 0 _ gl ot (KI 2 2

{ 1+(k" ¥ u" e /1 —h'a' C" (k") 2,,, }/ [/I ey - )2
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The existence conditions for equation (VII.23) can be also determined in the
similar manner. Indeed, the existence conditions can be also defined by inequalities
(VII.14) written in the previous subsection of this chapter. Also, a' =0 and a" = 0

results in the following relatively simple form of the parameter Y-

e 1) e (VIL24)
gret 1K)+ CU (k! + (kD)

It is clearly seen in expression (VII.24) that ¥ = 0 occurs for ' = 0 and " = 0, but /'
=0 and 4" = 0 cannot give ¥ = 0. So, the piezoelectric and magnetoelectric effects

can be responsible for the existence of such new interfacial SH-wave.
VIL.3. The combination of the first and second sets

Indeed, it is indispensable to theoretically investigate the third possible case
when the first eigenvectors are utilized for the first PEM half-space and the second
ones are chosen for the second PEM half-space. For this situation, the suitable
equations for the mechanical and electrical boundary conditions are equations from
(V1.22) to (VI.25) given in the previous chapter. Also, the suitable magnetic
boundary conditions are written down in equations (VII.11) and (VII.22) from the
first and second subsections of this chapter, respectively. Therefore, one can write the

following six homogeneous equations:

o —hle! Mt~ pet
HTPe y a oLy (V12
L1 71,0
Fl[ela[_h[gl]mzb[clwf( i ah}
C K(’”I

(VIL.26)

+F“[€”ﬂ“ _h][all]+F[I2b][|:CI] enﬂ:(_ffn)?n +e“/,l” _h[I ][i| =O
C K.,
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2 2 2 2
Flola' + F%'o! (K:m) _(K;) —FHeI,uH —FHZKIIUH (K:In) _(K»S) =0 (VH 27)
(k) (2, f '
F'(e"u" —h"a")- Fp" x0+ F'x0- Fb'x0=0  (VIL.28)
—F'h'e' +F ' x0=0 (VII.29)

FU'x0- F2 %0 =0 (VIL30)

It is natural to account relationship (VIL.25) for equations (VII.26) and (VIL.27)
and then to successively subtract equations (VIL.27), (VIL.28), and (VIL.29) from
equation (VII.26). As a result, the following final form can be obtained, with which

one can calculate the velocity V.3 of the thirteenth new interfacial SH-wave:

Cl 1+ (Kelm )2 1 Vnewl} ’ 1 Vnewl} ’
Fl+(KH )2 - y - pu

em tem tem (VII'3 l)
__ et (kLK) et (kL) (KLY
T —he " 1+(K“ )2 T pig" 1+(K" )2

em em

where the coefficient (K . )2 is defined by expression (IV.15).

The right-hand side of equation (VII.31) can be denoted by Y. The complicated
parameter Y plays an important role in equalities (VII.14) which represent the
existence conditions. It is blatant that ' = 0 certainly results in ¥ = 0 and therefore,
such interfacial SH-wave cannot propagate because Y > 0 must occur due to a
definitely positive sign of the left-hand side of equation (VIL.31). Besides, the value
of the parameter Y in the case of both the material parameters o' = 0 and o = 0 is

defined by equation (VII.16) from the first subsection of this chapter.
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CHAPTER VIII

The Case of ' = 9", D,'=D,", and y' =y =0 atx; =0

Consider the mechanical boundary conditions such as U' = U" and (o3,)' = (03,)",
the electrical ones such as ¢' = ¢ and D;' = D;", and the magnetic ones such as y' = 0
and y'" = 0 representing the magnetically open interface at x; = 0. The corresponding
equations are those from (VI.1) to (VI.4) written in Chapter VI and equations (II.5)
and (I1.6) written in Chapter II. For this case, these six homogeneous equations can

be formed as follows:

FRyOe _ pizgone _g (VIIL1)

P 4y DU 4 41y —
+ PO 4 gy 01O |4 F1p [T 4 g 4ty om0 ] =g .

Flol®) 4 FRehie) _ pll o) _ iz g0io) _ (VIIL3)

File'e"® + 'y |- P2 ey - g'p" — oty ] (VIIL4)
+ Fep? ) 4 @yt |- FRpIy e gl gt gy 0 | =g '

Fly"® 4 Fly06) — (VIILS)

Fly ) 4 piizg, 010 _ o (VIIL6)

It is overt that these equations can reveal the suitable phase velocity of the
interfacial SH-wave. However, the problem of the existence of the interfacial SH-
wave guided by the common interface between two dissimilar piezoelectromagnetics
actually splits into three possibilities which must be recorded. Indeed, the problem is
significantly complicated because of the existence of two different eigenvectors for
either of the piezoelectromagnetics. Therefore, the following three subsections have

the purpose to provide the appropriate theory for each case.
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VIIIL.1. The first sets of the eigenvector components

It is natural to choose the corresponding first eigenvectors for the first and

second PEM half-spaces to commence the analysis. For this purpose, it is convenient

to use already transformed equations from (VI.7) to (VI.10) which describe the

mechanical and electrical boundary conditions. Also, the suitable magnetic boundary

conditions for this case are described by expressions (II.11) and (II.12) in Chapter II.

For this case, the corresponding six homogeneous equations can e composed in the

following forms:

b S —h'e! o Mo — peh ~
CI(KI )2 CII(K]I )2
1.1 I.l
F‘[e‘a' —h‘e‘]+ Fp| &2 18 hf +e'a' —n'e'
c'(k.,)

CII el]a[[ _hllell

- +e"a“—h"€“ :0
k)

LU [ellall _hII€II]+FIIZbII|:

Flela' + Fe'a! (Kelm )2 _(K;)Z _Fll gl — Fi2 i (Kelin)z _(K;I )2

(k) (kL)

F'x0-F2'x0+F"x0-F™p"x0=0

—FlhISI—FuhI&‘]M=O
(kLY

em

Fn( 11l —h“é‘“)+F“2( 11,0 _hugu)(KeI,In )2 _(Ke“)z =0
e e (K“ )2 =

(VIIL7)

(VIILS)

=0 (VIIL9)
(VIIL10)

(VIIL11)

(VIIL12)

It is blatant that equations (VIIL.9) and (VIIL.11) can be subtracted from equation

(VIIL.8) and the last equation can be further modified by using relationships (VIIL.7)

and (VII.12). Consequently, the modified equation can be further simplified. The

final form which can reveal the velocity V.14 of the fourteenth new interfacial SH-

wave can be written as follows:
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1 2 2 2
c 1+(Kelm) Viewia Vema
Fl+(K” )2 1- Pl /1= pu
)2 ¥ ) 1 12 11 ) ) (VIHIS)
(&L P& (kL) o' (kh) -(kY)

em e em

1+(K£n)z Fl+(K:}n)2 el — it 1+(K:L,)2

where the coefficient (K}x‘ )2 is defined by expression (IV.16).

It is obvious that equation (VIII.13) must also have the existence conditions.

These conditions can be written as the following inequalities:

y>0and (7, /7" f >1-¥? (VIIL14)

tem tem

where the parameter Y is defined by the following equality:

kL) -2, ¢ (KL) o o' (KiJ (K]
1+(KH )2 +Fl+(K:iﬂ)2 +?euan_hugn 1+(KH )2

em em

Y= (VIIL15)

The the parameter Y represents the right-hand side of equation (VIII.13).
Therefore, it is normal to require ¥ > 0 because it is clearly seen that the left-hand

side of equation (VIII.13) cannot have a negative sign. This can be true because it is

possible to assume that (k! J >0 and (k" f >0 usually occur. It is also possible to

em

discuss the case of o' = 0 and &" = 0. This can significantly simplify the form of the

parameter Y. Therefore, the simplified parameter Y reads:

2 2 \2
yo(kay =&Y e et (KL +(Ky)

L& T+ (KT O i (k] + (K] (VIIL16)

One can check that the piezoelectric constants such as ¢' = 0 and " = 0 can

definitely lead to the fact that equation (VIII.13) can reduce to equation (I1.38) from
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Chapter II. It is necessary to mention that equation (I11.38) determines the speed of the
corresponding interfacial MT-wave [98] guided by the common interface of two
dissimilar piezomagnetics. However, 4' = 0 and 4" = 0 in expression (VIII.16) cannot

lead to the corresponding interfacial MT-wave solution.

VIIL.2. The second sets of the eigenvector components

Utilizing the corresponding second eigenvectors, the mechanical and electrical
boundary conditions can be written following equations (VI.15), (VI.16), (VI.17),
and (VI1.18) from Chapter VI. Besides, the magnetic boundary conditions for this case
such as y' = 0 and " = 0 can be also borrowed from the second chapter. The suitable
equations are equations (I1.47) and (I1.48). So, the following forms of the six

homogeneous equations can be used for the further transformations:

L g1 w,n g
e ey —h fl _fpm el —h f‘ — (VHII7)
c'(k.,) (k)
0 g1
F‘[e‘,u‘ —hlal]+Flzbl|:Cl %_’_elﬂl —hla[:|

(VIIL18)

L ! [eu'un —h”a“]+F“2b”{C“ e“,u[]:(_{’fu)f(“ +ely" —h“at“:| -0
C(K,,

2 2 2 2
Flellu[ +Flzelﬂ[ M—F"e'ﬂ” _Fllzelﬂn Mzo (VIng)

(K..) (k2. )
2
Fle" "+ Fle" " M— F'x0-F"p"x0=0 (VII1.20)
en -\
2 \2
-F'h'a' —F”h‘a‘(K“"’() I_gszL) =0 (VIIL.21)
Kem
oo WL iz
(k5)
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Equations (VIII.19), (VIII1.20), (VIIL.21), and (VIII.22) must be subtracted from
equation (VIII.18) to get a modified equation. Also, it is necessary to use relationship
(VIII.17) to get a complicate form of the modified equation. However, it is possible

to obtain the following two equations instead of the four ones:

2 2
Fl(ellul —hlal)+F12 (ellul _hlal)_FllelluII _Fllzelﬂllwzo (VIIL.23)
K

S =

(
")
Fu (ell'ull _huau)_Fllzhuau M+Flellﬂllwzo (VIIL.24)
) (o)

These two new equations can be properly transformed before a subtraction from

equation (VIIL.18). As a result, they read:

1,1

F’(e’u‘—h‘a‘{u e'u’ ' e (o) ]+F”(el,u]—h‘a])

MU —n"e" ey - ' e —(0(“)2
1,1 K" 2_K112 K Z_KII2
_fpm elllulel ilhnan Ry ( m()K{l §2 a) — Pyt ( un()KH §2 m) =0

em

(VIIL25)

F (enﬂu _hnan{l i el,uu e“/u“ glﬂl - (al )2 _ Fh2pu n M
euﬂu — Bt e[ﬂl _ha g“,un _ (0{1] )2 (KS”)Z

(VIIL.26)

K112_Ku 1 Lt (o1
+ [Fmel,uu(m()l{ugzm)z_ Fu(elzul ~h'a! )] el/lel flhlal :;1511 _<(le))2 =0

Finally, they can be subtracted from equation (VIII.18) and several further

transformations can lead to the following simplified form for determination of the

velocity V.15 of the fifteenth new interfacial SH-wave:
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C7;1+(K:m)z 1_[Vne;t.15 Jz + 1_[[@}}_15]2 - elu’uuI | £y _(0!1)22
C 1+(Ke'£1) Viem Vom eu' -h'a EH,UH—(O(")
¢ (kL) ew (kL -(ki) "
X[Cu 1+ (K:L, )2 - U e 4 (KJ;, )2 —[1"’ S A" (VIIL.27)

1,1 1,1 1,1 m,m 1,1 \2

" —h'a 1+(K5"'n)2 My —ho" 'y —h'e! g“ﬂ“_(a")

e (KeI:n )2 _ (K;I)2 /[1 e‘,u" en'un EI,UI _(al)z J

where the coefficient (K a )2 is defined by expression (IV.16).

For this case, the parameter Y representing the right-hand side of equation
(VII.27) is quite complicated. It is mentioned that the parameter Y is used in the
existence conditions defined by inequalities (VIII.14) from the previous subsection.
Also, o' = 0 and &" = 0 can be realized and one can readily perform this simplification
to get a simple form of the parameter Y. For comparison, the following subsection

studies the third case which mixes the eigenvectors.
VIIL.3. The combination of the first and second sets

It is also vital to investigate the third possibility when the first eigenvectors are
exploited for the first PEM half-space and the second ones are employed for the
second PEM half-space. The corresponding six homogeneous equations for the case
can be also borrowed from the previous studied carried out in this work. For instance,
equations (VI1.22), (VI1.23), (VI.24), and (VI.25) from Chapter VI describe the
mechanical and electrical boundary conditions. In addition, equations (VIII.11) and
(VIIL.22) from the first and second subsections of this chapter, respectively, can be
responsible for the magnetic boundary conditions. Thus, the corresponding six

homogeneous equations read:

L0 71l m,m_ g I
Fueo}t( lh);e _pme y”( ff)f[ -0 (VIIL.28)
Cc'(k C\K,,

em
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Fr[elal_hlel]wub{clw(f)w e }
c'k
o VIIIL.29
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+F“[e”,u" Mo II]+FIIZbII ct H( : )2 +eH,UH Ry

C KLI?I

Flelal +F12 1 IM F"e'/l" FIIZeIluIIM:O (VIII30)

(k.Y (k5)
Flel " — F251 %0+ F' 50— F2b' x0=0 (VIIL31)
_Fplel _ prpigt (Kelm) )(2 ) (VIIL.32)
RN _ i IIM =0 (VIIL.33)

(k5)

It is usual procedure to successively subtract the last four equations from the
second expression. Using relationship (VIII.28), the final form of the equation for the
determination of the velocity V.. of the sixteenth new interfacial SH-wave can be

inscribed as follows:

2
CI 1+( eI u116 + 1- I/newlﬁ
Cl] ( 11 V]]
zun tem

S,
¢ (k) w'a" (kL) -(kp)

Cu 1+(K[ )2 enﬂu Alo! i':_ (Kgli,, ); (VIH34)
APt KT 2 K" 2 1 KT 2 Ko
euﬂi Iuhuau e”,u” nig!" ( i”il-)(KI(I )2[1) e“,ui #hnau ( im)(KI(I )én)

where the coefficient (K a )2 is defined by expression (IV.16).

The existence conditions are defined by inequalities (VIII.14) given in the first
subsection. The existence conditions contain the parameter ¥ which is defined by the
right-hand side in equation (VIII.34). For the case of o' = 0 and &' = 0, the parameter

Y can be significantly simplified as follows:
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In equation (VIIL.35), one can also apply ¢' =0 and " =0 or &' = 0 and 2" = 0.
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CHAPTER IX

The Case of D;' =D;" =0, y' = y", and By' = B;" at x;=0

These mechanical, electrical, and magnetic boundary conditions can be also
treated in this theoretical work. The mechanical boundary conditions at the common
interface x3; = 0 shown in figure 1.1 from the first chapter are U' = U" and (o3,)" =
(o3)", see equations (VIL.1) and (VI.2) from Chapter VI. The electrical boundary
conditions represent the electrically open interface, namely D;' = 0 and D;" = 0
respectively defined by equations (I11.3) and (II1.4) from Chapter III. Besides, the
magnetic boundary conditions are y' = y" and By' = B;", see equations (VI.5) and

(VL.6). Therefore, one can write the following six homogenous equations:

FREUIE) _ plzgoue _ (IX.1)
Flle'e”® +n'y " |+ F2 [C'UY +¢'9"® + 1y | (IX.2)
g gl gl g ] 2o 1

ol [gl(pom) + a‘l//‘"‘”]— Fi2p! [eIUWS) —elp"® — a'l//o“s)] =0 (IX.3)

_pn [811(0011(4) +0(“l//0u(4)]+FmbH [enUou(s) _£II¢OII(6) —0(“1//0“(6)] -0 (IX4)
Fly 0 4 Flay016) _ ply, 1) _ iz, on) _ (IX.5)

Fllotg"® + ity |- F2p [n'U™) — g™ — 'y | (IX.6)
+ F g 4 gty | F R RO — g gyt ] =0 '

The equations written above are valid for each of three cases which will be
studied in this chapter. These three cases represent three possibilities which can be
realized because the first and second PEM half-spaces can possess their own two
different eigenvectors. Therefore, three different combinations of the eigenvectors

can exist. It is possible to consider the first combination.
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IX.1. The first sets of the eigenvector components

Consider the corresponding first eigenvectors used for the first and second PEM
half-spaces. For this case, the corresponding six transformed homogeneous equations
can be written following equations (V1.7), (VL.8), (II.9), (III.10), (VI.11), and

(VI.12). For this case, they can be rewritten as follows:

F[z elal —hISI o eIIaII h“e” B

1X.7
i "oy D
Fl[e'a‘ —h‘e‘]+ F"p' C‘M+e a'—h'e'
(K. (IX.8)
Mol gt ’
L [en 1 h"é‘n]+Fmb"{C" CH(K" ) sl —plel [0
F'x0—-F"b'x0=0 (IX.9)
FU'x0-F"p"%x0=0 (IX.10)
Fl 4 Fr (K:m()zl—)(zK')z _pné_ e _pm 51 (KH()Z - §K”) =0 (IX.11)
K., e € K.
>
F“+F‘g{:’u:l_((all?)z+F‘2b‘><0+F“2b“><0:O (IX.12)
e"u" -

Employing relationships (IX.7) and (IX.12) for equations (IX.8) and (IX.11), the
last two equation can be properly transformed and then subtracted from each other to
exclude the weight factor . The resulting equation can demonstrate the dependence
of the velocity V.17 of the seventeenth new interfacial SH-wave on the material

parameters. This equation reads:
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' 1+(Kelm)2 neul7 1 Viewtz ’ _ 81/11 —(al )Z o' —h'e!
CH 1+ (KII )2 Iem ’ - Vrelin h gll'ull _ (OKH )2 ellan h“g”

em

[(K('L)z (k) e“a” We" g (kL) - (K;)Z]/(gl e‘/z‘(a‘gj (IX.13)

(K) —he gu C“ 1+(K” )2 el 8”/1" ( )z

This equation must satisfy the following existence conditions used in the

previous chapters:
vy>0 and (v, /v5, ] >1 (IX.14)

The reader can check that o' = 0 and &" = 0 significantly simplifies the form of the

parameter Y which represents the right-hand side of equation (IX.13).
IX.2. The second sets of the eigenvector components

The theoretical consideration of the corresponding second eigenvectors for the
first and second PEM half-spaces can be also realized. It is certain that equations
(VL.15) and (VIL.16), (II1.16) and (I11.17), (VI.19) and (VI.20) can correspond to the
mechanical, electrical, and magnetic boundary conditions used in this case. So, the
corresponding six homogeneous equations can be composed as follows:

1, I h[lal[

Fo ey —h'a _pmn el

(IX.15)
(&2, (KL
11
Fl[e'ﬂ[—h[a[]+F”bl{C‘eC'ul(]:)+e,u h‘al}
e (IX.16)
+F“[ g H]+Fmb“|:C” e",uljl( ff“)z ! +e“,u” h“O(“:|=O
K.,
Fle'u' —F"b'x0=0 (IX.17)
F”(e",u” o 11) F2pls0=0 (IXIS)
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2 2 2
Fhmwmmwo (IX.19)
F')X0-F"b'x0+F"x0-F"p"x0=0 (IX.20)

It is apparent that the last equation cannot take part in the further theoretical
analysis. It is natural that equations (IX.17), (IX.18), and (IX.19) must be subtracted
from expression (IX.16). Utilizing relationship (IX.15) and equation (IX.18), the
latter equation can be further transformed to get the following explicit form for the

determination of the velocity V.15 of the eighteenth new interfacial SH-wave:

1+ (K en )2 Veuts ’ Veuts ’
o 1+(K“ )2 1- pl 1= pu
em tem tem (IX.21)
R e B A

em em

+
elﬂl_hlal c" l+(K" )z e“ﬂ“—h“a” l+<K“ )2

em em

where the coefficients (K ! )2 and (K u )2 are defined by expressions (IV.15) and (IV.16),

respectively.

The right-hand side of expression (IX.21) represents the parameter ¥ which must
satisfy existence conditions (IX.14) given in the previous subsection. It is clearly seen
in expression (IX.21) that &' = 0 and o = 0 can simplify the form of the parameter Y.

Thus, this parameter reads:

2 2
yoO &) m k]
CU i (k!f +(ka) A" 1K + (K1)

(1X.22)

IX.3. The combination of the first and second sets

It is also possible to utilize the first eigenvectors for the first PEM half-space and
the second ones for the second PEM half-space. The equations describing the

mechanical boundary conditions can be also borrowed from Chapter VI. They are
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equations (VI1.22) and (VI1.23). For this mixed case, the electrical boundary conditions
can be represented by expressions (I11.9) and (I11.17) from Chapter III. The magnetic
boundary conditions can be also borrowed from Chapter VI, see equations (VI.26)

and (VI1.27). Consequently, the six homogeneous equations are as follows.

1 g1, W, g1l
F“”I‘( h)g _Fme ﬂ”( fj)f‘ - (IX.23)
CK,, C\K,,
1 g1
fﬂpal_wgq+FwyPyecqf;'+aal_wgi
C (K
o 1X.24
Mt~ " ( )
+F“[e“,u“—h“a”]+F“2b“ ot “( - )2 +elu" — Rl |=0
C\K.,
F'x0-F"p'x0=0 (IX.25)
Flel i~ F 00 (1X.26)

_FUlgn _Fllzhllallw_'_l;lhllgl +F12h"€IM:0 (IX.27)

(k2 Y (x.,)

F'le'a' —h'e")+ F' x0— F" x0+ F"b"x0=0 (IX.28)

Equation (IX.25) can be neglected and equation (IX.28) demonstrates that the
new weight factor such as F'(e'a' —#'¢') can be equal to zero due to F' = 0. It is
needed to subtract equations (IX.26), (IX.27), and (IX.28) from equation (IX.24).

Therefore, the velocity V.19 of the nineteenth new interfacial SH-wave can be

em

obtained from the following final form:
ok 1+(K u )2

% 2 v 2
JF{JW]+JF[;W]
em tem tem (IX 29)

YN S A
2> 0,0 (TP 2

I e T ) R R

i‘l+(K' J

where the coefficient (K}x‘ )2 is defined by expression (IV.16).
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Like the investigations performed in the previous subsections, the existence
conditions are defined by inequalities (IX.14) and the parameter Y represents the
right-hand side of equation (IX.29). Exploiting o' = 0 and «" = 0, equation (IX.29)

can be simplified and written in the following form:

_ e (&) (k2]
T ) I ) W Py S (30
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CHAPTER X

The Case of p' = 9" =0, y' =", and B;'=B;" at x; =0

Finally, it is reasonable to theoretically investigate the case of U' = U", (03,)' =
(032)", (pl =0, (p” =0, q/' = l//“, and B;' = B;" at x; = 0. Therefore, equations (VI.1) and
(V1.2), equations (I1.3) and (I1.4), and equations (VI.5) and (VI.6) can be used for the
mechanical, electrical, and magnetic boundary conditions, respectively. In this case,
¢ =0 and ¢" = 0 determine the electrically closed interface. Thus, the six

homogeneous equations can be composed as follows:

FREOG) _ piagone _ (X.1)
F][el¢0[(3) +h[WO[(3)]+F|2bI [C|U01(5) +€I(/70[(5) +h[V/0[(5)]

L p! [en(pmlm) +hnl//011(4)]+F112bn [CIIUOII(G) +en(p011(5) +hII‘//(]II(6]:| -0 (X2)

Flo"® 4 F2g06) = (X.3)

Flgl® 4 pr2giio _ (X.4)

Flyt10) 4 Fi2g010) _ plly 01) _ iz, 016 _ o (X.5)
Fl[al(pm(s) +ﬂ1u/01(3)]_Flzbl[hIUﬂl(S) _al(pmu) —ﬂIV/m(S)]

(X.6)

iy [aII¢OI](4) +,u”l//0m4)]—Fmbn [hnUon(a) _anq)on(a) _Iunl//on(s)] -0

It is vital to demonstrate that the system of these homogeneous equations can
have some solutions. This is the main purpose of this study. Like the theoretical
treatments of the previous chapters, it is possible to start the analysis using the first

eigenvectors for the first and second PEM half-spaces.
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X.1. The first sets of the eigenvector components

Exploiting the first eigenvectors for the first and second PEM half-spaces, the
six homogenous equations written above can be further transformed. It is also natural
to borrow them from the previous studies. For example, equations (VI1.7) and (VI.8)
describing the mechanical boundary conditions can be borrowed from Chapter VI.
Equations (II.9) and (II.10) from the second chapter can describe the electrical
boundary conditions. The magnetic boundary conditions can be defined by equations
(VI.11) and (VI1.12). As a result, the six modified homogeneous equations can be

written in the following forms:

ot —hle! gt — plet
2 C](K] )2 o C"(K" )2 X.7)
Fl[elatI —h‘e‘]+ F”b{c'elofl(_f])f[ +e'a' —h‘g‘}
¥ (X.8)
FH[eH it hngll] FHZbH|:CH e”gilu( I];’“)e”_'_ ol plg Il}
KL/"
> 2
Py g (Kim() [—gfé) o (X.9)
Kcm
Fliglgll 4 pli2 i (K:,In)z_(K;:[)z =0 (XIO)

(k"

2 2
_FRe - Pl ((3()(2K1)+Fuhl el F2ple H(KH<)K;()ZK(}I):0 (X.11)

em

LI e 1)
e R (( “)) +FPB X0+ F™" x0=0 (X.12)
e'u

It is obvious that it is probably convenient to work with the new weight factors
such as F'(e'a' — h'e") and F'("a" — h"¢") instead of the weight factors F' and F"
because equation (X.8) contains them. For this purpose, equation (X.9) must be

added to equation (X.11) and equation (X.10) must be added to equation (X.12). As a
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result, the following two equations together with equation (X.8) can form a new

system of three homogeneous equations instead of the six ones:

Pl He s (el —ie!)

? _ ? X.13
+F“( o _ple II) X 1}1115:1” . L FU2plen (KJII;,()KH gf{tﬂ) =0 ( )
Fn( o Bl 11)+ F2el g (Kel;ln)z_(K;I)z

m )2
ey (X.14)
_Fl(ea e 1) pigl gllul_( 1) _

ela' —h'e! 8“/,[“ ( )2

Equations (X.13) and (X.14) contain only the new weight factors F'(e'a’' — h'")
and F'(e"a" — A"e"). Using these equations, it is possible to properly transform them
in order to have F'(e'a' — ) in one equation and F'(¢"o" — A"¢") in the other. As a

result, the weight factors F'(¢'a’ — h'e") and F'(e"a" — h"¢") can be defined as follows:

11 i TSR I
-h'e' "o h€g‘u (a)

F"( P h”é‘"{l+ h'e" h'e" gﬂ ( I)Z]

+[F12 g e (kL) -(k!) ]h“e“ ew' (') (X.15)
o — e (KFI,I,, )2 (;‘H,UH (a” )2
+F“26H(ZIIM 0
(k2,)
Al Bleh (o 1)
F‘(e‘al —hlé‘l{l"' o fh el ellg — plieh ;Izn (( ))2]
+F'2(e'05' _hlel)_FHZh[e[l e'a" (K;r]n )2 _(Kf]ll)z (X16)

el et (K" )2
L FRpin (Kem) (K“) =0

(k2

Subsequently, equations (X.15) and (X.IS) are ready to use in equation (X.8) in
order to exclude the weight factors F'(e'a’ — h'¢") and F'(e"a" — h"e"). Employing the
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relationship between the weight factors > and F'”, the final form of the equation for
the determination of the velocity V.20 of the twentieth new interfacial SH-wave can

be introduced as follows:

C[[I 1+(Ke]m)z 1_{Vne;1r20j2+ 1_([/’16“20]2 . Bel | 8‘/1‘—( I)zz
¢ 1+(K:’]") V’w" Vtcm ea —hg 8",11” ( )

X{CI (K:m)z N hlel (KH )2—([({1)2]*_(1 AP J (X]7)

C”1+(KH )2 e“ 11 hH i 1 (KH )2 it 11 hH it

em

Pl (KII )2 (KII)Z Bel Bigh 8[/1[—( 1)2
X el — pligh ;m (K“) }/(14_6 T_plel ol — pligh 8“#“ ( )2]

em

where the coefficient (K j} )2 is defined by expression (IV.16).

The existence conditions can be written as follows:
y>0 and (7, /7] >1-7° (X.18)

where the parameter Y is equal to the right-hand side of equation (X.17). It can be

also written in the following simplified form as soon as &' = 0 and o' = 0:

) R S ) A
T R T R AT
11

-Shabal 2

It is flagrant that 4" = 0 and 4" = 0 cannot be realized because ¥ — 0. However,
¢' =0 and €" = 0 can further simplify the form of the parameter Y. This can mean that
the piezomagnetic phases of the first and second PEM half-spaces are responsible for

the existence of such new interfacial SH-wave.
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X.2. The second sets of the eigenvector components

It is essential to investigate the case when the corresponding second sets can be
used for the first and second PEM half-spaces. Using equations (VI.15), (VI.16),
(I1.45), (I1.46), (VI.19), and (VI1.20), the six modified homogeneous equations can be

written down as follows:

ey —h'e! Myt —plig!
! CI(KI )2 _ 2 CII(KH )2 =0 (X.20)
Fl[elﬂ[ _hlal]+F12b1|:C[ e‘lﬂll —]hlgll +e[ﬂ[ _h[a1:|
c'(ks) (X.21)
+F"[e‘"ﬂ“ _hnan]_‘_Fnzbn{Cn enétllll(]_(f'fn)?n +elyt - p" 1[:|=0
2 2
Flelﬂl +Flze|#1 (K:m) I_(ZKIIH) =0 (X.ZZ)
2 2
F”(e"ﬂ“ —h"a”)+F“2(€”ﬂ“ R )(Kgn()K;gzK’:):O (X23)
-F'h'a' -F"h'a! W+ F'h'a" + F™h'a" W =0 (X.24)
K., Ko
F'x0-F"'x0+F"x0-F"™p"x0=0 (X.25)

It is blatant that equation (X.25) can be neglected and three equations (X.22),
(X.23) and (X.24) must be subtracted from equation (X.21). As a result, the following
equation can determine the velocity V.., of the twenty-first new interfacial SH-

wave:

CI 1+(K:m )2 Vm’le ’ Vm’le ’
Fl (K“ )2 1- ! 1= pu
+ em tem tem (X'26)
¢ (kL) L &LF-(y),  we" (ki) -(Ki)
= Ch 1+(K“ )2 + 1+(K" )z M pg" 1+(K” )2

em em

115



where the coefficient (K a )2 is defined by expression (IV.16).

For equation (X.26), the existence conditions can be also defined by inequalities
(X.18) which use the parameter Y. For this case, this parameter represents the right-
hand side of equation (X.26). The reader can use o' = 0 and o' = 0 to get a simplified

form of Y.
X.3. The combination of the first and second sets

It is also possible to use the first eigenvectors for the first PEM half-space and
the second eigenvectors for the second PEM half-space. Utilizing equations (V1.22),
(V1.23), (I1.9), (I1.46), (V1.26), and (V1.27) for this case, the six homogeneous

equations can be composed as follows:

ot —hle! " — B!
" CI(K] )2 -F" gll (K“ )2 = (X27)
Ll plgl
Flle'e —h‘s‘]+F‘2b{C‘ cezre Of( Ih)f +e'a! —h‘e‘}
C\K
on (X.28)
L F! [en#u —h”a”]+F”2b“{C” enﬂ:(_ﬁu)?u +ely" —h“O{“:|:0
C(K,,
1Y _ (g1}
Flolg! + Flelg! (Kem)z (ZKa) -0 (X.29)
(KCI"’)
Flel gl 4 Fizeh 0 (Kgﬁ )2 - (K;Inl )2 -0 (X.30)

(ke)

em

_ Fiplgn _FllzhlIaIIM+F1hII€I +F12hllelwzo (X.31)

(k2) (&2, )

—F'h'e' = F2b'x0+ F"x0— F"b" x0=0 (X.32)

It is convenient to use the following two equations instead of equations (X.29),

(X.30), (X.31), and (X.32):
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2
Fl(elal_hlg )+F12 1 I(KI(E{I_§ZK(L):0 (X33)
FUM " — p )+ F2 (M — g
( J+ (e )
_F2 ) Blg! (Kelm)z_(]{;) TN ]M:O (X.34)
TR e.)

em

Equations (X.33) and (X.34) must be subtracted from equation (X.28). The last
equation can be further transformed to get a simplified form. For this purpose,
relationship (X.27) must be also used. As a result, the final form of the equation for
the determination of the velocity V,.,2, of the twenty-second new interfacial SH-wave

can be obtained as follows:

' 1+(K£Im)2 mzz Ve ’

CII (KH )2 /1= pi
ttm tem

:1+[1_ e ] dot  c(kLV -k we' C (k) -(k!)

da'—h'e" Jela'—n'e' C" q4(k1] ea'-ne'C" 14 (k!Y

em

(X.35)

where the coefficient (K . )2 is defined by expression (IV.15).

It is obvious that some existence conditions must exist for the complicated case
described by equation (X.35). They are given by inequalities (X.18) where the
parameter Y is equal to the right-hand side of expression (X.35). Also, it is necessary
to account that the following equality e'a' = h'¢' definitely gives an infinite value of
the parameter Y. This equality must be also accounted because the left-hand side of
equation (X.35) cannot be equal to a very large number. When o' = 0 and o = 0

occur, one can find that the parameter Y has the following form:

e K-k c (k'
T kI (k2] CT (kI + (k2

m

(X.36)
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It is also possible to estimate the possibility of propagation of this new
interfacial SH-wave in the configuration consisting of PZT-Terfenol-D and BaTiOs;—

CoFe,0,. For this two-layer system, the following parameters were calculated: C'/C"
~ 033, v, /vt o~ 059, (k) ~ 082, (KL} ~ 0.16, o' =001/e's" , and

" =0.01y/e"u" . Using them, it was found the parameter Y has a negative sign. This

illuminates that such new interfacial SH-wave cannot propagate.

118



CHAPTER XI

Discussion

It this theoretical work, each chapter from the fourth to the tenth provides the
corresponding solutions for three new interfacial SH-waves. Also, Chapter II has
demonstrated that only single new interfacial SH-wave can propagate guided by the
eclectically closed and magnetically open interface because each of the three
possibilities gives the same result. Besides, Chapter III has studied the case of the
eclectically open and magnetically closed interface which cannot support any
interfacial wave propagation. So, the expressions for the calculations of the speeds of
all the new interfacial SH-waves and the corresponding existence conditions were
obtained in the previous chapters of this work. However, the explicit forms of the
complete mechanical displacement and the complete electrical and magnetic
potentials were not demonstrated. This is so because the expressions can be very
complicated and the size of the work can be significantly expanded. However, it is
possible to discuss that and schematically demonstrate the common procedure for the
determination of the parameters.

Based on the theories developed in the previous chapters, the reader can now
state that one has to deal with the corresponding six homogeneous equations in each
chapter beginning with Chapter II. However, it is thought that it is more convenient
to deal with the corresponding three equations instead of the six ones. Indeed, the
first equation of six provides the relationship between the weight factors F* and F'”.
Besides, it is obvious that the second equation is the main equation because it
includes the phase velocity which must be determined. This second equation also
depends on both F‘(e‘(p‘—h‘y/') and F”(e”(p“—h”y/“) where F‘(e‘(o‘—h’x//‘) can be
equal to F'le'a’-h'e') or F'(e'u'-h'a'), see equations (I.73) and (1.76), and

o

F"(e"" —n"y") can be equal to F"(e"a" —h"e") or F"(e"u" —h"a"), see equations
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(I1.81) and (1.84). Therefore, the last four equations of the six ones must be properly
transformed into suitable two equations in order to cope with the new weight factors

such as F'(e'¢' —h'y') and F"(e"p" —h"y") instead of F' and F". It is apparent that a
subtraction of these four equation from the second one must lead to the new equation
containing neither F'(e'gp' —h'y') nor F"(e"p"—A"y") . Therefore, the new two
equations obtained from the four ones must lead to the same result after subtraction
of them from the second equation. For some cases, both new equations can contain
both F'(e'¢' —h'y') and F"("" —Aa"y"). In spite of this situation, these two equations
can be further transformed in order to obtain new equations, of which one will
contain only F'(e'¢' ~4'y') and the second will contain only F"(¢"¢" —A"y"). This
procedure can significantly complicate the final result.

So, it is possible to schematically write these three homogeneous equations

obtained from the six ones in the following matrix form:

11 4\ Flle'e' —=n'y') ) (0
10 d,| F'(e"g"—n"y")|=|0 (XL.1)
01 d Fr 0

w

where the parameters such as d|, dp, and d; are only those terms which contain the
weight factor F''>. For simplicity, it is possible to use F'"* instead of F“z(e”(p” —h“a//“).
Consequently, the determinant of the coefficient matrix in equation (XI.1) can be

readily transformed by the following way:

11 4, 0 0 d-d, —d,
1 0 dyf=0-[1 0 d, |=0 (X1.2)
01 d 01 d,

It is clearly seen in expression (X1.2) that d| — d, — d5 = 0 can definitely equal to
zero this determinant. This equation determines the speed of the corresponding new

interfacial SH-wave. Also, the parameter Y in the existence conditions is equal to ¥ =
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d, + ds. It is also flagrant that the new weight factors F'(e'¢'-h'y') and

F"(e"¢" —n"y") can be defined by

F'le'g' - n'y')=—d, (XL3)

£ (e”(p” —h“l//“)=—d3 (X1.4)

As a result, the weight factors ' and F"' are defined by

F'==d,/(c'g' - 1'y") (XL5)
Fu =—d3/(e“(p“ —h“l//“) (XL.6)

In addition, the weight factor > can be naturally chosen to be equal to unity, F"> =1.

For the case of Chapter III, d, = d; = 0 occurs and therefore there is no any
suitable solution. Also, d, = ds = 0 results in F'(e'p' —h'y"') = F"(e"p" —#"y") = 0 due
to F' = F'= 0. In this case, F2+0and F'? # 0 occur because F' and F"' are uncoupled
with F2 and F™. For the other cases, it is possible that one of the weight factors F*
and F" can be equal to zero. For instance, this occurs in the second and third
subsections of Chapter IX and in the first and third subsections of Chapter VII. It is
necessary to state that the existence conditions for all the cases represent the
requirements for the corresponding parameter ¥ which is equal to the right-hand sides
of the corresponding expressions. For many cases, this parameter can approach an
infinity, ¥ — o due to ¢'¢' =h'y' and or e"¢" =h"y". It is blatant that ¥ — o cannot
support the wave propagation because the left-hand sides of the corresponding
expressions are finite.

There are currently a few hexagonal (6 mm) piezoelectromagnetics to constitute
suitable two-layer structures. However, it is possible to find two composites to
evaluate some possibilities of the propagation of the new interfacial SH-waves. The
hexagonal composites such as PZT-Terfenol-D and BaTiO;—CoFe,O, are well-
known. It is possible to use them in the calculations. PZT-Terfenol-D and BaTiO;—
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CoFe,0, were chosen as the first and second PEM half-spaces in the calculations,
respectively, because the SH-BAW speed for PEM1 is slower than that for PEM2.

This configuration has the following calculated parameters: C'/c" ~ 0.33, v! /vt ~

tem tem

0.59, (k'] ~ 0.82, (k" F ~ 0.16, ' =0.01/e'x" , and " =0.01/e"4" . It was found
that this configuration cannot support the propagation of the new interfacial SH-
waves studied in Chapters II and X. This is obvious because it is preferable to
constitute a configuration which will possess C'/c" > 1.

An additional problem is that a large number of suitable piezoelectromagnetics
cannot be found in the literature to constitute various two-layer structures. It was
stated in the introduction that to evaluate the propagation possibility for various
structures is not the main purpose of this work. Also, the reader can perform such
evaluations for the results obtained in Chapters from IV to IX. Indeed, it is also
possible to vary the values of the electromagnetic constants ¢' and o'. Besides, this
theoretical work relates to the propagation problems of the new interfacial SH-waves
when two dissimilar piezoelectromagnetic half-spaces are perfectly bonded at the
common interface. To treat some interfacial imperfections does not represent the
main purpose of this work and these problems can be investigated in the future.
However, it is possible to assume that the interfacial imperfection can support
propagation of some interfacial SH-waves which cannot propagate along the
perfectly bonded interface. Huang, Li, and Lee [100] have solidly demonstrated this
fact for the problem of propagation of interfacial SH-waves along the common
interface between single-phase materials such as pure piezoelectrics and pure

piezomagnetics.
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CONCLUSION

These theoretical investigations are concerned with the propagation problems of
interfacial SH-waves. These SH-waves can be guided by the common interface
between dissimilar hexagonal (6 mm) piezoelectromagnetic half-spaces.
Piezoelectromagnetics are known as two-phase materials possessing the piezoelectric,
piezomagnetic, and magnetoelectric effects. This simultaneous possession of the
effects certainly complicates the theoretical treatments of the problems. It was found
that as many as twenty two new interfacial SH-waves can propagate in such two-
layer structures. The propagation of each of the found SH-waves must satisfy the
corresponding mechanical, electrical, and magnetic boundary conditions. It is
apparent that different sets of the boundary conditions at the interface x3 = 0 (see
figure 1.1) result in the fact that so many interfacial SH-wave can be guided by the
common interface. For the mechanically free interface, it is also necessary to require
the equality of the mechanical displacements. These two mechanical boundary
conditions were remained the same and the electrical and magnetic ones vary. The
possible electrical ones are as follows: the electrically open (D;' = 0 and D;" = 0) or
electrically closed (¢' = 0 and ¢" = 0) interface, as well as the case of ¢' = 9" and D'
= D;" where ¢ and D; are the electrical potential and electrical displacement
component, respectively. Besides, the possible magnetic ones are as follows: the
magnetically open (' = 0 and " = 0) or magnetically closed (B;' = 0 and B;" = 0)
interface, as well as the case of y' = y'' and B;' = B;" where y and B; are the magnetic
potential and magnetic flux component. It is convenient to utilize the superscripts “I”
and “II” to distinguish the first and second half-spaces from each other.

The speed of each of the twenty two new interfacial SH-waves can be calculated
using the corresponding expression obtained in an explicit form and some obtained
forms can be quite complicated. Also, the corresponding existence conditions must be

accounted for each case in order to be sure that such new interfacial SH-waves can
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propagate in a certain configuration consisting of chosen dissimilar
piezoelectromagnetics. All the formulae for the calculation of the wave speed are
valid when the SH-BAW speed for the first PEM half-space is smaller than that for
the second PEM half-space, see figure 1.1. However, all the obtained formulae are
also valid for the reverse case because one can always rearrange the configuration,
namely PEM1 — PEM2 and PEM2 — PEMI.

The obtained results can be also useful for the case when the single-phase
material such as the pure piezoelectrics or pure piezomagnetics is used instead of one
of the piezoelectromagnetics. It was found that for certain cases only suitable
piezoelectrics can contact with the piezoelectromagnetics to satisfy the existence
conditions. For the other certain cases, only suitable piezomagnetics can contact with
the piezoelectromagnetics to allow the wave propagation satisfying the existence
conditions. For the configuration of two dissimilar piezoelectromagnetics, all the
formulae for the determination of the wave speed and the existence conditions can be
significantly simplified when a' = 0 and a" = 0 are exploited. It is well-known that in
general, the values of the electromagnetic constant o can be very small. However, it
couples the other material constants that can significantly complicate the results.

The sample calculations were performed for some cases when PZT-Terfenol-D
and BaTiO;—CoFe,0, composites are used as the first and second PEM half-spaces,
respectively. These two piezoelectromagnetic composite materials are well-known.
They relate to the hexagonal materials of class 6 mm. This work has used only these
two composites because there are no investigations of the other possible hexagonal (6
mm) composites. Using these two composites, it was found that they are not the best
solution to utilize them together because the SH-BAW speed for the BaTiO;—
CoFe,0, composite is approximately two times larger than that for the PZT-
Terfenol-D composite, see table 1.1. In the calculations, PZT-Terfenol-D must be

therefore used as the first PEM half-space because V! /v ~ 0.59. Also, this

tem tem

configuration of two composite has a very small value of C'/C" ~ 0.33. As a result,

this configuration cannot support the interfacial SH-wave propagation. However, it

was also demonstrated that when the values of electromagnetic constants «' and o
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are properly changed, some new interfacial SH-waves can exist even in such
configuration. This can mean that the magnetoelectric effect can significantly affect
on the existence of the interfacial SH-waves. It is well-known that the
electromagnetic constant can significantly depend on the applied magnetic field.
Therefore, it is expected that these results can be useful for the creation of various

novel technical devices, for instance, sensors, switchers, etc.
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