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PREFACE  

This theoretical work has the purpose to thoroughly investigate the problems of

shear-horizontal (SH) interfacial acoustic wave propagation guided by the common

interface between two dissimilar piezoelectromagnetic hexagonal half-spaces of class

6 mm. At the interface x3 = 0, the mechanical, electrical, and magnetic boundary

conditions can support the interfacial SH-wave propagation. The equality of the

mechanical displacements and the normal components of the stress tensor

(mechanically free interface) were used as the mechanical boundary conditions. The

electrical and magnetic boundary conditions can be the electrically closed or

electrically open interface, magnetically closed or magnetically open interface, as

well as I = II, D3
I = D3

II, I = II, and B3
I = B3

II at x3 = 0 where , D3, , and B3

stand for the electrical potential, electrical displacement component, magnetic

potential, and magnetic flux component, respectively, and the superscripts “I” and

“II” signify the first and second piezoelectromagnetic half-spaces.  

As a result, it was found that as many as twenty two new interfacial SH-waves

can propagate in such two-layer structures. Their propagation speeds can be

evaluated using the obtained explicit forms and the existence conditions. The sample

calculations were performed for some cases when PZT–Terfenol-D and BaTiO3–

CoFe2O4 composites are used. It is thought that some of the obtained expressions can

be also useful for the problems of interfacial SH-wave propagation along the

interface between single-phase materials such as piezoelectrics and piezomagnetics. 

It is obvious that the obtained results can be useful for complete understanding of

wave processes in two-phase laminated composite materials with the hexagonal (6

mm) symmetry in acoustoelectronics, acoustooptics, and optoelectronics. It is

expected that the obtained results can be utilized in fabricating smart materials in the

microwave technology. It is thought that the electromagnetic acoustic transducers

(EMATs) which are used for investigations of SH-SAW propagation problems can be

also exploited for studies of propagation problems of these new interfacial SH-waves.  

PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 

75.20.En, 75.80.+q, 81.70.Cv  
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This theoretical work was carried out as a research activity existing in the

International Institute of Zakharenko Waves (IIZWs). It is expected that this work

can cause an interest for researchers and students coping with the acoustic wave

propagation in the transversely-isotropic piezoelectromagnetics. It describes a

complicated problem such as the wave propagation guided by the interface between

two solid half-spaces representing two transversely-isotropic piezoelectromagnetics. 

It is thought that knowledge of wave properties of such complicated system

consisting of two piezoelectromagnetics can be also beneficial to design of smart

devices, sensors, actuators, etc. Also, it can represent an interest in constitution of

piezoelectromagnetic laminate composites in the microwave technology and non-

destructive testing of the composites. This theoretical research can be also useful for

the aerospace industry which calls for innovative smart composite materials. 

Therefore, it is very important to completely understand wave properties of different

composites.  

This work studies propagation phenomena of the shear-horizontal (SH)

interfacial acoustic waves in the layered system consisting of two transversely-

isotropic piezoelectromagnetics of class 6 mm. This studying subject relates to the

disciplines of applied physics and electromagnetic engineering. In physics, ordinary

elastic motions in crystals are called acoustic modes. The descriptive term ”acoustic”

is used rather than ”elastic”. This is useful because it allows one to distinguish

acoustic and optical modes from each other. The optical modes involve internal

degrees of freedom within a crystal unit cell. The term ”acoustic” also reflects

common terminology among researchers and engineers engaged in developing elastic

wave devices for radar and communication systems. This arena of technological

development has been strongly influenced by the philosophy, concepts, and

techniques of microwave electromagnetics. This is also known as microwave
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acoustics. Consequently, employment of the term "acoustic" accurately describes the

aim and scope of the book.  

The International Institute of Zakharenko Waves (IIZWs) was recently created to

support researches on different Zakharenko waves, as well as for monitoring the non-

dispersive Zakharenko type waves in complex systems such as layered and quantum

systems. Also, the IIZWs research is focused on treatments of many complex systems

in which dispersive waves can propagate. The well-known examples of dispersive

waves are Love and Lamb type waves. The Rayleigh and Bleustein-Gulyaev type

waves propagating in layered systems can be also dispersive. The International

Institute of Zakharenko Waves also has an interest in different applications of the

acoustic waves for signal processing (filters, sensors, etc.) and the structural health

monitoring. There are currently more than twenty research papers and books relevant

to the IIZWs. These research works also cover some problems of the propagation of

the well-known Love, Lamb, Rayleigh, and Bleustein-Gulyaev type waves and

discovered new wave phenomena.  

It is worth noticing that the IIZWs possessively takes all the planets and smaller

natural space bodies in the space outside the Solar System to develop both the IIZWs

and the planets concerning economics, ecology, and population. Also, it is thought

that this is necessary in order to exclude any sale of the planets and their surfaces by

any human or other. This activity of the IIZWs was also created because of some

problems to find a spot for the IIZWs on Earth. Note that the single person, namely

Mr. Dennis Hope from the United States possesses the planets in the Solar System

(but Earth) who sells surfaces of the planets to individuals. It is obvious that the

monetary experiment on Earth during thousand years demonstrated a weak power of

the financial system to avoid financial problems which cyclically happen. As a result, 

the following question presents in the air: what is the modern money? It is obvious

that monetary systems are coupled only with humans who have given power to each

other, but not with any space body such as a planet or star. It is apparent that humans

depend on money, but not planets and stars. Indeed, planets and stars are leaving their

own lifetimes and their ways of life do not depend on human activities measured in
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money. Therefore, money can exist only together with the human civilizations. It is

not clear that the other civilizations can evaluate their activities in the same way

similar to the human civilization does on Earth. Nothing is soundly known about that. 

It is also noted that only several thousand planets orbiting their own stars can be

currently observed in the Star Systems which are situated relatively near the Solar

System. This does not mean that only several thousand planets can exist outside the

Solar System we can observe. It is expected that in average ten planets can orbit each

star of enormous number of Star Systems in our Universe. It is thought that our

Universe can accumulate more than 10999 stars.  

Aleksey Anatolievich Zakharenko  

Krasnoyarsk, Russia, 2012  

(E-mail: aazaaz@inbox.ru)  
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INTRODUCTION  

It is well-known that the simplest example of the shear-horizontal surface

acoustic waves (SH-SAWs) is the dispersive Love wave. In 1911, A.E.H. Love [1]

has treated a problem of the wave propagation in the two-layer system consisting of a

thin film deposited on a substrate assuming that both materials are isotropic. He

found that such wave can be guided by the thin film and damp towards the depth of

the substrate. The Love wave displacement is perpendicular to both the propagation

direction and the surface normal (anti-plane polarization.) There is also the following

existence condition for the dispersive Love wave: the speed of the shear-horizontal

bulk acoustic wave (SH-BAW) for the thin film should be smaller than that for the

substrate. Therefore, it is possible to notice that the Love type wave (LTW)

represents a hybridization of these two SH-BAWs for the thin film and the substrate

because the LTW phase velocity is localized between these two SH-BAWs. The

LTW can only exist in the layered systems and cannot propagate in monomaterials.  

It is also well-known that three BAWs can exist in solids such as monocrystals

and isotropic monomaterials. It is thought that the reader can reach the famous works

cited in Refs. [2-8]. These works are useful to find out more about BAWs and SAWs

and their applications. Three BAWs are distinguished as follows: the SH-BAW, 

shear-vertical BAW, and longitudinal BAW. It is worth noting that the SV-BAW and

the LBAW can be also hybridized in order to form a SAW. This problem of the SAW

propagation guided by the free surface of an isotropic medium was first studied in

1885 by Lord Rayleigh [9] in connection with the problem of earthquakes. The

SAWs called the Rayleigh type waves (RTW) have displacements in the sagittal

plane (in-plane polarization) and can exist in isotropic media, monocrystals, and

layered systems. Concerning the RTW propagation in isotropic media and crystals, 

one can find the RTW existence conditions discovered in the recently published

paper cited in Ref. [10]. The conditions are written in explicit forms. Dispersive
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RTWs propagating in the layered systems were also studied by the author in Refs [11, 

12], of which the second studies the piezoelectric case and is available in an on-line

open access.   

To study anisotropic media is frequently a very complicated business. It is well-

known that the phase velocities (Vph) of the elastic waves propagating in isotropic

media do not depend on the propagation direction. In general, natural solids are

anisotropic, namely Vph depends on the propagation direction in crystals. The

propagation problems of BAWs and SAWs can be significantly complicated in the

case when a crystal possesses the piezoelectric or piezomagnetic properties. This is

also true for the SH-BAWs and SH-SAWs. However, there are piezoelectrics called

the transversely isotropic materials. Some of them possess the hexagonal symmetry

of class 6 mm. Using the piezoelectrics of this class, Bleustein [13] and Gulyaev [14]

in 1960s have discovered the new SH-SAW guided by the free surface of the

transversely isotropic piezoelectrics when the propagation direction is perpendicular

to the sixfold axis of crystal symmetry. This new SH-SAW called the surface

Bleustein-Gulyaev (BG) wave is now well-known and can be treated as instability of

the SH-BAW in piezoelectrics. This is also true for piezomagnetics. It is necessary to

state that piezoelectrics and piezomagnetics represent the single-phase materials and

they are used for transducer applications [15]. It is also indispensable to mention that

the BG-wave can be dispersive [16] when the layer-on-substrate structure is treated

and the LTW can also exist in the layered systems [17-20] consisting of

piezoelectrics. It is also noted that the LTWs are widely used in dispersive SAW

filters and sensors, and LTW SAW devices can have the highest sensitivity [21–24]. 

Some reviews on the subject can be found in Refs. [25-30] and the properties of

crystals are perfectly described in excellent and classical books [31, 32].  

To complicate the problem of the wave propagation, it is possible to treat two-

phase materials. These materials can possess both the piezoelectric and

piezomagnetic phases and are therefore called piezoelectromagnetics. In 1990, 

Al’shits and Lyubimov [33] have performed a crystallographic study of crystal

classes. They have the purpose to conveniently describe the properties of crystals and
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textures as well as co-existence of piezoelectricity and piezomagnetism. As a result, 

they demonstrated that the two-phase materials such as the transversely isotropic

piezoelectromagnetics of class 6 mm can exist. Also, piezoelectromagnetics of class 6

mm can represent composite materials. The measured material characteristics of the

piezoelectromagnetic composites of class 6 mm such as BaTiO3-CoFe2O4 are given in

Refs. [34, 35]. The following material parameters can be measured in dependence on

the percentage volume fraction (VF) of the piezoelectric phase (BaTiO3) in the

BaTiO3-CoFe2O4 composites: the elastic stiffness constant C, piezoelectric constant e, 

piezomagnetic coefficient h, dielectric permittivity coefficient , magnetic

permeability coefficient µ, and electromagnetic constant . Also, it is natural that a

two-phase composite can have an average mass density ρ. Also, it is worth

mentioning that the piezoelectromagnetics (PEM) possess the magnetoelectric (ME)

effect that can be evaluated by measurements of the magnetoelectric constant . In

PEM composite systems, a linear behavior is usually observed by means of AC

magnetic field application. The non-linear ME effect can be also observed in the case

of bias magnetic field application. The value of can be expressed in s/m in SI units. 

However, it represents a non-dimensional value in Gaussian units. The value of is

very small and can usually reach only several ps/m. For instant, the following value

of is given for crominium oxide: (Cr2O3) = 4.13 ps/m [36]. The ME coefficients

for some monocrystals can have significantly larger values: = 30.6 ps/m for

LiCoPO4 [37], and = 36.7 ps/m for TbPO4 [38]. According to review [36], the value

of can be restricted and this limitation can be written as the following inequality: 2

< µ. In general, the electromagnetic constants are written in a tensor form, ij. 

With the well-known notations used by Nye [31], Schmid [39] provides the tensor

forms of the 58 point groups permitting the linear magnetoelectric effect.  

Concerning the wave propagation in the piezoelectromagnetics, theoretical work

[40] carried out in 1992 by Al’shits, Darinskii, and Lothe has discussed some

problems of SAW existence in the two-phase materials, using different mechanical, 

electrical, and magnetic boundary conditions. In the case of the wave propagation in

the PEMs, the governing equations can couple the mechanical displacements with
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both the electrical potential and the magnetic potential [40-45]. Based on the

theoretical treatments developed in the last decades, Arman Melkumyan [45] has

discovered twelve new SH-SAWs propagating in the two-phase transversely isotropic

materials of class 6 mm. He discovered his wide spectrum of the new SH-SAW

velocities in 2007. Using different sets of the boundary conditions, he demonstrated

the relatively simple explicit forms for each of the twelve new SH-SAW velocities. It

is thought that one of the twelve new SH-SAWs discovered by Melkumyan [45] and

called the Bleustein-Gulyaev-Melkumyan (BGM) wave [46-48] represents a special

interest because the BGM-wave can propagate in both the cubic

piezoelectromagnetics [46] and the transversely isotropic piezoelectromagnetic

materials [48]. This is true using the same boundary conditions such as the

mechanically free, electrically closed, and magnetically open surface. Using the other

possible sets of the boundary conditions, recent book [48] revealed the explicit forms

for the second spectrum of the seven new SH-SAW velocities existing in the

piezoelectromagnetics of class 6 mm. To theoretically study the cubic

piezoelectromagnetics is significantly more complicated problem and therefore, 

explicit forms for the new SH-SAW velocities were not demonstrated in recently

published book [46]. However, it was possible in work [46] to obtain a convenient

common form for the third spectrum of the other seven new SH-SAW velocities to

compare them with each other and with the transversely isotropic case.  

There are conventional and laminated two-phase composite materials. The space

and aircraft technologies have an uninterrupted interest in the composites for various

applications. Several books and handbooks on composite materials are cited in Refs. 

[49-54]. The structure of created composite materials can be complicated and some

basic knowledge in crystallography [55, 56] is useful to experimentally determine

symmetry classes of obtained new composites. Also, the geometry of a two-phase

composite material can be denoted by the following connectivities: 0-0, 0-1, 0-2, 0-3, 

1-1, 1-2, 1-3, 2-2, 2-3, and 3-3, where 0, 1, 2, and 3 are the dimensions of

piezoelectric-piezomagnetic phases. The laminated composites can be described by

the (2-2) connectivity. In the case of thick films it is possible to cope with bulk
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piezoelectric and piezomagnetic materials and the (3-3) connectivity for the

piezoelectric and piezomagnetic phases. However, it is possible that a bulk

piezoelectromagnetic monocrystal can have a common interface with another and the

mechanical, electrical, and magnetic properties of two contacted

piezoelectromagnetic monocrystals (two half-spaces) are different. This can be also

true for two different bulk piezoelectromagnetic composites.  

This research arena is rapidly developed and therefore, reviews are yearly

published to discuss most recent advances in the physics of ME interactions in

layered composites and nanostructures. Potential device applications are also

reviewed. For instance, the magnetic-field sensors, dual electric-field- and magnetic-

field-tunable microwave and millimetre-wave devices can be the potential device

applications for the composites. Review works [36, 57-91] on the magnetoelectric

effect and composites are recommended for the reader to receive complete

information on the subject. Also, it is necessary to mention pioneer works [92-96] on

the ME composites. Generally, a continuous interest occurs to study the

magnetoelectric effect in composites for development of smart materials in the

microwave technology. According to works cited in Refs. [96, 97], modern industry

can have an increasing interest in the following possible applications of

magnetoelectric materials:  

light computing;  

solid state non-volatile memory;  

magnetic-electric energy converting components;  

multi-state memory which can find application in quantum computing area;  

electrical/optical polarization components which can find applications in

communication;  

solid state memories based on spintronics.  

Indeed, two-phase materials are multi-promising and therefore, laminated

composites of them cause a big interest among different research groups. So, it is

necessary to review some achievements in this research field. First of all, it is crucial

to mention some important researches carried out with pure piezoelectrics. In 1971, 
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Maerfeld and Tournois [98] have published their collaborative theoretical work on

new interfacial SH-wave guided by the common interface of two dissimilar

piezoelectrics (semi-infinite media or half-spaces) of class 6 mm. This is the single-

phase case because both media are pure piezoelectrics. They have also found the

existence condition for the new interfacial SH-waves later called the interfacial

Maerfeld-Tournois (MT) wave. They stated that the mechanical displacement

amplitude of the MT-wave decreases with distance away from the common interface

into both media. They also demonstrated the case when the interfacial wave can

propagate with the speed of the surface BG-wave [13, 14]. The MT-wave can also

propagate along the interface when one of two media is isotropic. It is obvious that

one also deals with the BG-wave when a vacuum is used in the theoretical treatments

instead of the second piezoelectrics or isotropic half-space. However, the problem of

wave propagation is significantly complicated when one medium is piezoelectric and

the second medium is piezomagnetic instead of a vacuum or the isotropic medium. It

is thought that this case represents the simplest laminated piezoelectromagnetic

composite consisting of piezoelectric and piezomagnetic half-spaces with the

common interface. The theory developed by Maerfeld and Tournois for the single-

phase materials is not suitable for the two-phase composites. Therefore, it is possible

to review some papers in which laminated composites were investigated.   

To start a review of recent achievements of researchers coping with the

laminated composites, it is needed to state that the modern studies of the composites

can relate to not only two-layer systems, but also multi-layer structures (sandwich-

like systems). Soh and Liu [99] have a purpose to theoretically investigate

propagation of interfacial SH-waves along the common interface in a piezoelectric-

piezomagnetic bi-material. The piezoelectric half-space is perfectly bonded with the

piezomagnetic half-space and both the materials are hexagonal crystals of class 6 mm

(transversely isotropic materials.) For this case, they have obtained the dispersion

relation in an explicit form and discussed two existence conditions for the interfacial

SH-waves. Also, they have soundly exhibited that the dispersion relation reduces to

that for the surface BG-wave propagation in a pure piezoelectrics as soon as a
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vacuum is considered instead of the piezomagnetic half-space. However, they did not

demonstrated that the dispersion relation obtained by them can reduce to that for the

interfacial MT-wave propagation when the second medium is piezoelectric, but not

piezomagnetic. Moreover, they even did not cite this excellent and classical work

[98]. Probably, they did not know about the existence of the work by Maerfeld and

Tournois.  

Concerning an imperfect interface, Huang, Li, and Lee [100] have also

developed a theory describing interfacial SH-wave propagation in a two-phase

piezoelectric/piezomagnetic structure when both the hexagonal materials pertain to

class 6 mm. They have solidly obtained an exact dispersion relation and the existence

condition for the interfacial SH-wave propagation in such bi-material and found that

the interfacial imperfection can strongly affect the wave velocity. It is noted that one

copes with more complicated case of dispersive waves in the case of the interfacial

imperfection. In particular, they stated that for certain combined magnetoelectric

composites, interfacial SH-waves cannot exist for perfect interface and exist only for

imperfect interface. For the perfectly bonded interface, they stated that their result

agrees with that derived in Ref. [99] when the interface is grounded. They have also

found that the wave speed always lies between the smaller BG-wave of two

constituents, and the smaller SH-BAW (or the interfacial SH-wave for a perfect

interface if it exists). Refs. [99, 100] also stated that the findings can be useful for the

two-phase composites in the microwave technology. However, Ref. [100] like Ref. 

[99] did not mention the interfacial MT-wave [98].  

In general, the interface of two dissimilar piezoelectrics (piezomagnetics) is

assumed to be either bonded perfectly or debonded completely. Ref. [100] also

discussed that the interface between any two dissimilar materials cannot be perfectly

bonded because of various causes such as microinhomogeneities, microdefects, 

microdebonding, etc. An interfacial imperfection can weaken the interfacial

continuity, and further affect the performance of the composites, in particular the

interfacial characteristics. For instance, the effects of the interfacial imperfection on

wave propagation in an isotropic elastic bi-material have been analysed in Refs. [101, 
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102]. Furthermore, the influences of the imperfect interface on the interfacial SH-

wave speed have been studied in [103] for two bonded piezoelectrics. Influence of

imperfect bonding on interfacial waves propagating along the common interface

between bonded piezoelectric and piezomagnetic half-spaces was also studied in

work [104] by Melkumyan and Mai. They discussed the cases of absorbent and

permeable interfaces and stated that an interfacial imperfection has a significant

impact on the interfacial wave existence and on their velocities of propagation. A

more complicated case of the interfacial imperfection in an A-B-A heterostructure

was considered in recent paper [105] taking into account the geometric symmetry of

the system. They have studied surface SH-waves propagating in the multi-layered

system with magnetoelectroelastic properties and imperfect (electromagnetically

permeable or absorbent, mechanically spring-type) bonding at the interfaces and

considered different limit cases. They have numerically obtained the symmetric and

asymmetric modes and found that the propagation velocities of the SH waves are

limited by the velocities on the homogeneous phases A and B. Indeed, there is an

increasing interest in various studies of different multi-layered structures, for instance, 

see Refs. [106, 107].  

It is possible to list some promising two-layer systems which can represent a big

experimental and theoretical interest. It is crucial to state that the modern researches

on the laminated composites utilise the transversely isotropic materials and materials

with the other symmetries, for example, cubic. Since 2000, dramatically enhanced

values of the magnetoelectric voltage coefficient ( ME) have been found in laminated

composites [108-112] consisting of magnetostrictive and piezoelectric layers epoxied

together. The laminated composites can have ME values of up to 500 larger than any

other ME materials. This phenomenon is known as a giant ME effect. It is very

popular that the piezomagnetic phase can be represented by NiFe2O4 [113, 114] or

CoFe2O4 [115, 116] in the laminated piezoelectromagnetic composites. Some cubic

piezomagnetics such as the Fe-Ga alloy called Galfenol [109, 119] and the FeBSiC

alloy called Metglas [111, 117, 118] are also used. Also, it is possible to meet some

works in which the piezoelectric Lithium Niobate (LiNbO3) [44] of trigonal class 3m
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can be utilized. It is thought that the most popular piezomagnetics is the unique alloy

called Terfenol-D [108, 110, 120-122]. The most popular piezoelectric phase is

BaTiO3, PbTiO3, PZT, and relevant [108, 109, 113-117, 119-122]. There is also an

interest in various studies of ring-type piezoelectric-piezomagnetic laminated

composites [123-127] and wave propagation in such layered cylinders [123, 124]. 

This also represents an important problem in addition to those for wave propagation

in laminated rectangular plates and half-spaces possessing the common interfaces.  

Since 1960 when the soviet physicist Astrov [128] has published his work

concerning the magnetoelectric effect in antiferromagnets, much work on the subject

can be found. The recent book published in 2011 and cited in Ref. [46] has referred to

255 works including the excellent pioneer papers [92-96, 128-130]. The 2011 review

cited in Ref. [57] has mentioned 186 articles, and 2010 and 2009 reviews [58, 59]

have 150 and 192 citations, correspondingly. Also, the very famous review paper

published in 2005 by Fiebig [36] with 304 references has solidly demonstrated that

this research arena is extremely popular. This list of works is far uncompleted. Indeed, 

the reader can found thousands of works relevant to the magnetoelectric effect and

composite materials. In general, these experimental and theoretical works pertain to

laborious studies of the magnetoelectric effect and different types of composites

consisting of the piezoelectric and piezomagnetic phases. However, there is a lacuna

in investigations of the wave propagation problems occurring in the laminated

systems of two dissimilar piezoelectromagnetic (composite) materials of class 6 mm

which have the common interface perfectly bonded.  

Following theoretical work [48] written by the author, it is hoped that the

theoretical results, which will be obtained in this work below, can fill up this lacuna

and demonstrate that this problem of interfacial wave propagation can be resolved in

the case of the transversely isotropic piezoelectromagnetics of class 6 mm. It is

thought that there are many possibilities for the SH-wave propagation along the

common interface of two dissimilar piezoelectromagnetics. These possibilities must

be demonstrated. Therefore, Chapter I describes thermodynamics, corresponding

constitutive relations, the equations of motion for the treated case, and possible
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boundary conditions. The following chapters have the purpose to exhibit the

dispersion relations for the interfacial waves along the perfectly bonded interface. 

The final chapter serves for some discussions about the obtained theoretical results.  
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CHAPTER I  

Theory  

This first chapter acquaints the reader with the theory utilized for the wave

propagation problems when the two-phase materials are studied. For a bulk

piezoelectromagnetics, it is necessary to describe the thermodynamics of the medium

for the case, constitutive relations, and corresponding equations of motion. Indeed, to

review possible mechanical, electrical, and magnetic boundary conditions also

represents an important thing for the further theoretical investigations which will be

carried out in the following chapters. It is worth noting that this work copes with

some suitable problems of the interfacial wave propagation along the common

interface of two dissimilar piezoelectromagnetic (composite) materials of class 6 mm

(transversely isotropic materials.) First of all, a theory will be given which is valid for

both piezoelectromagnetics when they can be treated separately. Therefore, no

superscript will be used in this case. The superscripts “I” and “II” will be used for the

dissimilar piezoelectromagnetics to distinguish them from each other as soon as this

will be necessary. It is usual to start with the thermodynamics.   

I.1.  Thermodynamics and Constitutive Relations

Consider a bulk solid possessing the piezoelectric, piezomagnetic, and

magnetoelectric effects simultaneously. To thermodynamically describe this complex

system, it is possible to use one suitable thermodynamic potential of eight ones used

for this purpose. The chosen thermodynamic potential must properly describe

thermoelectromagnetoelastic interactions in a piezoelectromagnetic solid. Using one

of the thermodynamic potentials called the enthalpy H, general equations for

adiabatic rather than isothermal conditions may be obtained. Indeed, the
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corresponding thermodynamic potentials can derive the equations of piezoelectric, 

piezomagnetic, and piezoelectromagnetic media [15, 48, 131]. Adiabatic processes

can be considered as those with the constant entropy S, where the last represents a

level of disorder in the system. It is clear that S = const gives dS = 0. For a linear

case, it is possible to account only linear terms in a Taylor series for the enthalpy H

relative to an equilibrium condition H(S0).  

These linear terms can contain the following thermodynamic variables

frequently written in the tensor forms: stress ij, strain ij, electrical field Ei, electrical

induction Di (electrical displacement), magnetic field Hi, magnetic flux Bi (magnetic

displacement) where the indexes i and j run from 1 to 3. For a piezoelectromagnetics, 

energetic terms of such complex system described by a thermodynamic potential can

be naturally coupled with the following sub-systems:  

o elastic sub-system (thermodynamic variable ij or ij);  

o electric sub-system (variable Di or Ei);  

o magnetic sub-system (variable Bi or Hi);  

o thermal sub-system (temperature T or entropy S).  

It is thought that for the problem of wave propagation in a piezoelectromagnetic

solid, it is natural to use the thermodynamic functions of which each depends of three

independent thermodynamic variables such as the strain ij, electrical field Ei, and

magnetic field Hi. These functions are written as follows:   

( )kkklij HEf ,,1 ησ =     (I.1)

( )kkkli HEfD ,,2 η=     (I.2)

( )kkkli HEfB ,,3 η=     (I.3)

Using these independent thermodynamic mechanical, electrical, and magnetic

variables, it is possible to use the thermodynamic potential G = G( ij, Ei, Hi)  for a

three-dimensional piezoelectromagnetic solid [46, 48, 132-135]. As a result, the

coupled constitutive relations for a linearly-piezoelectromagnetic solid [46, 48, 136]

can be written as follows:  
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kkijkkijklijklij HhEeC −−= ησ     (I.4)

kikkikklikli HEeD αεη ++=     (I.5)

kikkikklikli HEhB μαη ++=     (I.6)

where the indices i, j, k, and l run from 1 to 3. It is clearly seen in equations from (I.4)

to (I.6) that the material parameters of such a piezoelectromagnetic (composite)

material are as follows: the elastic stiffness constants Cijkl, piezoelectric constants ekij, 

piezomagnetic coefficients hkij, dielectric permittivity coefficients ik, magnetic

permeability coefficients ik, and electromagnetic constants ik.  

In equations from (I.4) to (I.6), the first independent thermodynamic variable

such as the mechanical strain tensor ij can be defined by the following well-known

strain-displacement relation:  

∂
∂

+
∂
∂=

i

j

j

i
ij x

U

x

U

2

1η      (I.7)

where the indices i and j run from 1 to 3. Expression (I.7) represents the well-known

dependence of the strain tensor components ij on the corresponding partial first

derivatives of the mechanical displacement components U1, U2, and U3 with respect

to the real space components x1, x2, and x3.  

Also, the second and third independent thermodynamic variables such as the

electrical field Ei and the magnetic field Hi , respectively, in equations from (I.4) to

(I.6) can be also defined by corresponding partial first derivatives. Using the

electrical potential and the magnetic potential in the quasi-static (irrotational field)

approximation, the components of the electrical field Ei and the magnetic field Hi are

determined as the following partial first derivatives with respect to the real space

components x1, x2, and x3, respectively:   
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i
i x

E
∂
∂−= ϕ       (I.8)

i
i x

H
∂
∂−= ψ       (I.9)

In the coupled constitutive relations defined by expressions from (I.4) to (I.6), 

all the material parameters such as Cijkl, ekij, hkij, ik, ik, and ik can be also

thermodynamically defined. With equations (I.5) and (I.6), the electromagnetic

constants ik can be then written using the following thermodynamic relations:  

const,const, ==
∂
∂=

∂
∂=

Hk

i

Ek

i
ik E

B

H

D

ηη

α    (I.10)

Using equation (I.6), it is obvious that the magnetic permeability coefficients ik

can be thermodynamically defined as follows:  

const, =
∂
∂=

Ek

i
ik H

B

η

μ     (I.11)

Utilizing equation (I.5), the thermodynamic definition for the dielectric

permittivity coefficients ik reads:  

const, =
∂
∂=

Hk

i
ik E

D

η

ε     (I.12)

With equations (I.4) and (I.6), it is also apparent that the thermodynamic forms

of the piezomagnetic coefficients hkij can be obtained as follows:  

const,const, ==
∂
∂==

∂
∂

−=
HEkl
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B
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η
σ

η

   (I.13)
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Exploiting equations (I.4) and (I.5), the thermodynamic description of the

piezoelectric constants ekij can be given by the following definitions:  

const,const, ==
∂
∂==

∂
∂

−=
HEkl

i
ikl

Hk

ij
ijk

D
e

E
e

η
σ

η

   (I.14)

Finally, expression (I.4) can be solidly used for the thermodynamic definition of

the elastic stiffness constants Cijkl. They can be naturally written as follows:  

const, =
∂
∂

=
HEkl

ij
ijklC

η
σ

    (I.15)

Thermodynamic definition (I.15) for the elastic stiffness constants Cijkl states that

they can be determined at constant electrical and magnetic fields. Symmetry

arguments allow some simplifications of the quantity of the constants Cijkl because

the stress and strain tensors are symmetric: ij = ji and ij = ji. Therefore, the

stiffness tensor Cijkl must also have a corresponding degree of symmetry which

results in the following simplifications:  

lkjijilklkijijlkkljijiklklijijkl CCCCCCCC =======   (I.16)

Using the Voigt notation, the (3×3×3×3) tensor form for the elastic stiffness

constants Cijkl defined by equalities (I.15) and (I.16) can be compactly written in a

form of (6×6) matrix [15, 31, 32, 131, 137, 138]. The transformation procedure of a

tensor form into a matrix is well-known. For this purpose, the following rules are

used for the indices: 11 1, 22 2, 33 3, 23 4, 13 5, 12 6. So, the

indices are changed as ijkl PQ where the new indices P and Q run from 1 to 6. 

Consequently, one can get the following Cijkl CPQ. It is thought that it is

unnecessary to give complete theory because the reader can find many excellent and
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classical books concerning the crystal symmetries and wave propagation in solids

such as cited in Refs. [139-144].  

The quantities of both the piezomagnetic coefficients hkij and the piezoelectric

constants ekij must be also reduced in the similar manner. The symmetry arguments

such as ij = ji and ij = ji in equations (I.13) and (I.14) can also demonstrate the

corresponding degrees of symmetry for the tensors ekij and hkij. The symmetry

influences can result in the following equalities:  

jikkjiijkkij eeee ===     (I.17)

jikkjiijkkij hhhh ===     (I.18)

With the Voigt notation, the (3×3×3) tensor forms for the piezoelectric constants ekij

and piezomagnetic coefficients hkij can be rewritten as the asymmetric (6×3) or (3×6)

matrices: ekij ekP or eijk ePk, hkij hkP or hijk hPk.    

In the thermodynamic relations from (I.10) to (I.12), the electromagnetic

constants ik, magnetic permeability coefficients ik, and dielectric permittivity

coefficients ik stand for the following symmetric tensors of the second rank

(matrices): kiik αα = , kiik μμ = , kiik εε = . Indeed, the components of the tensors ik, ik, 

and ik can be also written as (3×3) matrices [31, 32].   

It is worth noting that all the tensors defined by thermodynamic relations from

(I.10) to (I.15) can be transformed from an original coordinate system (usually, it is a

crystallographic coordinate system) into a required one. As soon as coordinate system

is changed, the number of independent material constants and their values must be

also changed. The values of the new material constants are obtained using the values

of the old ones. Exploiting the rules for tensor transformations [5-7], some new

values of the material constants with the indexes i, j, k, and l can be obtained by

application of the transformation matrices such as aim, ajn, akp, and alq to the original

values of the material constants with the indexes m, n, p, and q. Therefore, the

transformation formulae are written as follows:  
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mnpqlqkpjnimijkl CaaaaC =     (I.19)

mnpkpjnimijk haaah =      (I.20)

mnpkpjnimijk eaaae =      (I.21)

mnjnimij aa αα =      (I.22)

mnjnimij aa μμ =      (I.23)

mnjnimij aa εε =       (I.24)

As soon as these complicated transformations are completed, all the tensors of the

material parameters in equations from (I.19) to (I.24) can be anew written in their

corresponding matrix forms discussed above. It is thought that these matrix forms are

convenient for the following theoretical descriptions.   

I.2.  Equations of Motion  

It is well-known in physical acoustics that acoustic waves propagating in solids

are extremely slow compared with electromagnetic waves propagating in the same

materials. The speed of the electromagnetic waves is approximately five orders larger

than that of the acoustic waves. However, the acoustic waves can be coupled with

both the electrical potential and the magnetic potential in the quasi-static

(irrotational field) approximation. Therefore, the Maxwell four field equations [145]

of the electromagnetic theory must be naturally used. Maxwell has creatively

formulated the laws of electrostatics, magnetostatics, and electromagnetism. The

Maxwell equations can be also applied to the piezoelectromagnetic solid. The

electrostatic and magnetostatic equilibrium equations can be written using the

differential forms of the following Maxwell equations:   

0div =D      (I.25)

0div =B      (I.26)
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Equation (I.25) also represents Gauss’s law without free charge and currents.  

Exploiting the Maxwell equations written above, the governing electrostatic and

magnetostatic equilibrium equations respectively read:  

0=
∂
∂

i

i

x

D       (I.27)

0=
∂
∂

i

i

x

B       (I.28)

These equations represent the partial first derivatives of the components of the

electrical and magnetic displacements, i.e. Di and Bi, with respect to the real space

components xi, where the index i runs from 1 to 3.  

Besides, the governing mechanical equilibrium equation is also written as the

following partial first derivative:  

0=
∂
∂

j

ij

x

σ
     (I.29)

where the stress tensor ij is expanded in equation (I.4).  

Using equation (I.29), wave motions of a piezoelectromagnetic material in

dependence on time t can be described by the equation of motion written in the

following well-known form [2, 5, 6]:  

2

2

t

U

x
i

j

ij

∂
∂=

∂
∂

ρ
σ

    (I.30)

where is the mass density of the piezoelectromagnetics. On the right-hand side in

equation (I.30), the partial second derivatives of the mechanical displacement

components Ui with respect to time t represent corresponding accelerations.  

In addition to equation of motion (I.30), it is necessary to account the

electrostatics and magnetostatics in the quasi-static approximation:  
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0=
∂
∂
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x

D      (I.31)

0=
∂
∂

j

i

x

B      (I.32)

where Di and Bi are defined by equations (I.5) and (I.6), respectively.  

Using equations from (I.29) to (I.32), it is possible to write down the coupled

equations of motion for a piezoelectromagnetics when the wave propagation can be

coupled with both the electrical and magnetic potentials. It is natural to use the

electrical (Ei) and magnetic (Hi) fields defined by equations (I.8) and (I.9) for

equations from (I.4) to (I.6) in order to write the coupled equations of motion in an

expanded form. Employing all these equations mentioned above, the coupled

equations of motion, which constitute the wave propagation in a

piezoelectromagnetics possessing the piezoelectric, piezomagnetic, and

piezoelectromagnetic effects, are then composed as follows:  
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   (I.33)
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222

0     (I.35)

where the indexes i, j, k, and l run from 1 to 3.  

It is well-known that these homogeneous partial differential equations of the

second order written above must have solutions in the plane wave forms [2, 5, 6]. 

Therefore, these solutions read:  

( )[ ]txkxkxkUU II ω−++= 332211
0 jexp    (I.36)
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where the index I runs from 1 to 5. In equation (I.36) there is the following: UI = Ui

for I = i, U4 = , and U5 = .  

Also, UI
0, j = (–1)1/2, and stand for the initial amplitudes, imaginary unity

[146], and angular frequency, respectively. The initial amplitudes such as U1
0, U2

0, 

U3
0, U4

0 = 0, and U5
0 = 0 should be determined further, and the angular frequency is

defined by = 2 where is the linear frequency. In equation (I.36), the parameters

such as k1, k2, and k3 are the components of the wavevector K directed towards the

wave propagation: ( ) ( )321321 ,,,, nnnkkkk = where the directional cosines denoted by n1, 

n2, and n3 are introduced. For convenience, they can be defined as follows: n1 = 1, n2

= 0, and n3 n3. It is also noted that the wavenumber k in the direction of wave

propagation can be naturally normalized by the wavelength as follows: k = 2 .   

It is blatant that the utilization of solutions (I.36) and the directional cosines for

corresponding substitutions into coupled equations from (I.33) to (I.35) can lead to

the five homogeneous equations. These five homogeneous equations can be naturally

combined in the following compact form [46, 48]:   

( ) 00 =− IphIJIJ UVGL ρδ     (I.37)

where ρ is the mass density and the indices I and J run from 1 to 5. In the parentheses

on the left-hand side in equation (I.37), GLIJ stands for the components of the

modified tensor in the well-known Green-Christoffel equation [46, 48], IJ represents

the well-known Kronecker delta-function such as IJ = 1 for I = J, IJ = 0 for I J, 

and 44 = 55 = 0.  

Also, the phase velocity denoted by Vph in equation (I.37) symbolizes the

relationship between the angular frequency and the wavenumber k in the direction

of wave propagation:  

kVph ω=      (I.38)
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In equation (I.37), the suitable phase velocity can be revealed as soon as several

procedures can be completed. First of all, it is necessary to find all the eigenvalues

and the corresponding eigenvector for each eigenvalue. In this case, the eigenvalues

represent all the suitable values of n3 and the eigenvector can be expressed in the

following common form:  

( )0
5

0
4

0
3

0
2

0
1 ,,,, UUUUU      (I.39)

It is worth noting that compact tensor form (I.37) of the coupled equations of

motion is well-known and can be found in many research publications concerning the

wave propagation problems in solids. It is also central to state that the modified

Green-Christoffel tensor GLIJ is symmetric, i.e. GLIJ = GLJI. For that reason, it has

only 15 independent tensor components. It is thought that exploiting coupled

equations from (I.33) to (I.35), it is practical for the reader to obtain the explicit

forms for all the tensor components. However, this is not the purpose of this work

because it studies the problems of the SH-wave propagation in the

piezoelectromagnetic materials. Therefore, the following subsection demonstrates the

simplifications for the case. Indeed, some GL-tensor components can become equal

to zero when acoustic waves propagate in certain directions on certain cuts.  

I.3.  SH-Wave Propagation in PEMs of Class 6 mm

There are certain cuts and certain propagation directions in the transversely

isotropic piezoelectromagnetic (PEM) materials [45, 48, 99, 100, 147-149] in which

the pure SH-waves coupled with both the electrical and magnetic potentials can

propagate. This is true for the SH-waves guided by the interface between a vacuum

and the piezoelectromagnetics [45, 48, 147-149] and when the second

piezoelectromagnetics is treated instead of a vacuum [99, 100]. However, the second

case is significantly more complicated and therefore, still incompletely studied. This
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study corresponds to the SH-wave propagation along the perfectly bonded interface

between two dissimilar PEMs. The problems of the different interfacial imperfections

are not included in this research because they represent complicated theoretical

investigations which must be separately studied.    

Figure I.1. The rectangular coordinate system for the layered system consisting of

two dissimilar piezoelectromagnetic half-spaces solidly coupled at the common

interface. For both the transversely isotropic materials of class 6 mm, the propagation

direction is along the x1-axis and perpendicular to the sixfold symmetry axis directed

along the x2-axis. The anti-plane polarized interfacial SH-waves can damp towards

the positive values of the x3-axis in half-space II and towards the negative values of

the x3-axis in half-space I.  

Figure I.1 shows the configuration for the two-layer structure. The propagating

SH-wave can be guided by the common interface, is directed along the x1-axis, and

must damp towards the depth of either solid. The anti-plane polarization of the

interfacial SH-wave represents the mechanical displacements directed along the

sixfold symmetry axis of either piezoelectromagnetics of class 6 mm. The studied

propagation direction leads to the fact that the coupled equations of motion written in

compact tensor form (I.37) can be decomposed. This decomposition allows one to

separately treat the equations of motion for the in-plane polarized waves and those for

the anti-plane polarized waves. Using equation (I.37), the SH-wave propagation can

be then expressed by the following three homogeneous equations:  

x1

x3

x2

0

Piezoelectromagnetic
              half-space II

Piezoelectromagnetic
               half-space I

interface
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  (I.40)

where U0 = U2
0. In equations (I.40), the eigenvector has the following components:    

( )000 ,, ψϕU      (I.41)

The eigenvalues can be found when the determinant of the coefficient matrix in

equations (I.40) equals to zero. Therefore, it is possible to inscribe the following:  

0

555452

454442

2524
2

22

=
−

GLGLGL

GLGLGL

GLGLVGL phρ
  (I.42)

where the GL-components are expressed as follows:  

)1( 2
322 nCGL +=      (I.43)

)1( 2
344 nGL +−= ε      (I.44)

)1( 2
355 nGL +−= μ      (I.45)

)1( 2
34224 neGLGL +==     (I.46)

)1( 2
35225 nhGLGL +==     (I.47)

)1( 2
35445 nGLGL +−== α     (I.48)

In expressions from (I.43) to (I.48), the directional cosine is defined by n3 = k3/k and

the independent material constants for the case are C, e, h, , , and where C = C44

= C66, e = e16 = e34, h = h16 = h34, = 11 = 33, = 11 = 33, and = 11 = 33 [48].   

Expanding the GL-tensor components defined by equations from (I.43) to (I.48), 

it is obvious that determinant (I.42) of the coefficient matrix can be written as follows:  
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where 2
31 nm += .  

It is blatant that m = 0 in equation (I.49) can soundly satisfy the equality. 

Therefore, two the same factors such as m can determine four of six normalized

eigenvalues n3. They read:   

j)4,3(
3

)2,1(
3 ±== nn      (I.50)

Also, the determinant in equation (I.49) can reveal the rest two eigenvalues n3. 

Expanding the determinant, the following secular equation can be obtained:   

( ) ( ) 01 2
4

2 =−+ tphem VVmK     (I.51)

In equation (I.51), the phase velocity Vph is defined by expression (I.38). Also, Vph

and 2
emK stand for the speed of the shear-horizontal bulk acoustic wave (SH-BAW)

uncoupled with both the electrical and magnetic potentials and the coefficient of the

magnetoelectromechanical coupling (CMEMC), respectively. They read:   

ρCVt =4      (I.52)

( )2

22
2 2

αεμ
αεμ

−
−+=

C

ehhe
Kem     (I.53)

As a result, equation (I.51) can provide the rest two eigenvalues obtained in the

following form:  
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( )2)6,5(
3 1j temph VVn −±=     (I.54)

where the velocity Vtem is the speed of the SH-BAW coupled with both the electrical

and magnetic potential. It is defined by the following formula:  

( ) 2/12
4 1 emttem KVV +=      (I.55)

So, the first problem such as the determination of the eigenvalues is resolved. 

Employing the obtained eigenvalues for equations (I.40), it is possible to obtain all

the explicit forms of the corresponding eigenvectors. Equation (I.40) can be rewritten

in the following form:   
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   (I.56)

where the eigenvector ( )000 ,, ψϕU must be found.  

It is thought that it is natural to define the eigenvector component U0 from the

first equation in equations (I.56). As a result, U0 can be expressed as the following

dependence on both 0 and 0:   

000 ψϕ
A

hm

A

em
U −−=     (I.57)

where  

( )[ ]2
4tph VVmCA −=     (I.58)
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Utilizing definition (I.57) for the second and third equations in equations (I.56), 

one can obtain the following equations which demonstrate the coupling between the

components 0 and 0:  

000
2

=+++ ψαϕε
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meh
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me    (I.59)

00
2

0 =+++ ψμϕα
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mh

A

meh    (I.60)

It is necessary to state that equations (I.57), (I.59), and (I.60) can reveal all the

eigenvector components. For the two equal eigenvalues obtained from the following

equation m = 0, equations (I.56) can be written in the following simplified form:   
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   (I.61)

It is obvious in equation (I.61) that the single possibility to have a wavevector of

non-zero length for the non-zero eigenvalue is the situation when U0 = 0 and there are

uncertain non-zero values for both 0 and 0. Indeed, U0 = 0 for m = 0 agrees with

expression (I.57). The certain values of both 0 and 0 can be determined from

equations (I.59) and (I.60). Also, the value of the phase velocity Vph for m = 0 and U0

= 0 in equation (I.61) is uncertain and can therefore have any non-zero value. It is

thought that it is natural to couple these two uncertain eigenvectors for m = 0 with the

third eigenvector corresponding to the eigenvalues defined by expression (I.54). The

following useful expressions can be written for eigenvalues (I.54) coupled with the

phase velocity Vph:  

( )2)6,5(
temph VVm =     (I.62)

bmn j1j )6,5()6,5(
3 ±=−±=    (I.63)
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2)6,5()6,5(
emCKmA −=     (I.64)

Also, one can check that for m 0, equalities (I.59) and (I.60) are satisfied when

the eigenvector components 0 and 0 are expressed as follows, using equation (I.59):    

αϕ +=
A

meh0      (I.65)

εψ −−=
A

me2
0     (I.66)

Using the eigenvector components defined by expressions (I.57), (I.65), and (I.66), 

the first eigenvector for eigenvalues (I.63) can be formed.  

There is however the second case to satisfy equalities (I.59) and (I.60). Using

equation (I.60), it is blatant that the eigenvector components 0 and 0 can be also

defined as follows:  

μϕ +=
A

mh2
0      (I.67)

αψ −−=
A

meh0     (I.68)

Thus, the eigenvector components defined by expressions (I.57), (I.67), and (I.68)

can form the second eigenvector for the same eigenvalues defined by expression

(I.63).  

It is necessary to state that to know these two sets of the eigenvector components

is very important because they can lead to two different solutions for the phase

velocity Vph. This fact was first revealed in book [48] for the problems of the

propagation of the shear-horizontal surface acoustic wave guide by the free surface of

the transversely isotropic piezoelectromagnetic material. This fact can also

complicate the investigations of the interfacial SH-wave propagation along the

common interface of two hexagonal PEMs. Indeed, it is indispensable to distinguish
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two dissimilar PEMs in the theory. The superscripts “I” will be used below to

distinguish the eigenvalues and eigenvectors for the first PEM half-space from those

for the second PEM half-space marked by the superscripts “II”. 

For the first PEM half-space, three eigenvalues are purely imaginary and must

have negative signs because the SH-wave must damp towards the depth of the PEM1

with x3 < 0, see figure I.1. This will be demonstrated in the formulae for the complete

displacements in this subsection below. Therefore, the PEM1 eigenvalues can be

written as follows:   

j)3(I
3

)1(I
3 −== nn     (I.69)

( ) I2I)5(I
3 j1j bVVn temph −=−−=    (I.70)

Using the 0 and 0 defined by equations (I.65) and (I.66), the corresponding

eigenvectors for the eigenvalues (I.69) and (I.70) are respectively composed as

follows:    

( ) ( ) ( )III(3)0I(3)0I(3)0I(1)0I(1)0I(1)0 ,,0,,,, εαψϕψϕ −== UU   (I.71)

( ) ( ) ( )
( )
( ) −+−−= I

2II

2I
I

2II

II

2II

IIII
I(5)0I(5)0I(5)0 ,,,, εαεαψϕ

ememem KC

e

KC

he

KC

he
U (I.72)

where the non-zero eigenvector components in expression (I.71) were also obtained

by using equations (I.65) and (I.66) because the same equations were used to obtain

eigenvector components (I.72). This results in the following equalities:   

IIII)5(I0I)5(I0I)3(I0I)3(I0I εαψϕψϕ hehehe −=+=+    (I.73)

It is worth noting that expressions (I.71) and (I.72) define the first set of the

eigenvector components for the first PEM half-space.  
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Using the 0 and 0 defined by equations (I.67) and (I.68), it is possible to form

the second set of the eigenvector components for the same eigenvalues defined by

expressions (I.69) and (I.70). The eigenvectors respectively read:   

( ) ( ) ( )III(3)0I(3)0I(3)0I(1)0I(1)0I(1)0 ,,0,,,, αμψϕψϕ −== UU   (I.74)

( ) ( )
( )
( ) ( ) −+−−= I

2II

II
I

2II

2I

2II

IIII
I(5)0I(5)0I(5)0 ,,,, αμαμψϕ

ememem KC

he

KC

h

KC

he
U (I.75)

One can check that the following useful equalities, which can significantly simplify

the further analytics, also occur for these eigenvector components:   

IIII)5(I0I)5(I0I)3(I0I)3(I0I αμψϕψϕ hehehe −=+=+    (I.76)

It is necessary to state that all the eigenvector components for the first PEM half-

space defined by expressions (I.71), (I.72), (I.74), and (I.75) do not depend on the

phase velocity Vph. This is also true for the second PEM half-space.   

For the second PEM half-space shown in figure I.1, it is crucial to exploit the

superscript “II” in order to distinguish it from the first PEM half-space. It is also

central to state that for this PEM half-space occupying the space with x3 > 0 in the

figure, it is necessary to choose only the eigenvalues with positive signs. Such choice

of the positive signs for the eigenvalues is caused by the fact that the interfacial SH-

wave must also damp towards the depth of this PEM. Consequently, three

eigenvalues read:   

j)4(II
3

)2(II
3 +== nn     (I.77)

( ) II2II)6(II
3 j1j bVVn temph +=−+=    (I.78)

Utilizing equations (I.57), (I.65), and (I.66) for this case, the corresponding

eigenvectors and the useful equalities are respectively written as follows:   
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( ) ( ) ( )IIIIII(4)0II(4)0II(4)0II(2)0II(2)0II(2)0 ,,0,,,, εαψϕψϕ −== UU   (I.79)

( ) ( ) ( )
( )
( ) −+−−= II

2IIII

2II
II

2IIII

IIII

2IIII

IIIIIIII
II(6)0II(6)0II(6)0 ,,,, εαεαψϕ

ememem KC

e

KC

he

KC

he
U (I.80)

IIIIIIII)6(II0II)6(II0II)4(II0II)4(II0II εαψϕψϕ hehehe −=+=+   (I.81)

With equations (I.57), (I.67), and (I.68), they can be expressed as follows:   

( ) ( ) ( )IIIIII(4)0II(4)0II(4)0II(2)0II(2)0II(2)0 ,,0,,,, αμψϕψϕ −== UU   (I.82)

( ) ( )
( )
( ) ( ) −+−−= II

2IIII

IIII
II

2IIII

2II

2IIII

IIIIIIII
II(6)0II(6)0II(6)0 ,,,, αμαμψϕ

ememem KC

he

KC

h

KC

he
U (I.83)

IIIIIIII)6(II0II)6(II0II)4(II0II)4(II0II αμψϕψϕ hehehe −=+=+   (I.84)

Finally, it is possible to state that the obtained eigenvalues and eigenvectors for

both piezoelectromagnetics are used to determine the suitable phase velocities for all

the interfacial SH-waves guided by the common interface. Various electrical and

magnetic boundary conditions applied to the common interface can reveal the

suitable SH-wave velocities. This is the problem of the following chapters. The

following subsection of this chapter will review the possible electrical and magnetic

boundary conditions. It is also needed to write down the complete mechanical

displacement, complete electrical potential, and complete magnetic potential denoted

by U , , and , respectively, for both half-spaces shown in figure I.1.  

Using the superscript “I” for the first PEM half-space, these complete parameters

can be written in the following plane wave forms:  

( )[ ]tVxbxkUFU ph−−=Σ
3

I
1

)5(I0)5(II jjexp    (I.85)

( ) ( )[ ] ( )[ ]tVxbxkFtVxxkFF phph −−+−−+=Σ
3

I
1

)5(I0)5(I
31

)3(I0)3(I)1(II jjexpjjexp ϕϕϕ (I.86)

( ) ( )[ ] ( )[ ]tVxbxkFtVxxkFF phph −−+−−+=Σ
3

I
1

)5(I0)5(I
31

)3(I0)3(I)1(II jjexpjjexp ψψψ (I.87)



41

where x3 < 0, bI > 0, and n1 = 1 are accounted. In equation (I.85), it was also

accounted that U0I(1) = U0I(3) = 0. Also, the 0I(1) = 0I(3) and 0I(1) = 0I(3) are used in

equations (I.86) and (I.87), respectively. This significantly simplifies the complete

parameters. The weight factors such as FI = FI(1) + FI(3) and FI2 = FI(5) can be

determined from equations in which suitable boundary conditions are exploited. It is

also noted that equations from (I.85) to (I.87) are true for both the sets of the

eigenvector components.  

Employing the superscript “II” for the second PEM half-space, the complete

parameters written below can be expressed in the same manner:   

( )[ ]tVxbxkUFU ph−+=Σ
3

II
1

)6(II0)6(IIII jjexp    (I.88)

( ) ( )[ ] ( )[ ]tVxbxkFtVxxkFF phph −++−++=Σ
3

II
1

)6(II0)6(II
31

)4(II0)4(II)2(IIII jjexpjjexp ϕϕϕ (I.89)

( ) ( )[ ] ( )[ ]tVxbxkFtVxxkFF phph −++−++=Σ
3

II
1

)6(II0)6(II
31

)4(II0)4(II)2(IIII jjexpjjexp ψψψ (I.90)

where x3 > 0, bII > 0, n1 = 1, U0II(2) = U0II(4) = 0, 0II(2) = 0II(4), and 0II(2) = 0II(4) are

also utilized. Using various electrical and magnetic boundary conditions, the explicit

forms of the following weight factors FII = FII(2) + FII(4) and FII2 = FII(6) must be also

found for this case. Also, equations from (I.88) to (I.90) are true for both the sets of

the eigenvector components.     

I.4.  Mechanical, Electrical, and Magnetic Boundary Conditions at the

Common Interface  

It is expected that the common interface between two dissimilar hexagonal (6

mm) piezoelectromagnetics can allow the propagation of the interfacial SH-waves. 

However, this is still unclear. In this theoretical work, some mechanical boundary

conditions will be applied. Besides, the applied electrical and magnetic boundary

conditions at the interface x3 = 0 (see figure I.1) can be different. The following

electrical boundary conditions can occur: the electrically closed interface ( = 0), 
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electrically open interface (D3 = 0), and the continuity of both and D3 at the

common interface between two dissimilar PEM half-spaces, i.e. I = II and (D3)
I =

(D3)
II, where D3 is the normal component of the electrical displacements. Also, the

magnetic boundary conditions are as follows: the magnetically closed interface (B3 =

0), magnetically open interface ( = 0), and the continuity of both and B3 at x3 = 0, 

i.e. I = II and (B3)
I = (B3)

II, where B3 is the normal component of the magnetic flux. 

The realization of the mechanical, electrical, and magnetic boundary conditions is

perfectly described in Ref. [40] by Al’shits, Darinskii, and Lothe.  

First of all, it is basic to write down the mechanical boundary conditions. It is

obvious that it is natural to require the equality of the mechanical displacements at

the common interface x3 = 0, see figure I.1. This condition can be written as the

following equality:   

)6(II0)6(II)4(II0)4(II)2(II0)2(II)5(I0)5(I)3(I0)3(I)1(I0)1(I UFUFUFUFUFUF ++=++ (I.91)

Using the fact such as U0I(1) = U0I(3) = 0 and U0II(2) = U0II(4) = 0, the mechanical

boundary condition in equation (I.91) reduces to the following:   

)6(II02II)5(I02I UFUF =     (I.92)

where FI2 = FI(5) and FII2 = FII(6) were used.    

The second mechanical boundary condition involves the normal component of

the stress tensor 32 at the interface x3 = 0. It is also possible to require the continuity

the stress tensor component 32 at x3 = 0. This condition can be demonstrated by the

following equality:   

II
32

I
32 σσ =      (I.93)

where  
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[ ] [ ])5(I0I)5(I0I)5(I0I)5(I
3

2I)3(I0I)3(I0I)3(I0I)3(I
3

II
32 ψϕψϕσ heUCknFheUCknF +++++=         (I.94)

[ ] [ ])6(II0II)6(II0II)6(II0II)6(II
3

2II)4(II0II)4(II0II)4(II0II)4(II
3

IIII
32 ψϕψϕσ heUCknFheUCknF +++++=   (I.95)

In equation (I.94), FI = FI(1) + FI(3) and FI2 = FI(5) were used. Also, FII = FII(2) + FII(4)

and FII2 = FII(6) were utilized in equation (I.95).   

One of the electrical boundary conditions can represent the following

requirement for the electrical potential at the common interface x3 = 0:

III ϕϕ =     (I.96)

where  

)5(I02I)3(I0II ϕϕϕ FF +=    (I.97)

)6(II02II)4(II0IIII ϕϕϕ FF +=    (I.98)

In equations (I.97) and (I.9), it was respectively accounted that 0I(1) = 0I(3) and 0II(2)

= 0II(4). Besides, I = 0 and II = 0 can be used instead of condition (I.96).   

The other electrical boundary condition at the common interface x3 = 0 couples

the normal components (D3)
I and (D3)

II of the electrical displacements for the first

and second PEM half-spaces. The continuity requirement at the interface x3 = 0 can

be expressed as follows:   

II
3

I
3 DD =      (I.99)

where  

[ ] [ ])5(I0I)5(I0I)5(I0I)5(I
3

I2)3(I0I)3(I0I)3(I0I)3(I
3

II
3 ψαϕεψαϕε −−+−−= UeknFUeknFD           (I.100)

[ ] [ ])6(II0II)6(II0II)6(II0II)6(II
3

II2)4(II0II)4(II0II)4(II0II)4(II
3

IIII
3 ψαϕεψαϕε −−+−−= UeknFUeknFD     (I.101)
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It is also essential to state that (D3)
I = 0 and (D3)

II = 0 can be used as the possible

electrical boundary conditions at x3 = 0. This is the case of the electrically open

interface.  

Besides, it is fundamental to treat the magnetic boundary conditions at the

common interface x3 = 0. It is natural that the continuity requirement for the magnetic

potential can be also used. As a result, it is possible to demonstrate this requirement

as the following equality:  

III ψψ =     (I.102)

where  

)5(I02I)3(I0II ψψψ FF +=    (I.103)

)6(II02II)4(II0IIII ψψψ FF +=    (I.104)

The following equalities 0I(1) = 0I(3) and 0II(2) = 0II(4) were taken into account in

equations (I.103) and (I.104), respectively.  

Finally, the following magnetic boundary condition is written for the normal

component of the magnetic flux denoted by B3. At x3 = 0, the continuity condition for

the magnetic flux component B3 must be fulfilled, namely  

II
3

I
3 BB =      (I.105)

where  

[ ] [ ])5(I0I)5(I0I)5(I0I)5(I
3

I2)3(I0I)3(I0I)3(I0I)3(I
3

II
3 ψμϕαψμϕα −−+−−= UhknFUhknFB          (I.106)

[ ] [ ])6(II0II)6(II0II)6(II0II)6(II
3

II2)4(II0II)4(II0II)4(II0II)4(II
3

IIII
3 ψμϕαψμϕα −−+−−= UhknFUhknFB    (I.107)
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Employing (B3)
I = 0 and (B3)

II = 0 in equations (I.106) and (I.107), these equations

can also represent a set of the magnetic boundary conditions. This is the well-known

case of the magnetically closed interface.   

It is thought that it is important to briefly discuss the hexagonal

piezoelectromagnetic (composite) materials which can be used to perfectly bond

together. The following final subsection of this chapter provides the discussion. It is

stated that in this work, the numerical calculations of the velocities of the interfacial

SH-waves will be not carried out for a large number of such structures because this is

not the main purpose. The purpose of this study is to obtain the explicit forms of the

interfacial SH-wave velocities and the possible existence conditions. This is the

basics which can be used in the further researches.  

I.5.  Piezoelectromagnetic Composite Materials  

It is thought that the most popular hexagonal (6 mm) piezoelectromagnetic

composite materials are BaTiO3–CoFe2O4 and PZT–Terfenol-D. They are well-know

already for the last two decades [150]. These two-phase composites possess both the

piezoelectric and piezomagnetic phases. The piezoelectric phase of these composites

consists of the well-known hexagonal piezoelectrics such as BaTiO3 and PZT, 

respectively. The piezomagnetic phase of these composites is formed by the

hexagonal piezomagnetics such as CoFe2O4 and Terfenol-D, respectively. Such

composite materials can find broaden applications in ultrasonic imaging devices, 

sensors and actuators for system control, transducers, and many other emerging

components. Also, various theories providing characteristics of such complex

materials, as well as “smart” composites and structures composed of them can

represent a large interest.  

The average material properties of these two popular composites [150-154] are

listed in table I.1. It can be assumed that there is approximately equal volume fraction

of one phase (inclusions) into the other phase called matrix. This is the 3-0 or 0-3

connectivity for the two-phase materials. Besides, the 2-2 connectivity of the
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laminated composites is also very popular because such composites can exhibit very

large values of the electromagnetic constant . It is worth noting that the value of is

restricted by the following inequality [36, 59]: 2 < µ. Using the table data, one can

check that the value of µ for PZT–Terfenol-D is approximately one order smaller

than that for the BaTiO3–CoFe2O4 composite. Thus, it is obvious that it is practical to

compare both values of 2 and µ among different composites. The corresponding

values of the electromagnetic constant for the composites are not given in the table. 

This constant can have either positive or negative sign. This can depend on the

preparation method and connectivity. It is also noted that the sign of can depend on

the direction of the magnetic field. It is also well-known that the values of for

composites can be several orders larger than those for some native magnetoelectric

monocrystals. The piezoelectromagnetic monocrystals such as LiCoPO4, TbPO4, 

TbMnO3, TbMn2O5, BiFeO3, Cr2O3, and BiMnO3, which possess simultaneously both

the ferroelectric and ferromagnetic properties, are known already for the last decades. 

They demonstrate very small magnetoelectric coupling to be practical. However, very

small values of for the piezoelectromagnetic monocrystals are not critical in the

case of investigation of wave propagation guided by the common interface of two

dissimilar piezoelectromagnetic half-spaces. It is expected that to know wave

parameters is very important because existence conditions for interfacial SH-waves

can frequently require some similarity for the wave characteristics of two dissimilar

PEM half-spaces. This statement can be verified in the following chapters.    

Table I.1. The material constants for the hexagonal (6 mm) piezoelectromagnetic

composite materials such as BaTiO3–CoFe2O4 and PZT-5H–Terfenol-D.  

Composite  

material

  

[kg/m3]

C, 1010  

[N/m2]

e  

[C/m2]

h  

[T]

, 10–10  

[F/m]

, 10–6  

[N/A2]

BaTiO3–CoFe2O4 5730 4.40 5.80 275 56.4 81.0

PZT-5H–Terfenol-D 8500 1.45 8.50 83.8 75.0 2.61



47

The purpose of this work is to obtain the explicit forms for velocities of all the

new interfacial SH-waves propagating along the common interface between two

dissimilar piezoelectromagnetics and to discuss obtained existence conditions. Also, 

it is important to compare obtained results with the previous achievements. So, it is

necessary to start theoretical investigations of the influence of different electrical and

magnetic boundary conditions on the existence of the interfacial SH-waves. It is

thought that it is natural to commence the analysis with the case of the electrically

closed ( = 0) and magnetically open ( = 0) interface. This is the main purpose of

the following chapter.  
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CHAPTER II  

The Case of I = II = 0 and I = II = 0 at the Interface  

This chapter provides the theoretical investigations of the interfacial SH-waves

guided by the common interface between two dissimilar PEM half-spaces shown in

figure I.1. The interfacial waves propagate along the electrically closed and

magnetically open interface. The mechanical boundary conditions include the

continuity of both the mechanical displacement and the normal component of the

stress tensor at the interface x3 = 0: UI = UII and ( 32)
I = ( 32)

II. They are defined by

conditions (I.92) and (I.93) from the previous chapter, respectively. The electrically

closed interface results in the following conditions: I = 0 and II = 0, where I and
II are correspondingly defined by expressions (I.97) and (I.98). Also, equations

(I.103) and (I.104) can provide the following two magnetic boundary conditions for

the magnetically open interface: I = 0 and II = 0,   

As a result, six homogeneous equations based on the mechanical, electrical, and

magnetic boundary conditions are composed as follows:  

0)6(II02II)5(I02I =− UFUF     (II.1)

[ ] [ ]
[ ] [ ] 0)6(II0II)6(II0II)6(II0IIII2II)4(II0II)4(II0IIII

)5(I0I)5(I0I)5(I0II2I)3(I0I)3(I0II

=+++++

++++

ψϕψϕ

ψϕψϕ

heUCbFheF

heUCbFheF
(II.2)

0)5(I02I)3(I0I =+ ϕϕ FF    (II.3)

0)6(II02II)4(II0II =+ ϕϕ FF    (II.4)

0)5(I02I)3(I0I =+ ψψ FF    (II.5)

0)6(II02II)4(II0II =+ ψψ FF    (II.6)
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Equations from (II.1) to (II.6) are served for the determination of the phase

velocity Vph of the interfacial SH-wave. Also, these equations are responsible for the

determination of the explicit forms of six weight factors such as FI(1), FI(3), FI(5) , FII(2), 

FII(4), and FII(6) because FI = FI(1) + FI(3), FI2 = FI(5), FII = FII(2) + FII(4), and FII2 = FII(6). 

So, it is necessary to find the explicit forms of these four weight factors used in

equations from (II.1) to (II.6) instead of six ones.     

Also, it is indispensable to state that the corresponding eigenvalues and

eigenvector components must be substituted into these equations. The extra difficulty

in these theoretical treatments is the fact that there are two different sets of the

eigenvector components for either of two PEM half-spaces. As a result, it is apparent

that the following three possible configurations must be theoretically treated: (i) the

corresponding first sets of the eigenvector components are used for two dissimilar

PEM half-spaces; (ii) the corresponding second sets of the eigenvector components

are used for them; and (iii) the first set is used for the first PEM half-space and the

second set is used for the second PEM half-space. The third case represents the

combination of the sets of the eigenvector components. This is actually possible

because one copes here with two dissimilar PEM half-spaces. Also, it is possible to

mention the fourth case when the second set can be used for the first PEM half-space

and the first set can be used for the second PEM half-space. However, it is flagrant

that the third and fourth cases are the same because the first PEM half-space can be

readily replaced by the second, or vice versa. Therefore, three possibilities are

recorded in this chapter below as well as in the following chapters for the other

boundary conditions.   

II.1.  The first sets of the eigenvector components  

Using the corresponding eigenvalues and the first sets of the eigenvector

components for the first and second PEM half-spaces, namely equations from (I.69)

to (I.73) for the first half-space and equations from (I.77) to (I.81) for the second
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half-space, equations from (II.1) to (II.6) composed in the common forms can be

rewritten for this case as follows:   

( ) ( ) 0
2IIII

IIIIIIII
2II
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2I =−−−

emem KC

he
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he
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KC

he
FhF

em

   (II.12)

It is clearly seen in equations from (II.9) to (II.12) that the electrical and

magnetic boundary conditions for the first and second PEM half-spaces such as I = 0, 
II = 0, I = 0, and II = 0 are written in corresponding modified forms. It is apparent

that expression (II.7) can determine the coupling between the weight factors FI2 and

FII2. Using the known factors FI2 and FII2 for equation (II.8), it is possible to reveal

the relationship between the other two weight factor, FI and FII. The explicit forms of

the weight factors will be demonstrated below. To determine the phase velocity of the

interfacial SH-wave, it is obvious that it is necessary to successively subtract all the

equations from (II.9) to (II.12) from equation (II.8). Consequently, in order to

determine the phase velocity, it is necessary and enough to deal only with the

following forms of the obtained two equations:   
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Equation (II.13) or (II.14) can represent the relationship between the weight

factors FI2 and FII2. Using equations (II.8), (II.11) and (II.12), the rest two weight

factors such as FI and FII can be also written as some dependencies on FII2. Therefore, 

all the values of the weight factors can be determined because it is natural to choose

FII2 = 1. On the other hand, all the weight factors can be normalized by the factor of

( ) ( ) ( ) ( )( ) 2/122II2II22I2I
−

+++ FFFF to get the following vector (FI, FI2, FII, FII2) of the unit

length. Thus, FI and FII can have the following definite values:  
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Also, it is possible to account the relationship between FI2 and FII2 defined by

expression (II.13). Accounting this relationship, equation (II.14) can readily reduce to

the following simplified form:  

( ) ( )[ ] ( ) ( )[ ] 011 II2IIIIIII2III =−++−+ bKbCbKbC emem    (II.17)

In equation (II.17), the velocity Vnew1 of the first new interfacial SH-wave is defined

by ( )2I
1 temnew VVX = and the functions bI and bII depend on the velocity Vnew1 as follows:  
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Xb −= 1I     (II.18)

( )2IIIII 1 temtem VVXb −=    (II.19)

It is understandable that X < 1 must occur because the eigenvalues defined by

expressions (I.70) and (I.78) from the previous chapter should be always imaginary. 

It was discussed that the imaginary eigenvalues are required because the interfacial

SH-wave must damp toward the depth of either piezoelectromagnetics (PEM). It is

apparently seen in expressions (I.70) and (I.78) that these eigenvalues can be always

imaginary when both conditions such as I
1 temnew VV < and II

1 temnew VV < are satisfied, where

I
temV and II

temV stand for the SH-BAW velocities for the first and second

piezoelectromagnetics denoted by PEM1 and PEM2, respectively. For simplicity, it is

possible to choose III
temtem VV < . It is blatant that the case of III

temtem VV > can be rearranged, 

i.e. PEM1 PEM2 and PEM2 PEM1, to have III
temtem VV < again. Also, the value of

the velocity Vnew1 must unequal to zero because X = 0 due to Vnew1 = 0 is undesirable. 

Therefore, the following existence conditions for the velocity Vnew1 can exist:  

10 << X     (II.20)
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emem VV
KC
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Besides, equation (II.17) for determination of the velocity Vnew1 of the first new

interfacial SH-wave can be rewritten as follows:  

( )[ ] ( )[ ] ( ) ( )2II2I
II

I
2IIII2II

II

I

11 emememem KK
C

C
KbKb

C

C +=+++   (II.22)

To have no square roots in equation (II.22), it is necessary to square both the

left-hand and right-hand sides, to combine all the terms without the square roots on
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the right-hand side, and to square anew. As a result, the following quadratic equation

for the determination of the explicit form for the velocity Vnew1 can be obtained:  

02 =++ WQXPX     (II.23)

where  
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It is well-known that a quadratic equation can have two solutions. For this case, 

they can be introduced as follows:   

P

PWQQ
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new

2

422

I
1

2,1

−±−
==     (II.28)

This does not mean that two solutions can exist because the parameters P, Q, 

and W are very complicated. They can result in complex values of X. However, the

value of X should be real. Moreover, the value of X is restricted by inequality (II.20)

and existence condition (II.21) must be accounted. When this existence condition is

fulfilled, the solution with a positive sign before the square root in expression (II.28)

can satisfy equation (II.22).    

It is also possible to evaluate the possibility of propagation of this new

interfacial SH-wave along the common interface between two transversely isotropic

piezoelectromagnetic composite materials listed in table I.1 from the previous chapter. 

It is necessary to choose PZT–Terfenol-D and BaTiO3–CoFe2O4 as the first and
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second PEM half-spaces, respectively, because the SH-BAW speed for PEM1 is

slower than that for PEM2. Therefore, the following parameters must be calculated

for the two-layer system: III CC ~ 0.33, III
temtem VV ~ 0.59, ( )2I

emK ~ 0.82, ( )2II
emK ~ 0.16, 

III 01.0 μεα = , and IIIIII 01.0 μεα = . Using existence condition (II.21), it was found

that the new interfacial SH-wave cannot propagate in the configuration consisting of

PZT–Terfenol-D and BaTiO3–CoFe2O4. This is true because the value of III
temtem VV is

significantly smaller than unity for the structure. In order that the new interfacial SH-

wave can exist in this case, the value of III CC must be significantly larger, namely

III CC > 1 or even III CC >> 1. If the values of ( )2I
emK and ( )2II

emK are also very small

in addition to such small value of III
temtem VV , the large value of III CC must be also

increased to compensate these small values of the other parameters. In configurations

with suitable large values of III CC , the new interfacial SH-wave can propagate even

in the case of III
temtem VV ~ 0.1 or less when existence condition (II.20) is satisfied. In

such cases, the value of the velocity Vnew1 of the new interfacial SH-wave can be very

close to the value of the SH-BAW velocity I
temV : I

1 temnew VV ~ 0.999 or even 0.9999. 

This can actually result in such a situation when the PEM1 eigenvalue, which

depends on the velocity Vnew1, will be several orders smaller than the corresponding

PEM2 eigenvalue. This can mean that the wave penetration depth in PEM1 can be

significantly deeper than that in PEM2.   

It is also possible to discuss some particular cases. Consider the case when the

first half-space represents a pure piezomagnetics (e = 0) and the second is purely

piezoelectric (h = 0). However, it is thought that it is possible to account the

electromagnetic constant , i.e. 0 at the common interface between two media, 

because the piezoelectric phase is in a contact with the piezomagnetic phase. Also, it

is assumed that the corresponding SH-BAW speed in the piezomagnetics is slower

than that in the piezoelectrics. For this configuration, equation (II.22) for

determination of the propagation velocity of the interfacial SH-wave reduces to the

following equation:  
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where the corresponding non-dimensional coefficients denoted by ( )2I
αmK and ( )2II

αeK

are expressed as follows:  
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=
C

e
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It is clearly seen in expressions (II.30) that these coefficients will be slightly larger

for the case of non-zero values of the electromagnetic constants I and II. In equation

(II.29), the following functions bI and bII depend on the corresponding SH-BAW

velocities written below:  

( )( ) 2/12II
4

I 1 αα mttm KVV += , ( )( ) 2/12IIII
4

II 1 αα ette KVV +=    (II.31)

where the SH-BAW velocities I
4tV and II

4tV uncoupled with both the electrical and

magnetic potentials can be defined by expression (I.52) from the previous chapter

when the corresponding superscripts “I” and “II” are used. It is apparent that the

values of the velocities defined by expressions (II.31) will be also slightly higher due

to the slightly larger values of the coefficients defined by expressions (II.30).  

Consider the reverse case when the corresponding SH-BAW speed in the

piezoelectrics is slower than that in the piezomagnetics. For this configuration, 

equation (II.22) reduces to the following equation:  
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II
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C

C +=+++   (II.32)

where the corresponding coefficients and the corresponding SH-BAW velocities are

defined by  
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( )( ) 2/12II
4

I 1 αα ette KVV += , ( )( ) 2/12IIII
4

II 1 αα mttm KVV +=    (II.34)

In this case, the parameters given in expressions (II.33) and (II.34) will also have

slightly larger values for non-zero values of the electromagnetic constants I and II.  

It is worth noticing that when I = 0 and II = 0 occur, equations (II.29) and

(II.32) can reduce to the well-known equation for the case of the grounded interface

obtained by Huang, Li, and Lee [100], see equation (20) in Ref. [100]. Huang, Li, and

Lee [100] have studied the interfacial SH-wave propagation in a two-phase

piezoelectric/piezomagnetic structure with an imperfect interface and introduced

formula (20) for the case of the perfect bonding at the interface. It is thought that the

interfacial SH-wave described by formula (20) in Ref. [100] can be called the

interfacial Huang-Li-Lee wave or HLL-wave because this wave characteristic can be

very important for the problems of wave propagation in laminated

piezoelectric/piezomagnetic composite materials. Thus, it is necessary to distinguish

such composites from the others and the interfacial HLL-wave can serve for this

purpose. It is also noted that Ref. [100] has mentioned the results obtained by Soh

and Liu [99], see formula (12) in Ref. [99]. However, Soh and Liu [99] have studied

the case of interfacial SH-wave propagation along the non-metalized interface and

did not receive the formula for the case of grounded interface introduced by formula

(20) in Ref. [100]. As a result, the interfacial SH-wave propagating along the non-

metalized interface between the hexagonal piezoelectrics and the hexagonal

piezomagnetics can be called the interfacial Soh-Liu wave or SL-wave.  

Consider the case of two dissimilar hexagonal (6 mm) piezoelectrics with the

grounded interface. The media are perfectly bonded at the common interface. In this

configuration, the piezomagnetic and magnetoelectric effects are absent, and

therefore, the well-known interfacial Maerfeld-Tournois wave [98] can propagate. 
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Indeed, equation (II.22) reduces to the following equality for determination of the

propagation speed of the interfacial MT-wave:   

( )[ ] ( )[ ] ( ) ( )2II2I
II
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2IIII2II

II

I

11 eeee KK
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C
KbKb

C

C +=+++   (II.35)

where  
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( ) 2/12II
4

I 1 ette KVV += , ( ) 2/12IIII
4

II 1 ette KVV +=    (II.37)

In definitions (II.36), either of two parameters is called the coefficient of the

electromechanical coupling (CEMC). The following functions bI and bII in equation

(II.35) depend on the corresponding speeds of the SH-BAWs coupled with the

electrical potential and are defined by expressions (II.37). It is also noted that

formula (II.35) corresponds to formula (15) with existence condition (16) obtained by

Maerfeld and Tournois in Ref. [98]. However, formula (15) in Ref. [98] was

incorrectly written and it is vital to use the left-hand side of formula (9) instead of

that in formula (15) to correct it.   

Consider the case of two dissimilar transversely isotropic piezomagnetic

materials of class 6 mm. They are also perfectly bonded at their common interface. In

this structure, the piezoelectric and magnetoelectric effects are absent. For this case, 

equation (II.22) then reduces to the following formula for determination of the

interfacial MT-wave speed:   

( )[ ] ( )[ ] ( ) ( )2II2I
II
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2IIII2II
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C
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C
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In expression (II.38), the corresponding parameters are defined as follows:  
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( ) 2/12II
4
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4

II 1 mttm KVV +=    (II.40)

The parameters in expressions (II.39) are called the coefficients of the

magnetomechanical coupling (CMMC) which characterize pure piezomagnetics. The

parameters in expressions (II.40) represent the corresponding speeds of the SH-

BAWs coupled with the magnetic potential . Also, the SH-BAW velocities I
4tV and

II
4tV uncoupled with the magnetic potential can be derived using expression (I.52)

from the previous chapter.   

Ref. [98] has discussed that formula (II.35) can reduce to the well-known

formula for determination of the speed of the slower surface BG-wave guided by the

metalized surface of pure piezoelectrics contacting with a vacuum. Indeed, the

interfacial SH-wave can propagate with the BG-wave speed when the wave is guided

by the common interface between two identical piezoelectrics. These piezoelectrics

must be perfectly bonded at the interface and their corresponding symmetry axes are

in opposite directions. The electrically closed ( = 0) surface of the pure

piezoelectrics can reveal the following formula for the speed of the slower surface

BG-wave [13, 14, 45, 46, 48, 98, 100]:   
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−=

e
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teBGEC K

K
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The magnetically open ( = 0) surface of the pure piezomagnetics can also

support the propagation of the slower surface BG-wave [46, 48]. Also, it is obvious

that this BG-wave can propagate along the interface of two similar piezomagnetics

when they are perfectly bonded and their corresponding symmetry axes are
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oppositely directed. Consequently, formula (II.38) can reduce to the following

formula for determination of the slower surface BG-wave speed [46, 48]:  

2/12
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2

1
1
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−=

m

m
tmBGMO K

K
VV    (II.42)

It is possible to state that this subsection has acquainted the reader with the new

result. The velocity Vnew1 of the new interfacial SH-wave was obtained and the

obtained result was compared with the previous findings. However, the problem of

the theoretical investigations of the SH-wave propagation is more complicated in the

two-phase materials. Indeed, the second possibility exists which must be also treated. 

This possibility relates to the second set of the eigenvector components. Therefore, 

the following subsection describes the second possibility for the wave propagation in

the transversely isotropic piezoelectromagnetics.  

II.2.  The second sets of the eigenvector components  

For the first PEM half-space, the second sets of the eigenvector components are

given by expressions (I.74) and (I.75) from the first chapter. They correspond to the

eigenvalues defined by expressions (I.69) and (I.70). Also, the coupling between

these two eigenvectors is demonstrated by equality (I.76). For the second PEM half-

space, the explicit forms of the eigenvalues are determined in equations (I.77) and

(I.78) and the second eigenvectors are defined by expressions (I.82) and (I.83). Also, 

useful equality (I.84) demonstrates that these two eigenvectors are not independent. 

Using all the definitions for the eigenvalues and the second eigenvectors mentioned

above, the six homogeneous equations composed in expressions from (II.1) to (II.6)

can be rewritten in the following forms:    
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It is blatant that these sex homogeneous equations written above also lead to the

result obtained in the previous subsection. Indeed, the procedure for the

determination of the phase velocity is the same. It is necessary and enough to cope

with equations (II.43) and (II.44), where the second equation must be modified by a

successive subtraction of all equations from (II.45) to (II.48). As a result, the velocity

Vnew1 of the first new interracial SH-wave can be also obtained. Accounting existence

condition (II.21), the value of the velocity Vnew1 can be also calculated with formula

(II.22) or (II.28). It is also possible to find explicit forms for the weight factors FI, FI2, 

FII, and FII2. It is natural to express the first tree weight factors as some dependencies

on the fourth. It is obvious that expression (II.43) can reveal the relationship between

FI2 and FII2. Using equations from (II.43) to (II.46), it is possible to obtain the explicit

forms of the weight factors FI and FII as dependencies on both FII2 and Vnew1. So, they

can be written in the following non-dimensional forms:   
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The weight factors written above can be normalized by the factor of

( ) ( ) ( ) ( )( ) 2/122II2II22I2I
−

+++ FFFF to get the following vector (FI, FI2, FII, FII2) of the unit

length.  

There is also the third case when the first and second sets of the eigenvector

components are mixed. The purpose of the following subsection is to demonstrate for

the reader that this third case can agree with the first and second cases treated in this

and the previous subsections.  

II.3.  The combination of both the sets of the eigenvector components  

Consider the third possibility in the problem of the SH-wave propagation guided

by the electrically closed ( = 0) and magnetically open ( = 0) interface. This is the

case when the first sets of the eigenvector components are used for the first PEM

half-space and the second sets are chosen for the second PEM half-space. So, it is

indispensable to utilize PEM1 eigenvectors (I.71) and (I.72) for PEM1 eigenvalues

(I.69) and (I.70) and PEM2 eigenvectors (I.82) and (I.83) for PEM2 eigenvalues (I.77)

and (I.78). In this case, the six homogeneous equations read as follows:  

( ) ( ) 0
2IIII

IIIIIIII
2II

2II

IIII
2I =−−−

emem KC

he
F

KC

he
F

αμεα     (II.52)



63

[ ] ( )

[ ] ( ) 0IIIIIIII
2IIII

IIIIIIII
IIII2IIIIIIIIIIII

IIII
2II

IIII
II2IIIIII

=−+−+−+

−+−+−

αμαμαμ

εαεαεα

he
KC

he
CbFheF

he
KC

he
CbFheF

em

em (II.53)

( )
( ) 0II

2II

I2I
2IIII =−− αα e

KC

he
FeF

em

    (II.54)

( )
( ) 0IIII

2IIII

2IIII
2IIIIIIII =−− μμ e

KC

he
FeF

em

   (II.55)

( )
( ) 0II

2II

I2I
2IIII =−+− εε h

KC

he
FhF

em

   (II.56)

( )
( ) 0IIII

2IIII

2IIII
2IIIIIIII =−+− αα h

KC

he
FhF

em

   (II.57)

Exploiting the same procedures described in the previous subsections, one can

find that the phase velocity representing the velocity Vnew1 of the first new interracial

SH-wave can be also calculated with formula (II.22) or (II.28), see also existence

condition (II.21). Also, it is blatant that equation (II/52) can reveal the relationship

between FI2 and FII2. Using this relationship and equations (II.55) and (II.56), it is

possible to find the other two dependencies of FI and FII on FII2. It was also

mentioned in the previous subsections that all the weight factors can be normalized

by the factor of ( ) ( ) ( ) ( )( ) 2/122II2II22I2I
−

+++ FFFF to get the following vector (FI, FI2, FII, 

FII2) of the unit length. As a result, all the weight factors can have the following

definite values different from those obtained in the previous two subsections:   
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It is possible to treat the other possible electrical and magnetic boundary

conditions at the interface x3 = 0. This is the main purpose of the following chapters. 

The following chapter studies the case of D3
I = D3

II = 0 and B3
I = B3

II = 0 at the

common interface.  
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CHAPTER III  

The Case of D3
I = D3

II = 0 and B3
I = B3

II = 0 at the Interface  

Concerning the problem of interfacial SH-wave propagation along the

electrically open (D3
I = 0 and D3

II = 0) and magnetically closed (B3
I = 0 and B3

II = 0)

interface between two dissimilar PEM half-spaces, the mechanical boundary

conditions such as UI = UII and ( 32)
I = ( 32)

II at the common interface x3 = 0 can be

borrowed from the previous chapter, see equations (II.1) and (II.2). They are written

below in equations (III.1) and (III.2). The electrical displacements D3
I and D3

II are

defined by expressions (I.100) and (I.101) and the magnetic flux components such as

B3
I and B3

II are defined by expressions (I.106) and (I.107) from Chapter I, 

respectively. Therefore, the corresponding six homogeneous equations can be written

for the case as follows:  
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(III.2)

[ ] [ ] 0)5(I0I)5(I0I)5(I0III2)3(I0I)3(I0II =−−−+ ψαϕεψαϕε UebFF   (III.3)

[ ] [ ] 0)6(II0II)6(II0II)6(II0IIIIII2)4(II0II)4(II0IIII =−−++− ψαϕεψαϕε UebFF (III.4)

[ ] [ ] 0)5(I0I)5(I0I)5(I0III2)3(I0I)3(I0II =−−−+ ψμϕαψμϕα UhbFF   (III.5)

[ ] [ ] 0)6(II0II)6(II0II)6(II0IIIIII2)4(II0II)4(II0IIII =−−++− ψμϕαψμϕα UhbFF (III.6)

These equations written above can reveal the phase velocity of the interfacial

SH-wave in this electrically open and magnetically closed case. Three possibilities, 
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namely the first eigenvectors, the second ones, and the mixture of them must be also

considered. This is the main aim of this chapter.   

III.1.  The first sets of the eigenvector components  

Consider the case of the PEM1 first eigenvectors defined by expressions (I.71)

and (I.72) and the PEM2 first eigenvectors defined by expressions (I.79) and (I.80)

from Chapter I. It is apparent that two equations corresponding to the mechanical

boundary conditions can be borrowed from equations (II.7) and (II.8) written in the

previous chapter. Utilizing the corresponding first eigenvectors, all equations from

(III.3) to (III.6) can be significantly simplified. As a result, the six homogeneous

equations for determination of the phase velocity of the interfacial SH-wave read:  

( ) ( ) 0
2IIII

IIIIIIII
2II

2II

IIII
2I =−−−

emem KC

he
F

KC

he
F

εαεα     (III.7)

[ ] ( )

[ ] ( ) 0IIIIIIII
2IIII

IIIIIIII
IIII2IIIIIIIIIIII

IIII
2II

IIII
II2IIIIII

=−+−+−+

−+−+−

εαεαεα

εαεαεα

he
KC

he
CbFheF

he
KC

he
CbFheF

em

em (III.8)

000 II2I =×−× bFF     (III.9)

000 IIII2II =×−× bFF    (III.10)

( ) 00II2IIIII =×+− bFheF εα   (III.11)

( ) 00IIII2IIIIIIIIII =×+− bFheF εα   (III.12)

where equations (III.11) and (III.12) were multiplied by the factors of

( ) ( )( )2IIIIIII αμεεα −− he and ( ) ( )( )2IIIIIIIIIIIIII αμεεα −− he , respectively. Using equations

(III.11) and (III.12), two weight factors such as FI and FII must be equal to zero. Also, 

FI2 and FII2 are defined by expression (III.7).    
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Consequently, equations (III.7) and (III.8) with FI = FII = 0 can reveal the

following equation for determination of the phase velocity of the interfacial SH-wave:  

( )
( ) ( ) ( ) 01

1
1

1
2II

II
2I

I
2IIII

2II

=+++
ememem

em

K
b

K
b

KC

KC   (III.13)

It is flagrant that equation (III.13) cannot have solutions because all the

parameters can have definitely positive values. However there is a small probability

that either ( )2I
emK or ( )2II

emK can have a negative sign due to a suitably large value of

where > 0. Also, it is well-known that for bulk metamaterials, < 0 and µ < 0

resulting in µ > 0 can occur. This can also lead to a negative sign for ( )2I
emK when

PEM1 is treated as a bulk metamaterial. In those cases, one can check that the

equation cannot also have solutions.  

III.2.  The second sets of the eigenvector components  

This is the case when the PEM1 second eigenvectors defined by expressions

(I.74) and (I.75) and the PEM2 second eigenvectors defined by expressions (I.82) and

(I.83) from Chapter I are employed. The equations corresponding to the mechanical

boundary conditions can be written following equations (II.43) and (II.44) from the

previous chapter. Utilizing the corresponding second eigenvectors, equations from

(III.3) to (III.6) can be also written in significantly simplified forms. Therefore, the

corresponding six homogeneous equations can be introduced for the case as follows:   

( ) ( ) 0
2IIII

IIIIIIII
2II

2II

IIII
2I =−−−

emem KC

he
F

KC

he
F

αμαμ    (III.14)
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[ ] ( )

[ ] ( ) 0IIIIIIII
2IIII

IIIIIIII
IIII2IIIIIIIIIIII

IIII
2II

IIII
II2IIIIII

=−+−+−+

−+−+−

αμαμαμ

αμαμαμ

he
KC

he
CbFheF

he
KC

he
CbFheF

em

em (III.15)

( ) 00II2IIIII =×−− bFheF αμ    (III.16)

( ) 00IIII2IIIIIIIIII =×−− bFheF αμ    (III.17)

000 II2I =×−× bFF     (III.18)

000 IIII2II =×−× bFF    (III.19)

For convenience, the factors of ( ) ( )( )2IIIIIII αμεεα −− he and

( ) ( )( )2IIIIIIIIIIIIII αμεεα −− he were respectively used for equations (III.16) and (III.17). 

Exploiting equations (III.16) and (III.17), weight factors FI and FII must equal to zero. 

Also, FI2 and FII2 can be defined by expression (III.14). Accounting these facts, it is

obvious that the phase velocity of the interfacial SH-wave can be also determined by

equation (III.13) which certainly has no solutions. Therefore, the interfacial SH-wave

guided by electrically open and magnetically closed interface cannot propagate. This

fact was found and briefly discussed in the previous subsection.    

III.3.  The combination of both the sets of the eigenvector components  

For the combination of two possible eigenvectors, equations (III.1) and (III.2)

corresponding to the mechanical boundary conditions can be also transformed into

equations (II.52) and (II.53) from the previous chapter. Using the first eigenvectors

for the first PEM half-space, the electrical and magnetic boundary conditions such as

D3
I = 0 and B3

I = 0 are defined by equations (III.9) and (III.11), correspondingly. 

Exploiting the second eigenvectors for the second PEM half-space, D3
II = 0 and B3

II =

0 are defined by equations (III.17) and (III.19). The reader can check that this case

also leads to equation (III.13) which has no solution for the phase velocity of the

interfacial SH-wave.   
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CHAPTER IV  

The Case of I = II = 0 and B3
I = B3

II = 0 at the Interface  

Consider the problem of interfacial SH-wave propagation along the electrically

closed ( I = 0 and II = 0) and magnetically closed (B3
I = 0 and B3

II = 0) interface at

x3 = 0. For this case, equations (III.1) and (III.2) describe the mechanical boundary

conditions such as UI = UII and ( 32)
I = ( 32)

II, equations (II.3) and (II.4) represent the

electrical boundary conditions, and equations (III.5) and (III.6) correspond to the

magnetic boundary conditions. They can be written as follows:   

0)6(II02II)5(I02I =− UFUF     (IV.1)

[ ] [ ]
[ ] [ ] 0)6(II0II)6(II0II)6(II0IIII2II)4(II0II)4(II0IIII

)5(I0I)5(I0I)5(I0II2I)3(I0I)3(I0II

=+++++

++++

ψϕψϕ

ψϕψϕ

heUCbFheF

heUCbFheF
(IV.2)

0)5(I02I)3(I0I =+ ϕϕ FF    (IV.3)

0)6(II02II)4(II0II =+ ϕϕ FF    (IV.4)

[ ] [ ] 0)5(I0I)5(I0I)5(I0III2)3(I0I)3(I0II =−−−+ ψμϕαψμϕα UhbFF   (IV.5)

[ ] [ ] 0)6(II0II)6(II0II)6(II0IIIIII2)4(II0II)4(II0IIII =−−++− ψμϕαψμϕα UhbFF (IV.6)

These six homogeneous equations written above can actually reveal the phase

velocity of the interfacial SH-wave. Two-phase materials such as

piezoelectromagnetics can possess several possibilities to treat the problem. Indeed, 

the first PEM half-space has two different sets of the components and the second

PEM half-space also has its own two different eigenvectors. These different cases are

treated below in this chapter.  
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IV.1.  The first sets of the eigenvector components  

In the case of the first sets of the eigenvector components for both the PEM1 and

PEM2, the six homogeneous equations written above can respectively transformed

into equations (III.7), (III.8), (II.9), (II.10), (III.11), and (III.12). For convenience, 

they are written here below:    

( ) ( ) 0
2IIII

IIIIIIII
2II

2II

IIII
2I =−−−

emem KC

he
F

KC

he
F

εαεα     (IV.7)

[ ] ( )

[ ] ( ) 0IIIIIIII
2IIII

IIIIIIII
IIII2IIIIIIIIIIII

IIII
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IIII
II2IIIIII

=−+−+−+
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εαεαεα
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he
CbFheF
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CbFheF
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em (IV.8)

( )
( ) 0II

2II

I2I
2IIII =−− αα e

KC

he
FeF

em

    (IV.9)

( )
( ) 0IIII

2IIII

II2II
2IIIIIIII =−− αα e

KC

he
FeF

em

   (IV.10)

00II2III =×+− bFhF ε     (IV.11)

00IIII2IIIIII =×+− bFhF ε     (IV.12)

where the corresponding factors such as ( )( )2IIIII αμεε −− h and ( )( )2IIIIIIIIII αμεε −− h

were utilized for equations (IV.11) and (IV.12). Using equations (IV.11) and (IV.12), 

it is possible that two weight factors such as FI and FII must be equal to zero and this

is not obligatory. Also, FI2 and FII2 can be defined by expression (IV.7).    

For further theoretical treatments, it is possible to use only equations (IV.7) and

(IV.8) written in the following modified forms:  

( )
( )2IIII

2II

IIII

IIIIIIII
2II2I

em

em

KC

KC

he

he
FF

εα
εα

−
−=     (IV.13)
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( )
( ) ( )
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where the second equation was obtained by a successive subtraction of four equations

from (IV.9) to (IV.12). In equation (IV.14), the non-dimensional coefficients such as

( )2I
αK and ( )2II

αK are respectively defined by the following formulae:  

( ) ( )2II

III

II

II
2I

α
α

αα
C

he

C

he
K ==     (IV.15)

( ) ( )2IIII

IIIIII
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α
α
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C

he

C

he
K ==     (IV.16)

These coefficients were first introduced in Ref. [46] and connect two terms

containing I and II in the CMEMCs ( )2I
emK and ( )2II

emK , respectively.  

Exploiting the relationship between FI2 and FII2 defined by expression (IV.13), 

equation (IV.14) can certainly reveal the following relatively compact equation for

the determination of the velocity Vnew2 of the second new interfacial SH-wave:   
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(IV.17)

where the CMEMCs ( )2I
emK and ( )2II

emK and the SH-BAW velocities I
temV and II

temV can

be defined by using the corresponding superscripts “I” and “II” in expressions (I.53)

and (I.55) from the first chapter.  

It is natural that equation (IV.17) can have the following existence conditions:  
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0>Y and ( ) 22III 1 YVV temtem −>     (IV.18)

where  

( ) ( )
( )

( ) ( )
( )2II

2II2II

IIIIIIII
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11 em

em
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α   (IV.19)

It is blatant that the piezoelectric effect is responsible for the existence of such

new interfacial SH-wave because eI = 0 and eII = 0 in equation (IV.17) certainly result

in the case treated in the previous chapter when no solutions can exist. For the case of

both hI = 0 and hII = 0 or both I = 0 and II = 0, one can check that the interfacial SH-

wave can exist because Y > 0 occurs. Also, it is well-known that the values of the

electromagnetic constants I and II can be very small resulting in Y > 0. However, 

both existence conditions (IV.18) must be satisfied. For some larger values of both I

and II, a small probability can exist for some piezoelectromagnetics that Y < 0 can

occur, see expression (IV.19). For very large values of I and II, it is possible that

Y > 0 occurs again. This situation discussed above relates to positive values of the

electromagnetic constants. Also, IIII εα he = or IIIIIIII εα he = in expression (IV.19) can

result in Y ∞ and such new interfacial SH-wave cannot propagate.   

Exploiting the composite materials listed in table I.1 from Chapter I, one can

evaluate the possibility of propagation of such new interfacial SH-wave. It was

mentioned in Chapter II that PZT–Terfenol-D and BaTiO3–CoFe2O4 must be used as

the first and second PEM half-spaces, respectively, because the SH-BAW speed for

PEM1 is slower than that for PEM2. Therefore, the calculated parameters are as

follows: III CC ~ 0.33, III
temtem VV ~ 0.59, ( )2I

emK ~ 0.82, ( )2II
emK ~ 0.16, ( )2I

αK ~ 7.27, 

( )2II
αK ~ 5.36, ( )IIIIII εαα hee − ~ – 0.10, and ( )IIIIIIIIIIII εαα hee − ~ – 0.03 for

III 01.0 μεα = and IIIIII 01.0 μεα = . It was numerically found that for these relatively

small values of I and II, existence conditions (IV.18) cannot be satisfied. On the

other hand, using a very large value of II such as IIIIII 98.0 μεα = and all the
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recalculated values of the corresponding parameters, existence conditions (IV.18) can

be satisfied and therefore, such new interfacial SH-wave can propagate. However, 

such extremely large value of II for BaTiO3–CoFe2O4 is questionable.   

IV.2.  The second sets of the eigenvector components  

Consider the other possible case when the corresponding second eigenvectors for

both the first and second PEM half-spaces are used. For this case, the mechanical, 

electrical, and magnetic boundary conditions are defined by equations (III.14) and

(III.15), equations (II.45) and (II.46), and equations (III.18) and (III.19), respectively. 

For convenience, the corresponding six homogeneous equations are written below:  

( ) ( ) 0
2IIII

IIIIIIII
2II

2II

IIII
2I =−−−

emem KC
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( )
( ) 0II
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2IIII =−− μμ e
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he
FeF

em

    (IV.22)

( )
( ) 0IIII

2IIII

2IIII
2IIIIIIII =−− μμ e

KC

he
FeF

em

   (IV.23)

000 II2I =×−× bFF     (IV.24)

000 IIII2II =×−× bFF    (IV.25)

It is flagrant that equations (IV.24) and (IV.25) can be surely excluded from the

further analysis. So, the rest four homogeneous equations can certainly define three

weight factors such as FI, FII, FI2 for FII2 = 1 and the phase velocity of the interfacial

SH-wave. The following equation can determine the velocity Vnew3 of the third new

interfacial SH-wave:  
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The existence conditions for the third new SH-wave are those defined by

expression (IV.18) from the previous subsection. However, the value of Y for

equation (IV.26) differs from that used for equation (IV.17). For the case of this

subsection, the value of Y reads:

( ) ( )
( )

( ) ( )
( )2II

2II2II
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11 em
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It is necessary to state that in expression (IV.27), eI = 0 and I = 0 together with eII =

0 and II = 0 can result in Y = 0, and therefore, the new interfacial SH-wave cannot

propagate. This fact can mean that the piezoelectric and magnetoelectric effects can

define the existence of such new interfacial SH-wave.  

The following subsection studies the case of the mixture of the first and second

sets of the eigenvector components. This is the third possibility that must be also

treated for these mechanical, electrical, and magnetic boundary conditions.  

IV.3.  The combination of both the sets of the eigenvector components  

Consider the combination of the eigenvectors when the first sets of the

eigenvector components are used for the first PEM half-space and the second ones

are utilized for the second PEM half-space. It is obvious that six homogeneous

equations from (IV.1) to (IV.6) must be properly transformed for this case of the

mechanical, electrical, and magnetic boundary conditions. It is also natural that the

transformed equations can be readily borrowed from the previously studied cases. For

instance, the mechanical and electrical boundary conditions can be written following

equations from (II.52) to (II.55) from Chapter II and the magnetic boundary
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conditions are described by equations (III.11) and (III.19) from Chapter III. As a

result, the following transformed forms of the six homogeneous equations must be

used:  
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   (IV.31)

00II2III =×+− bFhF ε     (IV.32)

000 IIII2II =×−× bFF     (IV.33)

It was found that these six homogeneous equations written above can reveal the

velocity Vnew4 of the fourth new interfacial SH-wave which can propagate along the

common interface between two dissimilar piezoelectromagnetic half-spaces. The

obtained equation for the determination of the value of the velocity Vnew4 is expressed

as follows:  
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  (IV.34)

where the coefficient ( )2I
αK is defined by expression (IV.15).  
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It is clearly seen in equation (IV.34) that when eI = 0 occurs, the first term on the

right-hand side vanishes and the second term on the same side can also vanish as

soon as eII = 0 and II = 0. These facts can mean that the piezoelectric properties can

define the existence of such new interfacial SH-wave. The existence condition is

defined by expressions (IV.18), where the value of Y for the case is as follows:   

( ) ( )
( )

( ) ( )
( )2II

2II2II

2II

2I2I

II

I

IIII

II

11 em

mem

em

em

K

KK

K

KK

C

C

he

e
Y

+
−+

+
−

−
= α

εα
α   (IV.35)

Also, IIII εα he = in expressions (IV.34) and (IV.35) can actually lead to Y ∞ and

such new interfacial SH-wave cannot propagate.  
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CHAPTER V  

The Case of D3
I = D3

II = 0 and I = II = 0 at the Interface  

Consider the interfacial SH-wave propagation guided by the electrically open

(D3
I = 0 and D3

II = 0) and magnetically open ( I = 0 and II = 0) interface at x3 = 0. 

For this case, it is possible to borrow two equations corresponding to the mechanical

boundary conditions such as UI = UII and ( 32)
I = ( 32)

II from the previous chapter. It

is obvious that the electrical and magnetic boundary conditions are those used in

Chapters III and II, respectively. Therefore, the corresponding six homogeneous

equations read:  

0)6(II02II)5(I02I =− UFUF     (V.1)

[ ] [ ]
[ ] [ ] 0)6(II0II)6(II0II)6(II0IIII2II)4(II0II)4(II0IIII

)5(I0I)5(I0I)5(I0II2I)3(I0I)3(I0II

=+++++

++++

ψϕψϕ

ψϕψϕ

heUCbFheF

heUCbFheF
(V.2)

[ ] [ ] 0)5(I0I)5(I0I)5(I0III2)3(I0I)3(I0II =−−−+ ψαϕεψαϕε UebFF   (V.3)

[ ] [ ] 0)6(II0II)6(II0II)6(II0IIIIII2)4(II0II)4(II0IIII =−−++− ψαϕεψαϕε UebFF (V.4)

0)5(I02I)3(I0I =+ ψψ FF    (V.5)

0)6(II02II)4(II0II =+ ψψ FF    (V.6)

These six homogeneous equations written above must be transformed into

corresponding convenient forms for further analysis. Using different sets of the

eigenvector components there are three possibility to transform these equations. It is

possible to treat the first case when the first eigenvectors are applied to get the phase

velocity of the interfacial SH-wave and the corresponding existence conditions.  
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V.1.  The first sets of the eigenvector components  

It is usual for this work to start the further analysis with the case when the

corresponding first eigenvectors are used for both the first and second PEM half-

spaces. Following the same case studied in Chapter III, the mechanical and electrical

boundary conditions are given in equations from (III.7) to (III.10). Also, equations

(II.11) and (II.12) can be borrowed from Chapter II to describe the corresponding

magnetic boundary conditions. It is natural to use these transformed six homogeneous

equations mentioned above for this case. They read:  
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000 II2I =×−× bFF     (V.9)
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It is clearly seen in equations from (V.7) to (V.12) that one actually deals here

with four homogeneous equations because equations (V.9) and (V.10) become

negligible. Therefore, these four equations can be readily used to determine the

explicit forms for the weight factors, see Chapter II. Also, these four equations have

revealed the following equation for the calculation of the velocity Vnew5 of the fifth

new interfacial SH-wave:  
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Indeed, equation (V.13) can also have the existence conditions written in the

following form used in the previous chapter:  

0>Y and ( ) 22III 1 YVV temtem −>     (V.14)

where  
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It is possible to discuss the existence conditions for this case. It is assumed that

usually Y > 0 always occurs. However, this not obligatory and there can be some

cases when Y can have a negative sign. Also, h = 0 and = 0 for the first and second

piezoelectromagnetics certainly results in Y = 0. As a result, such interfacial SH-

waves cannot propagate.  

V.2.  The second sets of the eigenvector components  

Using the corresponding second eigenvectors for the first and second PEM half-

spaces, it is also essential to write the corresponding transformed equations. For this

case, equations from (V.1) to (V.2) can be properly transformed into equations

(III.14), (III.15), (III.16), (III.17), (II.47), and (II.48). Therefore, the suitable six

homogeneous equations are composed as follows:  
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It is apparent that it is necessary to successively subtract equations from (V.18)

to (V.21) from equation (V.17) and then to use the relationship between the weight

factors FI2 and FII2 defined in equation (V.16) for equation (V.17). The resulting

equation can be further simplified. So, the final equation for the calculation of the

velocity Vnew6 of the sixth new interfacial SH-wave can be introduced in the following

form:  
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where the coefficients ( )2I
αK and ( )2II

αK are defined by expressions (IV.15) and (IV.16), 

respectively.  

Existence conditions (V.14) can be also utilized here. However, it is apparent

that for this case, the value of Y in existence conditions (V.14) is different from that

defined in equation (V.15). For this case, the parameter Y is equal to the right-hand

side in equation (V.22). It is clearly seen in equation (V.22) that Y = 0 occurs as soon
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as hI = 0 and hII = 0 and therefore, existence conditions (V.14) cannot be satisfied. 

Thus, it is possible to state that the presence of the piezomagnetic effect in the two-

phase composites can cause the propagation of such new interfacial SH-wave. Also, 

IIII αμ he = or IIIIIIII αμ he = in expression (V.22) can lead to Y ∞ and such new

interfacial SH-wave cannot propagate.     

V.3.  The combination of both the sets of the eigenvector components  

For comparison, it is indispensable to treat the third possible case that mixtures

the first and second sets of the eigenvector components. This means that the first

eigenvectors can be chosen for the first PEM half-space and the second ones for the

second PEM half-space. Exploiting them, the mechanical, electrical, and magnetic

boundary conditions can result in equations (II.52), (II.53), (V.9), (V.19), (V.11), and

(V.21) which can be used for this case. These six homogeneous equations can be then

written down as follows:   
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It is overt that equation (V.25) does not participate in the analysis. Also, it is

needed to subtract equations (V.26) and (V.28) from equation (V.24). As a result, this

modified equation together with equations (V.23) and (V.27) can be transform to the

following equation:  
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where the coefficient ( )2II
αK is defined by expression (IV.16).  

Equation (V.29) can definitely reveal the velocity Vnew7 of the seventh new

interfacial SH-wave propagating along the common interface of two dissimilar

piezoelectromagnetics when they are perfectly bonded. It is obvious that the

existence conditions defined by inequalities (V.14) must be also used. Indeed, in

order that such new interfacial SH-wave can propagate, the parameter Y representing

the right-hand side in equation (V.29) must have a positive sign. Also, IIIIIIII αμ he = in

expression (V.29) can lead to Y ∞ and such new interfacial SH-wave cannot

propagate. It is also possible to mention the situation when Y = 0 occurs. This

situation can happen when hI = 0, I = 0, and hII = 0. This can also mean that the

piezomagnetic effect is mainly responsible for the existence of such new interfacial

SH-wave. Like the cases studied in the previous subsections of this chapter, I = 0

and II = 0 can significantly simplify the form of the parameter Y which reads  
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CHAPTER VI  

The Case of I = II, D3
I = D3

II, I = II, and B3
I = B3

II at x3 = 0  

In this chapter, the applied mechanical boundary conditions such as UI = UII and

( 32)
I = ( 32)

II are similar to those used in Chapters from II to V. The superscripts “I”

and “II” are used for the first and second PEM half-spaces, respectively. The

electrical boundary conditions at x3 = 0 such as I = II and D3
I = D3

II are defined by

equations from (I.96) to (I.101) in Chapter I. Also, the magnetic boundary conditions

such as I = II and B3
I = B3

II are defined by equations from (I.102) to (I.107). As a

result, one can compose the following six homogeneous equations:  
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It is clearly seen that this system of the six homogeneous equations written

above can be significantly more complicated compared with the cases treaded in the

previous chapters. However, it is necessary to treat this case by the same way carried

out earlier.  
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VI.1.  The first sets of the eigenvector components  

Employing the first eigenvectors for both the first and second PEM half-spaces, 

equations (VI.1) and (VI.2) can be readily transformed into equations (II.7) and (II.8), 

respectively. Therefore, it is natural to borrow these two equations from Chapter II. 

Using the corresponding first eigenvectors, equations from (VI.3) and (VI.6) can be

properly transformed and introduced in the corresponding simplified forms. 

Subsequently, the explicit forms of the six homogeneous equations written above can

be written as follows:  
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It is blatant that equation (VI.10) can be readily neglected and equation (VI.12)

gives the explicit relationship between the weight factors FI and FII. It is natural to

use this relationship for equations (VI.8), (VI.9), and (VI.11) to properly transform

these three equations. Next, the certain relationship between the weight factors FI2

and FII2 defined by equation (VI.7) can be used for these three transformed equations

and the second and third equations can be subtracted from the first. The result of
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these several complicated mathematical operations is given below in equation (VI.13). 

It is certain that equation (VI.13) can reveal the velocity Vnew8 of the eighth new

interfacial SH-wave.  
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where the coefficient ( )2II
αK is defined by expression (IV.16).  

In equation (VI.13), it is natural that the complicated right-hand side represents

the parameter denoted by Y. Consequently, the existence conditions can be written in

the following forms used in the previous chapter:  

0>Y and ( ) 22III 1 YVV temtem −>     (VI.14)

Also, one can find that equation (VI.13) can be significantly simplified as soon

as I = 0 and II = 0. It is necessary to state that eI = 0 and eII = 0 can further simplify

equation (VI.13). Also, IIIIIIII εα he = in expression (VI.13) can lead to Y ∞ and such

new interfacial SH-wave cannot propagate. Besides, it is also possible to treat the

other cases.  

VI.2.  The second sets of the eigenvector components  

Consider the second possible case when the corresponding second eigenvectors

are used for both the first and second PEM half-spaces having the common interface

at x3 = 0, see figure I.1. For this case, equations (II.43) and (II.44) corresponding to

the mechanical boundary conditions can be borrowed from Chapter II. Using the
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corresponding second eigenvectors, equations (VI.3) and (VI.4) corresponding to the

electrical boundary conditions and equations (VI.5) and (VI.6) corresponding to the

magnetic ones can be readily transformed and introduced in some suitable forms. 

Therefore, these six homogeneous equations can be represented in the following

forms:   
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It is clearly seen that equation (VI.20) can be excluded from the further analysis

and equation (VI.18) provides the relationship between the weight factors FI and FII. 

Using this relationship and that given by equation (VI.15), it is possible to properly

transform equations (VI.16), (VI.17), and (VI.19). After that, the latter two equations

can be subtracted from equation (VI.16) which can be further transformed. After all

the complicated transformations, the resulting equation for the determination of the

velocity Vnew9 of the ninth new interfacial SH-wave can be represented in the

following form:  
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where the coefficient ( )2II
αK is defined by expression (IV.16).  

It is obvious that the right-hand side in equation (VI.21) represents the parameter

Y and using this parameter, the existence conditions are those given by inequalities

(VI.14) from the previous subsection. One can also find that equation (VI.21) can be

significantly simplified as soon as I = 0 and II = 0. Also, IIIIIIII αμ he = in expression

(VI.21) can lead to Y ∞ and such new interfacial SH-wave cannot propagate. It is

also possible to treat the third case that mixes the first and second eigenvectors.   

VI.3.  The combination of the first and second sets

Consider the case when the first eigenvectors are exploited for the first PEM

half-space and the second eigenvectors are employed for the second PEM half-space. 

For this case, it is useful to borrow equations (II.52) and (II.53) responsible for the

mechanical boundary conditions. Using the corresponding eigenvectors, equations

from (VI.3) to (VI.6) can be transformed again to get suitable equations

corresponding to the electrical and magnetic boundary conditions. Thus, the explicit

forms of the six homogeneous equations read:   
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It is natural to successively subtract equations (VI.24), (VI.25), (VI.26), and

(VI.27) from equation (VI.23). Then, it is necessary to use relationship (VI.22)

between the weight factors FI2 and FII2. The resulting expression can also have a

complicated form. For simplicity, it is possible however to use the following two

equations instead of four ones:   
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These two equations can be further modified to have only the weight factor FI in

the first and only the weight factor FII in the second. As a result, they can have the

following forms:  
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Therefore, these two modified equations must be subtracted from equation

(VI.23) and the equation for the determination of the velocity Vnew10 of the tenth new

interfacial SH-wave can be written in the following final form:  
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(VI.32)

where the coefficients ( )2I
αK and ( )2II

αK are defined by expressions (IV.15) and (IV.16), 

respectively.  

The existence conditions of such new interfacial SH-wave are those

demonstrated in inequalities (VI.14), where the parameter Y for this case is equal to

the right-hand side of equation (VI.32). According to the existence conditions, the

value of the parameter Y must be larger than zero. However, eI = 0 and hII = 0

definitely results in Y = 0, see the equation (VI.32), and therefore, no solution can be

found. This can mean that such interfacial SH-wave cannot propagate when the

piezoelectric phase of the first PEM half-space and the piezomagnetic phase of the

second PEM half-space vanish. On the other hand, I = 0 and II = 0 cannot lead to Y

= 0, see the explicit form of the parameter Y in expression (VI.33) written below.  
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CHAPTER VII  

The Case of I = II, D3
I = D3

II, and B3
I = B3

II = 0 at x3 = 0  

For this case, the mechanical and electrical boundary conditions are those used

in the previous chapter, see equations from (VI.1) to (VI.4). The magnetic boundary

conditions represent the magnetically closed interface, namely B3
I = 0 and B3

II = 0 at

x3 = 0 and therefore, the corresponding equations such as equations (III.5) and (III.6)

can be borrowed from Chapter III. These six homogeneous equations can be then

written as follows:  

0)6(II02II)5(I02I =− UFUF     (VII.1)

[ ] [ ]
[ ] [ ] 0)6(II0II)6(II0II)6(II0IIII2II)4(II0II)4(II0IIII
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0)6(II02II)4(II0II)5(I02I)3(I0I =−−+ ϕϕϕϕ FFFF    (VII.3)

[ ] [ ]
[ ] [ ] 0)6(II0II)6(II0II)6(II0IIIIII2)4(II0II)4(II0IIII
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(VII.4)

[ ] [ ] 0)5(I0I)5(I0I)5(I0III2)3(I0I)3(I0II =−−−+ ψμϕαψμϕα UhbFF   (VII.5)

[ ] [ ] 0)6(II0II)6(II0II)6(II0IIIIII2)4(II0II)4(II0IIII =−−++− ψμϕαψμϕα UhbFF (VII.6)

These six fundamental equations written above must be further transformed. 

There are three possibilities to transform them in different ways due to the existence

of different sets of the eigenvector components. Therefore, three following

subsections are responsible for the studies of these three possibilities.  
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VII.1.  The first sets of the eigenvector components  

In the case of the first eigenvectors for the first and second PEM half-spaces

shown in figure I.1, it is convenient that the first four equations can be borrowed from

the previous chapter, namely equations from (VI.7) to (VI.10). In the same manner, 

the last two equations can be borrowed from Chapter III, namely equations (III.11)

and (III.12). Consequently, they can be rewritten as follows:  
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00000 IIII2IIII2I =×−×+×−× bFFbFF     (VII.10)

00II2III =×+− bFhF ε     (VII.11)

( ) 00IIII2IIIIIIIIII =×+− bFheF εα     (VII.12)

It is usual in this theoretical study to successively subtract equations (VII.9), 

(VII.10), (VII.11), and (VII.12) from equation (VII.8). Also, it is crucial to account

expression (VII.7) and the following equality FI = FII = 0, see equations (VII.11) and

(VII.12). As a result, modified equation (VII.8) can be represented in the following

form for determination of the velocity Vnew11 of the eleventh new interfacial SH-wave:   
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where the coefficients ( )2I
αK and ( )2II

αK are defined by expressions (IV.15) and (IV.16), 

respectively.  

Equation (VII.13) must also satisfy the following well-known existence

conditions:  

0>Y and ( ) 22III 1 YVV temtem −>     (VII.14)

where the parameter Y can be defined by  
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It is clearly seen in expression (VII.15) that the value of the parameter Y is equal

to zero as soon as the piezoelectric constant eI of the first piezoelectromagnetics

equals to zero. This can mean that the piezoelectric phase of the first

piezoelectromagnetics, which should possesses the smaller value of SH-BAW

velocity I
temV , can completely response for the existence of such new interfacial SH-

wave. On the other hand, I = 0 and II = 0 lead to the following simplified form of

the parameter Y:  
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VII.2.  The second sets of the eigenvector components  

In this case of the second eigenvectors for the first and second PEM half-spaces, 

it is also convenient to borrow four equations from (VI.15) to (VI.18) from the

previous chapter. These equations correspond to the mechanical and electrical
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boundary conditions for this case. The magnetic boundary conditions are described

by equations (III.18) and (III.19) from Chapter III and therefore, they can be also

borrowed. Thus, the corresponding system of the six homogeneous equations is

composed as follows:    
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000 II2I =×−× bFF     (VII.21)

000 IIII2II =×−× bFF    (VII.22)

It is obvious that equations (VII.21) and (VII.22) vanish and equation (VII.20)

defines the relationship between the weight factors FI and FII. Employing this

relationship and the other relationship defined by expression (VII.17), equation

(VII.18) can be transformed into the following relatively compact form which can

determine the velocity Vnew12 of the twelfth new interfacial SH-wave:   
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The existence conditions for equation (VII.23) can be also determined in the

similar manner. Indeed, the existence conditions can be also defined by inequalities

(VII.14) written in the previous subsection of this chapter. Also, I = 0 and II = 0

results in the following relatively simple form of the parameter Y:  
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It is clearly seen in expression (VII.24) that Y = 0 occurs for eI = 0 and eII = 0, but hI

= 0 and hII = 0 cannot give Y = 0. So, the piezoelectric and magnetoelectric effects

can be responsible for the existence of such new interfacial SH-wave.  

VII.3.  The combination of the first and second sets

Indeed, it is indispensable to theoretically investigate the third possible case

when the first eigenvectors are utilized for the first PEM half-space and the second

ones are chosen for the second PEM half-space. For this situation, the suitable

equations for the mechanical and electrical boundary conditions are equations from

(VI.22) to (VI.25) given in the previous chapter. Also, the suitable magnetic

boundary conditions are written down in equations (VII.11) and (VII.22) from the

first and second subsections of this chapter, respectively. Therefore, one can write the

following six homogeneous equations:   
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It is natural to account relationship (VII.25) for equations (VII.26) and (VII.27)

and then to successively subtract equations (VII.27), (VII.28), and (VII.29) from

equation (VII.26). As a result, the following final form can be obtained, with which

one can calculate the velocity Vnew13 of the thirteenth new interfacial SH-wave:   
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where the coefficient ( )2I
αK is defined by expression (IV.15).  

The right-hand side of equation (VII.31) can be denoted by Y. The complicated

parameter Y plays an important role in equalities (VII.14) which represent the

existence conditions. It is blatant that eI = 0 certainly results in Y = 0 and therefore, 

such interfacial SH-wave cannot propagate because Y > 0 must occur due to a

definitely positive sign of the left-hand side of equation (VII.31). Besides, the value

of the parameter Y in the case of both the material parameters I = 0 and II = 0 is

defined by equation (VII.16) from the first subsection of this chapter.  
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CHAPTER VIII  

The Case of I = II, D3
I = D3

II, and I = II = 0 at x3 = 0  

Consider the mechanical boundary conditions such as UI = UII and ( 32)
I = ( 32)

II, 

the electrical ones such as I = II and D3
I = D3

II, and the magnetic ones such as I = 0

and II = 0 representing the magnetically open interface at x3 = 0. The corresponding

equations are those from (VI.1) to (VI.4) written in Chapter VI and equations (II.5)

and (II.6) written in Chapter II. For this case, these six homogeneous equations can

be formed as follows:   
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[ ] [ ] 0)6(II0II)6(II0II)6(II0IIII2II)4(II0II)4(II0IIII

)5(I0I)5(I0I)5(I0II2I)3(I0I)3(I0II

=+++++

++++

ψϕψϕ
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0)6(II02II)4(II0II =+ ψψ FF    (VIII.6)

It is overt that these equations can reveal the suitable phase velocity of the

interfacial SH-wave. However, the problem of the existence of the interfacial SH-

wave guided by the common interface between two dissimilar piezoelectromagnetics

actually splits into three possibilities which must be recorded. Indeed, the problem is

significantly complicated because of the existence of two different eigenvectors for

either of the piezoelectromagnetics. Therefore, the following three subsections have

the purpose to provide the appropriate theory for each case.  
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VIII.1.  The first sets of the eigenvector components  

It is natural to choose the corresponding first eigenvectors for the first and

second PEM half-spaces to commence the analysis. For this purpose, it is convenient

to use already transformed equations from (VI.7) to (VI.10) which describe the

mechanical and electrical boundary conditions. Also, the suitable magnetic boundary

conditions for this case are described by expressions (II.11) and (II.12) in Chapter II. 

For this case, the corresponding six homogeneous equations can e composed in the

following forms:   
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It is blatant that equations (VIII.9) and (VIII.11) can be subtracted from equation

(VIII.8) and the last equation can be further modified by using relationships (VIII.7)

and (VIII.12). Consequently, the modified equation can be further simplified. The

final form which can reveal the velocity Vnew14 of the fourteenth new interfacial SH-

wave can be written as follows:  
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where the coefficient ( )2II
αK is defined by expression (IV.16).  

It is obvious that equation (VIII.13) must also have the existence conditions. 

These conditions can be written as the following inequalities:   

0>Y and ( ) 22III 1 YVV temtem −>     (VIII.14)

where the parameter Y is defined by the following equality:  
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The the parameter Y represents the right-hand side of equation (VIII.13). 

Therefore, it is normal to require Y > 0 because it is clearly seen that the left-hand

side of equation (VIII.13) cannot have a negative sign. This can be true because it is

possible to assume that ( ) 0
2I >emK and ( ) 0

2II >emK usually occur. It is also possible to

discuss the case of I = 0 and II = 0. This can significantly simplify the form of the

parameter Y. Therefore, the simplified parameter Y reads:  
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One can check that the piezoelectric constants such as eI = 0 and eII = 0 can

definitely lead to the fact that equation (VIII.13) can reduce to equation (II.38) from
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Chapter II. It is necessary to mention that equation (II.38) determines the speed of the

corresponding interfacial MT-wave [98] guided by the common interface of two

dissimilar piezomagnetics. However, hI = 0 and hII = 0 in expression (VIII.16) cannot

lead to the corresponding interfacial MT-wave solution.   

VIII.2.  The second sets of the eigenvector components  

Utilizing the corresponding second eigenvectors, the mechanical and electrical

boundary conditions can be written following equations (VI.15), (VI.16), (VI.17), 

and (VI.18) from Chapter VI. Besides, the magnetic boundary conditions for this case

such as I = 0 and II = 0 can be also borrowed from the second chapter. The suitable

equations are equations (II.47) and (II.48). So, the following forms of the six

homogeneous equations can be used for the further transformations:  
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Equations (VIII.19), (VIII.20), (VIII.21), and (VIII.22) must be subtracted from

equation (VIII.18) to get a modified equation. Also, it is necessary to use relationship

(VIII.17) to get a complicate form of the modified equation. However, it is possible

to obtain the following two equations instead of the four ones:  
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These two new equations can be properly transformed before a subtraction from

equation (VIII.18). As a result, they read:  
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(VIII.26)

Finally, they can be subtracted from equation (VIII.18) and several further

transformations can lead to the following simplified form for determination of the

velocity Vnew15 of the fifteenth new interfacial SH-wave:  
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   (VIII.27)

where the coefficient ( )2II
αK is defined by expression (IV.16).  

For this case, the parameter Y representing the right-hand side of equation

(VIII.27) is quite complicated. It is mentioned that the parameter Y is used in the

existence conditions defined by inequalities (VIII.14) from the previous subsection. 

Also, I = 0 and II = 0 can be realized and one can readily perform this simplification

to get a simple form of the parameter Y. For comparison, the following subsection

studies the third case which mixes the eigenvectors.  

VIII.3.  The combination of the first and second sets

It is also vital to investigate the third possibility when the first eigenvectors are

exploited for the first PEM half-space and the second ones are employed for the

second PEM half-space. The corresponding six homogeneous equations for the case

can be also borrowed from the previous studied carried out in this work. For instance, 

equations (VI.22), (VI.23), (VI.24), and (VI.25) from Chapter VI describe the

mechanical and electrical boundary conditions. In addition, equations (VIII.11) and

(VIII.22) from the first and second subsections of this chapter, respectively, can be

responsible for the magnetic boundary conditions. Thus, the corresponding six

homogeneous equations read:   

( ) ( ) 0
2IIII

IIIIIIII
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[ ] ( )
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It is usual procedure to successively subtract the last four equations from the

second expression. Using relationship (VIII.28), the final form of the equation for the

determination of the velocity Vnew16 of the sixteenth new interfacial SH-wave can be

inscribed as follows:  
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where the coefficient ( )2II
αK is defined by expression (IV.16).  

The existence conditions are defined by inequalities (VIII.14) given in the first

subsection. The existence conditions contain the parameter Y which is defined by the

right-hand side in equation (VIII.34). For the case of I = 0 and II = 0, the parameter

Y can be significantly simplified as follows:  
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In equation (VIII.35), one can also apply eI = 0 and eII = 0 or hI = 0 and hII = 0.  
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CHAPTER IX  

The Case of D3
I = D3

II = 0, I = II, and B3
I = B3

II at x3 = 0  

These mechanical, electrical, and magnetic boundary conditions can be also

treated in this theoretical work. The mechanical boundary conditions at the common

interface x3 = 0 shown in figure I.1 from the first chapter are UI = UII and ( 32)
I =

( 32)
II, see equations (VI.1) and (VI.2) from Chapter VI. The electrical boundary

conditions represent the electrically open interface, namely D3
I = 0 and D3

II = 0

respectively defined by equations (III.3) and (III.4) from Chapter III. Besides, the

magnetic boundary conditions are I = II and B3
I = B3

II, see equations (VI.5) and

(VI.6). Therefore, one can write the following six homogenous equations:   

0)6(II02II)5(I02I =− UFUF     (IX.1)

[ ] [ ]
[ ] [ ] 0)6(II0II)6(II0II)6(II0IIII2II)4(II0II)4(II0IIII

)5(I0I)5(I0I)5(I0II2I)3(I0I)3(I0II

=+++++

++++

ψϕψϕ

ψϕψϕ

heUCbFheF

heUCbFheF
(IX.2)

[ ] [ ] 0)5(I0I)5(I0I)5(I0III2)3(I0I)3(I0II =−−−+ ψαϕεψαϕε UebFF   (IX.3)

[ ] [ ] 0)6(II0II)6(II0II)6(II0IIIIII2)4(II0II)4(II0IIII =−−++− ψαϕεψαϕε UebFF (IX.4)

0)6(II02II)4(II0II)5(I02I)3(I0I =−−+ ψψψψ FFFF    (IX.5)

[ ] [ ]
[ ] [ ] 0)6(II0II)6(II0II)6(II0IIIIII2)4(II0II)4(II0IIII

)5(I0I)5(I0I)5(I0III2)3(I0I)3(I0II

=−−−++

−−−+

ψμϕαψμϕα

ψμϕαψμϕα

UhbFF

UhbFF
(IX.6)

The equations written above are valid for each of three cases which will be

studied in this chapter. These three cases represent three possibilities which can be

realized because the first and second PEM half-spaces can possess their own two

different eigenvectors. Therefore, three different combinations of the eigenvectors

can exist. It is possible to consider the first combination.   



106

IX.1.  The first sets of the eigenvector components  

Consider the corresponding first eigenvectors used for the first and second PEM

half-spaces. For this case, the corresponding six transformed homogeneous equations

can be written following equations (VI.7), (VI.8), (III.9), (III.10), (VI.11), and

(VI.12). For this case, they can be rewritten as follows:   

( ) ( ) 0
2IIII

IIIIIIII
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he
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( )
( ) 000 IIII2II2

2IIIIII
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III =×+×+

−
−+ bFbFFF

αμε
αμε    (IX.12)

Employing relationships (IX.7) and (IX.12) for equations (IX.8) and (IX.11), the

last two equation can be properly transformed and then subtracted from each other to

exclude the weight factor FI. The resulting equation can demonstrate the dependence

of the velocity Vnew17 of the seventeenth new interfacial SH-wave on the material

parameters. This equation reads:  
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(IX.13)

This equation must satisfy the following existence conditions used in the

previous chapters:  

0>Y and ( ) 22III 1 YVV temtem −>     (IX.14)

The reader can check that I = 0 and II = 0 significantly simplifies the form of the

parameter Y which represents the right-hand side of equation (IX.13).  

IX.2.  The second sets of the eigenvector components  

The theoretical consideration of the corresponding second eigenvectors for the

first and second PEM half-spaces can be also realized. It is certain that equations

(VI.15) and (VI.16), (III.16) and (III.17), (VI.19) and (VI.20) can correspond to the

mechanical, electrical, and magnetic boundary conditions used in this case. So, the

corresponding six homogeneous equations can be composed as follows:   

( ) ( ) 0
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emem KC
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00II2III =×− bFeF μ    (IX.17)

( ) 00IIII2IIIIIIIIII =×−− bFheF αμ    (IX.18)
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It is apparent that the last equation cannot take part in the further theoretical

analysis. It is natural that equations (IX.17), (IX.18), and (IX.19) must be subtracted

from expression (IX.16). Utilizing relationship (IX.15) and equation (IX.18), the

latter equation can be further transformed to get the following explicit form for the

determination of the velocity Vnew18 of the eighteenth new interfacial SH-wave:   
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where the coefficients ( )2I
αK and ( )2II

αK are defined by expressions (IV.15) and (IV.16), 

respectively.  

The right-hand side of expression (IX.21) represents the parameter Y which must

satisfy existence conditions (IX.14) given in the previous subsection. It is clearly seen

in expression (IX.21) that I = 0 and II = 0 can simplify the form of the parameter Y. 

Thus, this parameter reads:  
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IX.3.  The combination of the first and second sets

It is also possible to utilize the first eigenvectors for the first PEM half-space and

the second ones for the second PEM half-space. The equations describing the

mechanical boundary conditions can be also borrowed from Chapter VI. They are
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equations (VI.22) and (VI.23). For this mixed case, the electrical boundary conditions

can be represented by expressions (III.9) and (III.17) from Chapter III. The magnetic

boundary conditions can be also borrowed from Chapter VI, see equations (VI.26)

and (VI.27). Consequently, the six homogeneous equations are as follows.   
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( ) 0000 IIII2IIII2IIIII =×+×−×+− bFFbFheF εα    (IX.28)

Equation (IX.25) can be neglected and equation (IX.28) demonstrates that the

new weight factor such as ( )IIIII εα heF − can be equal to zero due to FI = 0. It is

needed to subtract equations (IX.26), (IX.27), and (IX.28) from equation (IX.24). 

Therefore, the velocity Vnew19 of the nineteenth new interfacial SH-wave can be

obtained from the following final form:   
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where the coefficient ( )2II
αK is defined by expression (IV.16).  
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Like the investigations performed in the previous subsections, the existence

conditions are defined by inequalities (IX.14) and the parameter Y represents the

right-hand side of equation (IX.29). Exploiting I = 0 and II = 0, equation (IX.29)

can be simplified and written in the following form:  
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CHAPTER X  

The Case of I = II = 0, I = II, and B3
I = B3

II at x3 = 0  

Finally, it is reasonable to theoretically investigate the case of UI = UII, ( 32)
I =

( 32)
II, I = 0, II = 0, I = II, and B3

I = B3
II at x3 = 0. Therefore, equations (VI.1) and

(VI.2), equations (II.3) and (II.4), and equations (VI.5) and (VI.6) can be used for the

mechanical, electrical, and magnetic boundary conditions, respectively. In this case, 
I = 0 and II = 0 determine the electrically closed interface. Thus, the six

homogeneous equations can be composed as follows:  

0)6(II02II)5(I02I =− UFUF     (X.1)

[ ] [ ]
[ ] [ ] 0)6(II0II)6(II0II)6(II0IIII2II)4(II0II)4(II0IIII
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=+++++
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ψϕψϕ

heUCbFheF
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0)6(II02II)4(II0II)5(I02I)3(I0I =−−+ ψψψψ FFFF    (X.5)

[ ] [ ]
[ ] [ ] 0)6(II0II)6(II0II)6(II0IIIIII2)4(II0II)4(II0IIII
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UhbFF
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(X.6)

It is vital to demonstrate that the system of these homogeneous equations can

have some solutions. This is the main purpose of this study. Like the theoretical

treatments of the previous chapters, it is possible to start the analysis using the first

eigenvectors for the first and second PEM half-spaces.    
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X.1.  The first sets of the eigenvector components  

Exploiting the first eigenvectors for the first and second PEM half-spaces, the

six homogenous equations written above can be further transformed. It is also natural

to borrow them from the previous studies. For example, equations (VI.7) and (VI.8)

describing the mechanical boundary conditions can be borrowed from Chapter VI. 

Equations (II.9) and (II.10) from the second chapter can describe the electrical

boundary conditions. The magnetic boundary conditions can be defined by equations

(VI.11) and (VI.12). As a result, the six modified homogeneous equations can be

written in the following forms:   
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It is obvious that it is probably convenient to work with the new weight factors

such as FI(eI I – hI I) and FII(eII II – hII II) instead of the weight factors FI and FII

because equation (X.8) contains them. For this purpose, equation (X.9) must be

added to equation (X.11) and equation (X.10) must be added to equation (X.12). As a
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result, the following two equations together with equation (X.8) can form a new

system of three homogeneous equations instead of the six ones:    
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Equations (X.13) and (X.14) contain only the new weight factors FI(eI I – hI I)

and FII(eII II – hII II). Using these equations, it is possible to properly transform them

in order to have FI(eI I – hI I) in one equation and FII(eII II – hII II) in the other. As a

result, the weight factors FI(eI I – hI I) and FII(eII II – hII II) can be defined as follows:   
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Subsequently, equations (X.15) and (X.15) are ready to use in equation (X.8) in

order to exclude the weight factors FI(eI I – hI I) and FII(eII II – hII II). Employing the
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relationship between the weight factors FI2 and FII2, the final form of the equation for

the determination of the velocity Vnew20 of the twentieth new interfacial SH-wave can

be introduced as follows:   
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where the coefficient ( )2II
αK is defined by expression (IV.16).  

The existence conditions can be written as follows:  

0>Y and ( ) 22III 1 YVV temtem −>     (X.18)

where the parameter Y is equal to the right-hand side of equation (X.17). It can be

also written in the following simplified form as soon as I = 0 and II = 0:  
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It is flagrant that hI = 0 and hII = 0 cannot be realized because Y ∞. However, 

eI = 0 and eII = 0 can further simplify the form of the parameter Y. This can mean that

the piezomagnetic phases of the first and second PEM half-spaces are responsible for

the existence of such new interfacial SH-wave.   
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X.2.  The second sets of the eigenvector components  

It is essential to investigate the case when the corresponding second sets can be

used for the first and second PEM half-spaces. Using equations (VI.15), (VI.16), 

(II.45), (II.46), (VI.19), and (VI.20), the six modified homogeneous equations can be

written down as follows:  
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It is blatant that equation (X.25) can be neglected and three equations (X.22), 

(X.23) and (X.24) must be subtracted from equation (X.21). As a result, the following

equation can determine the velocity Vnew21 of the twenty-first new interfacial SH-

wave:  
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where the coefficient ( )2II
αK is defined by expression (IV.16).  

For equation (X.26), the existence conditions can be also defined by inequalities

(X.18) which use the parameter Y. For this case, this parameter represents the right-

hand side of equation (X.26). The reader can use I = 0 and II = 0 to get a simplified

form of Y.   

X.3.  The combination of the first and second sets

It is also possible to use the first eigenvectors for the first PEM half-space and

the second eigenvectors for the second PEM half-space. Utilizing equations (VI.22), 

(VI.23), (II.9), (II.46), (VI.26), and (VI.27) for this case, the six homogeneous

equations can be composed as follows:  
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It is convenient to use the following two equations instead of equations (X.29), 

(X.30), (X.31), and (X.32):  
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Equations (X.33) and (X.34) must be subtracted from equation (X.28). The last

equation can be further transformed to get a simplified form. For this purpose, 

relationship (X.27) must be also used. As a result, the final form of the equation for

the determination of the velocity Vnew22 of the twenty-second new interfacial SH-wave

can be obtained as follows:   
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where the coefficient ( )2I
αK is defined by expression (IV.15).  

It is obvious that some existence conditions must exist for the complicated case

described by equation (X.35). They are given by inequalities (X.18) where the

parameter Y is equal to the right-hand side of expression (X.35). Also, it is necessary

to account that the following equality eI I = hI I definitely gives an infinite value of

the parameter Y. This equality must be also accounted because the left-hand side of

equation (X.35) cannot be equal to a very large number. When I = 0 and II = 0

occur, one can find that the parameter Y has the following form:   
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It is also possible to estimate the possibility of propagation of this new

interfacial SH-wave in the configuration consisting of PZT–Terfenol-D and BaTiO3–

CoFe2O4. For this two-layer system, the following parameters were calculated: III CC

~ 0.33, III
temtem VV ~ 0.59, ( )2I

emK ~ 0.82, ( )2II
emK ~ 0.16, III 01.0 μεα = , and

IIIIII 01.0 μεα = . Using them, it was found the parameter Y has a negative sign. This

illuminates that such new interfacial SH-wave cannot propagate.   
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CHAPTER XI  

Discussion  

It this theoretical work, each chapter from the fourth to the tenth provides the

corresponding solutions for three new interfacial SH-waves. Also, Chapter II has

demonstrated that only single new interfacial SH-wave can propagate guided by the

eclectically closed and magnetically open interface because each of the three

possibilities gives the same result. Besides, Chapter III has studied the case of the

eclectically open and magnetically closed interface which cannot support any

interfacial wave propagation. So, the expressions for the calculations of the speeds of

all the new interfacial SH-waves and the corresponding existence conditions were

obtained in the previous chapters of this work. However, the explicit forms of the

complete mechanical displacement and the complete electrical and magnetic

potentials were not demonstrated. This is so because the expressions can be very

complicated and the size of the work can be significantly expanded. However, it is

possible to discuss that and schematically demonstrate the common procedure for the

determination of the parameters.   

Based on the theories developed in the previous chapters, the reader can now

state that one has to deal with the corresponding six homogeneous equations in each

chapter beginning with Chapter II. However, it is thought that it is more convenient

to deal with the corresponding three equations instead of the six ones. Indeed, the

first equation of six provides the relationship between the weight factors FI2 and FII2. 

Besides, it is obvious that the second equation is the main equation because it

includes the phase velocity which must be determined. This second equation also

depends on both ( )IIIII ψϕ heF − and ( )IIIIIIIIII ψϕ heF − where ( )IIIII ψϕ heF − can be

equal to ( )IIIII εα heF − or ( )IIIII αμ heF − , see equations (I.73) and (I.76), and

( )IIIIIIIIII ψϕ heF − can be equal to ( )IIIIIIIIII εα heF − or ( )IIIIIIIIII αμ heF − , see equations
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(I.81) and (I.84). Therefore, the last four equations of the six ones must be properly

transformed into suitable two equations in order to cope with the new weight factors

such as ( )IIIII ψϕ heF − and ( )IIIIIIIIII ψϕ heF − instead of FI and FII. It is apparent that a

subtraction of these four equation from the second one must lead to the new equation

containing neither ( )IIIII ψϕ heF − nor ( )IIIIIIIIII ψϕ heF − . Therefore, the new two

equations obtained from the four ones must lead to the same result after subtraction

of them from the second equation. For some cases, both new equations can contain

both ( )IIIII ψϕ heF − and ( )IIIIIIIIII ψϕ heF − . In spite of this situation, these two equations

can be further transformed in order to obtain new equations, of which one will

contain only ( )IIIII ψϕ heF − and the second will contain only ( )IIIIIIIIII ψϕ heF − . This

procedure can significantly complicate the final result.  

So, it is possible to schematically write these three homogeneous equations

obtained from the six ones in the following matrix form:  
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where the parameters such as d1, d2, and d3 are only those terms which contain the

weight factor FII2. For simplicity, it is possible to use FII2 instead of ( )IIIIIIIIII2 ψϕ heF − .   

Consequently, the determinant of the coefficient matrix in equation (XI.1) can be

readily transformed by the following way:  
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It is clearly seen in expression (XI.2) that d1 – d2 – d3 = 0 can definitely equal to

zero this determinant. This equation determines the speed of the corresponding new

interfacial SH-wave. Also, the parameter Y in the existence conditions is equal to Y =
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d2 + d3. It is also flagrant that the new weight factors ( )IIIII ψϕ heF − and

( )IIIIIIIIII ψϕ heF − can be defined by   

( ) 2
IIIII dheF −=− ψϕ     (XI.3)

( ) 3
IIIIIIIIII dheF −=− ψϕ    (XI.4)

As a result, the weight factors FI and FII are defined by  

( )IIII
2

I ψϕ hedF −−=    (XI.5)

( )IIIIIIII
3

II ψϕ hedF −−=    (XI.6)

In addition, the weight factor FII2 can be naturally chosen to be equal to unity, 12II =F .    

For the case of Chapter III, d2 = d3 = 0 occurs and therefore there is no any

suitable solution. Also, d2 = d3 = 0 results in ( )IIIII ψϕ heF − = ( )IIIIIIIIII ψϕ heF − = 0 due

to FI = FII = 0. In this case, FI2 0 and FII2 0 occur because FI and FII are uncoupled

with FI2 and FII2. For the other cases, it is possible that one of the weight factors FI

and FII can be equal to zero. For instance, this occurs in the second and third

subsections of Chapter IX and in the first and third subsections of Chapter VII. It is

necessary to state that the existence conditions for all the cases represent the

requirements for the corresponding parameter Y which is equal to the right-hand sides

of the corresponding expressions. For many cases, this parameter can approach an

infinity, Y ∞ due to IIII ψϕ he = and or IIIIIIII ψϕ he = . It is blatant that Y ∞ cannot

support the wave propagation because the left-hand sides of the corresponding

expressions are finite.  

There are currently a few hexagonal (6 mm) piezoelectromagnetics to constitute

suitable two-layer structures. However, it is possible to find two composites to

evaluate some possibilities of the propagation of the new interfacial SH-waves. The

hexagonal composites such as PZT–Terfenol-D and BaTiO3–CoFe2O4 are well-

known. It is possible to use them in the calculations. PZT–Terfenol-D and BaTiO3–
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CoFe2O4 were chosen as the first and second PEM half-spaces in the calculations, 

respectively, because the SH-BAW speed for PEM1 is slower than that for PEM2. 

This configuration has the following calculated parameters: III CC ~ 0.33, III
temtem VV ~

0.59, ( )2I
emK ~ 0.82, ( )2II

emK ~ 0.16, III 01.0 μεα = , and IIIIII 01.0 μεα = . It was found

that this configuration cannot support the propagation of the new interfacial SH-

waves studied in Chapters II and X. This is obvious because it is preferable to

constitute a configuration which will possess III CC > 1.  

An additional problem is that a large number of suitable piezoelectromagnetics

cannot be found in the literature to constitute various two-layer structures. It was

stated in the introduction that to evaluate the propagation possibility for various

structures is not the main purpose of this work. Also, the reader can perform such

evaluations for the results obtained in Chapters from IV to IX. Indeed, it is also

possible to vary the values of the electromagnetic constants I and II. Besides, this

theoretical work relates to the propagation problems of the new interfacial SH-waves

when two dissimilar piezoelectromagnetic half-spaces are perfectly bonded at the

common interface. To treat some interfacial imperfections does not represent the

main purpose of this work and these problems can be investigated in the future. 

However, it is possible to assume that the interfacial imperfection can support

propagation of some interfacial SH-waves which cannot propagate along the

perfectly bonded interface. Huang, Li, and Lee [100] have solidly demonstrated this

fact for the problem of propagation of interfacial SH-waves along the common

interface between single-phase materials such as pure piezoelectrics and pure

piezomagnetics.  
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CONCLUSION

These theoretical investigations are concerned with the propagation problems of

interfacial SH-waves. These SH-waves can be guided by the common interface

between dissimilar hexagonal (6 mm) piezoelectromagnetic half-spaces. 

Piezoelectromagnetics are known as two-phase materials possessing the piezoelectric, 

piezomagnetic, and magnetoelectric effects. This simultaneous possession of the

effects certainly complicates the theoretical treatments of the problems. It was found

that as many as twenty two new interfacial SH-waves can propagate in such two-

layer structures. The propagation of each of the found SH-waves must satisfy the

corresponding mechanical, electrical, and magnetic boundary conditions. It is

apparent that different sets of the boundary conditions at the interface x3 = 0 (see

figure I.1) result in the fact that so many interfacial SH-wave can be guided by the

common interface. For the mechanically free interface, it is also necessary to require

the equality of the mechanical displacements. These two mechanical boundary

conditions were remained the same and the electrical and magnetic ones vary. The

possible electrical ones are as follows: the electrically open (D3
I = 0 and D3

II = 0) or

electrically closed ( I = 0 and II = 0) interface, as well as the case of I = II and D3
I

= D3
II where and D3 are the electrical potential and electrical displacement

component, respectively. Besides, the possible magnetic ones are as follows: the

magnetically open ( I = 0 and II = 0) or magnetically closed (B3
I = 0 and B3

II = 0)

interface, as well as the case of I = II and B3
I = B3

II where and B3 are the magnetic

potential and magnetic flux component. It is convenient to utilize the superscripts “I”

and “II” to distinguish the first and second half-spaces from each other.    

The speed of each of the twenty two new interfacial SH-waves can be calculated

using the corresponding expression obtained in an explicit form and some obtained

forms can be quite complicated. Also, the corresponding existence conditions must be

accounted for each case in order to be sure that such new interfacial SH-waves can
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propagate in a certain configuration consisting of chosen dissimilar

piezoelectromagnetics. All the formulae for the calculation of the wave speed are

valid when the SH-BAW speed for the first PEM half-space is smaller than that for

the second PEM half-space, see figure I.1. However, all the obtained formulae are

also valid for the reverse case because one can always rearrange the configuration, 

namely PEM1 PEM2 and PEM2 PEM1.   

The obtained results can be also useful for the case when the single-phase

material such as the pure piezoelectrics or pure piezomagnetics is used instead of one

of the piezoelectromagnetics. It was found that for certain cases only suitable

piezoelectrics can contact with the piezoelectromagnetics to satisfy the existence

conditions. For the other certain cases, only suitable piezomagnetics can contact with

the piezoelectromagnetics to allow the wave propagation satisfying the existence

conditions. For the configuration of two dissimilar piezoelectromagnetics, all the

formulae for the determination of the wave speed and the existence conditions can be

significantly simplified when I = 0 and II = 0 are exploited. It is well-known that in

general, the values of the electromagnetic constant can be very small. However, it

couples the other material constants that can significantly complicate the results.     

The sample calculations were performed for some cases when PZT–Terfenol-D

and BaTiO3–CoFe2O4 composites are used as the first and second PEM half-spaces, 

respectively. These two piezoelectromagnetic composite materials are well-known. 

They relate to the hexagonal materials of class 6 mm. This work has used only these

two composites because there are no investigations of the other possible hexagonal (6

mm) composites. Using these two composites, it was found that they are not the best

solution to utilize them together because the SH-BAW speed for the BaTiO3–

CoFe2O4 composite is approximately two times larger than that for the PZT–

Terfenol-D composite, see table I.1. In the calculations, PZT–Terfenol-D must be

therefore used as the first PEM half-space because III
temtem VV ~ 0.59. Also, this

configuration of two composite has a very small value of III CC ~ 0.33. As a result, 

this configuration cannot support the interfacial SH-wave propagation. However, it

was also demonstrated that when the values of electromagnetic constants I and II
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are properly changed, some new interfacial SH-waves can exist even in such

configuration. This can mean that the magnetoelectric effect can significantly affect

on the existence of the interfacial SH-waves. It is well-known that the

electromagnetic constant can significantly depend on the applied magnetic field. 

Therefore, it is expected that these results can be useful for the creation of various

novel technical devices, for instance, sensors, switchers, etc.   
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