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PREFACE  

This theoretical work demonstrates that as many as thirty two new shear-horizontal

(SH) acoustic waves can propagate in the piezoelectromagnetic transversely isotropic

(class 6 mm) plates. These theoretical investigations relate to the homogeneous

boundary conditions when the same set of the mechanical, electrical, and magnetic

boundary conditions are applied to the upper and lower free surfaces of the

piezoelectromagnetic plate. These new dispersive SH-waves propagating in the

piezoelectromagnetic plate can have an infinite number of modes when the phase

velocity Vph is larger than the speed Vtem of the bulk acoustic SH-wave in the plate. 

For Vph < Vtem, the new dispersive SH-waves can have the corresponding fundamental

(zero-order) modes. It is apparent that knowledge of plate wave properties can be also

beneficial to design of smart devices, biological and chemical sensors, filters, 

resonators, actuators, etc., and useful for the aerospace industry which calls for

innovative smart (composite) materials. Also, it can represent an interest in

constitution of piezoelectromagnetic laminate (composite) plates in the microwave

technology and nondestructive testing and evaluation.  

PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 

75.20.En, 75.80.+q, 81.70.Cv  
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COMMENTS BY THE AUTHOR  

This activity in the research arena of theoretical physical acoustics was

performed for the International Institute of Zakharenko Waves (IIZWs). It is obvious

that this work can represent a great interest for researchers and students dealing with

the theoretical and experimental researches concerning the acoustic wave propagation

in the piezoelectromagnetic plates and various applications in the biological and

chemical sensors, filters, actuators, resonators, smart materials and technical devices, 

labs-on-a-chips, etc. This research field is based on more than 40 years of

technological and scientific developments. In the last two decades, the surface

generated acoustic wave (SGAW) technology for sensing applications has been

attracting the attention of the biochemical scientific community. In fact, some of the

SGAW technical devices have demonstrated a high sensitivity in the detection of

biorelevant molecules in liquid media. These devices can be based on the following

wave phenomena: shear-horizontal surface acoustic wave (SH-SAW), surface

transverse wave (STW), Love wave (LW), flexural plate wave (FPW), shear-

horizontal acoustic plate mode (SH-APM) and layered guided acoustic plate mode

(LG-APM). All these developments have been made with the purpose of reaching a

highly sensitive, low cost, small size, multi-channel, portable, reliable, and

commercially established SGAW biosensor. A setup with these features can

significantly contribute to future developments in the food, health, and environmental

industries. It is thought that new two-phase (composite) materials such as

piezoelectromagnetics, also called magneto-electro-elastic materials, can significantly

contribute because they can be suitable for utilization in smart technical devices.    

This theoretical work relates to the shear-horizontal acoustic plate mode (SH-

APM) technologies, namely the propagation problems of the new SH-waves in

transversely isotropic (class 6 mm) piezoelectromagnetic plates. It is well-known that

these waves are dispersive and an infinite number of dispersive wave modes can

exist. It is apparent that knowledge of plate wave properties can be also beneficial to

design of smart devices, biochemisensors, filters, resonators, actuators, etc. Also, it
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can represent an interest in constitution of piezoelectromagnetic laminate composite

plates in the microwave technology and nondestructive testing of the composites. 

This theoretical research can be also useful for the aerospace industry which calls for

innovative smart composite materials. Therefore, it is very important to completely

understand wave properties of piezoelectromagnetic plates. This studying subject

relates to the disciplines of applied physics and electromagnetic engineering. In

physics, ordinary elastic motions in crystals are called acoustic modes. The

descriptive term ”acoustic” is used rather than ”elastic”. This is useful because it

allows one to distinguish acoustic and optical modes from each other. The optical

modes involve internal degrees of freedom within a crystal unit cell. The term

”acoustic” also reflects common terminology among researchers and engineers

engaged in developing elastic wave devices for radar and communication systems. 

This arena of technological development has been strongly influenced by the

philosophy, concepts, and techniques of microwave electromagnetics. This is also

known as microwave acoustics. Consequently, employment of the term "acoustic"

accurately describes the aim and scope of the book.  

The International Institute of Zakharenko Waves (IIZWs) was recently created to

support researches on different Zakharenko waves, as well as for monitoring the

nondispersive Zakharenko type waves in complex systems such as layered and

quantum systems. Also, the IIZWs research is focused on treatments of many

complex systems in which dispersive waves can propagate. The well-known

examples of dispersive waves are Love and Lamb type waves. The Rayleigh and

Bleustein-Gulyaev type waves propagating in layered systems can be also dispersive. 

The International Institute of Zakharenko Waves also has an interest in different

applications of the acoustic waves for signal processing (filters, sensors, etc.) and the

structural health monitoring. There are currently by about thirty research papers and

five books relevant to the IIZWs. These research works also cover some problems of

the propagation of the well-known Love, Lamb, Rayleigh, and Bleustein-Gulyaev

type waves and discovered new wave phenomena.  
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It is worth noticing that the IIZWs possessively takes all the planets and smaller

natural space bodies in the space outside the Solar System to develop both the IIZWs

and the planets concerning economics, ecology, and population. Also, it is thought

that this is necessary in order to exclude any sale of the planets and their surfaces by

any human or other. This activity of the IIZWs was also created because of some

problems to find a spot for the IIZWs on Earth. Note that the single person, namely

Mr. Dennis Hope from the United States possesses the planets in the Solar System

(but Earth) who sells surfaces of the planets to individuals. It is obvious that the

monetary experiment on Earth during thousand years demonstrated a weak power of

the financial system to avoid financial problems which cyclically happen. As a result, 

the following question presents in the air: what is the modern money? It is obvious

that monetary systems are coupled only with humans who have given power to each

other, but not with any space body such as a planet or star. It is apparent that humans

depend on money, but not planets and stars. Indeed, planets and stars are leaving their

own lifetimes and their ways of life do not depend on human activities measured in

money. Therefore, money can exist only together with the human civilizations. It is

not clear that the other civilizations can evaluate their activities in the same way

similar to the human civilization does on Earth. Nothing is soundly known about that. 

It is also noted that only several thousand planets orbiting their own stars can be

currently observed in the Star Systems which are situated relatively near the Solar

System. This does not mean that only several thousand planets can exist outside the

Solar System we can observe. It is expected that in average by about ten planets can

orbit each star of enormous number of Star Systems in our Universe. It is thought that

our Universe can accumulate more than 10999 stars.  

Aleksey Anatolievich Zakharenko  

Krasnoyarsk, Russia, 2012  

(E-mail: aazaaz@inbox.ru)  
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INTRODUCTION  

Elastic wave propagation in isotropic plates (thin elastic films) was first studied

as early as in 1917 by H. Lamb [1]. The revealed features of the plate acoustic waves, 

also known as the Lamb waves, are as follows: (i) the Lamb waves possess an infinite

number of both the symmetric and asymmetric dispersive modes, (ii) the Lamb waves

have one symmetric fundamental mode and one asymmetric fundamental mode and

the fundamental modes are also called the zero-order modes, (iii) the Lamb waves

similar to the surface Rayleigh wave [2] have the polarization in the sagittal plane, 

namely the in-plane polarization. The nondispersive Rayleigh wave discovered in

1885 by Lord Rayleigh (J.W. Strutt [2]) represents the first type of known surface

waves guided by the free surface of isotropic materials. However, the surface

Rayleigh type waves like the Lamb waves can be dispersive and possess an enormous

number of modes, of which the first is also called the fundamental mode. This occurs

in layered systems consisting of a layer on a substrate. It is interesting that the

fundamental dispersive mode of the surface Rayleigh type waves and the ones of the

Lamb type waves can possess the nondispersive Zakharenko waves [3, 4, 5] which

divide the modes into dispersive submodes. Also, the reader can find some works

which demonstrate possible existence of the other surface-like waves with the in-

plane polarization, for instance, see the theoretical work cited in Ref. [6].  

The second type of the surface acoustic waves was discovered in 1911 by

A.E.H. Love [6] who has treated a two-layer structure consisting of an isotropic layer

on an isotropic substrate. The dispersive Love waves have the anti-plane polarization

(perpendicular to the sagittal plane) and can also possess an infinite number of

dispersive modes with no fundamental mode for the isotropic case. There is the

existence condition for the dispersive surface Love wave such that the speed of the

shear-horizontal bulk acoustic wave (SH-BAW) for the substrate must be higher than

that for the layer. It is worth noting that the phase velocity (Vph) of the Love wave is



12

confined between these two SH-BAWs for the layer and substrate. In addition to the

dispersive Love waves, the slow surface Zakharenko waves [8, 9] can propagate in

such layered systems. Two different types of the slow surface Zakharenko waves

(SSZWs) can exist and they possess only single dispersive mode with the anti-plane

polarization. The SSZW phase velocity cannot be larger than the slower SH-BAW

speed of two media and becomes equal to zero at nonzero value of kd, where k is the

wavenumber in the direction of wave propagation and d is the layer thickness. For

one type of the SSZW, the surface wave can exist even when SH-BAW speed for the

substrate is smaller than that for the layer and the single dispersive mode can

qualitatively look like the asymmetric (flexural) fundamental mode of the Lamb

waves [8].  

It is necessary to state that the anti-plane polarized surface acoustic waves can

be nondispersive. To the end of 1960s, two researchers, Bleustein [10] and Gulyaev

[11], have theoretically demonstrated independently from each other that a new type

of nondispersive surface acoustic waves can propagate in hexagonal (6 mm)

piezoelectrics, also known as electro-elastic materials. The nondispersive surface

Bleustein-Gulyaev (BG) wave can be guided by the free surface of the transversely

isotropic material of class 6 mm when the propagation direction is perpendicular to

both the sixfold symmetry axis and the surface normal. There exist two surface BG-

waves which satisfy different electrical boundary conditions: the slower BG-wave for

the electrically closed free surface when the electrical potential is vanishing ( = 0)

and the faster BG-wave for the electrically open surface when the normal component

of the electrical displacements is vanishing (D3 = 0). These two surface BG-waves

can also exist in the transversely isotropic piezomagnetics, also known as the

magneto-elastic materials: the slower BG-wave for the magnetically open surface

when the magnetic potential is vanishing ( = 0) and the faster BG-wave for the

magnetically closed surface when the normal component of the magnetic flux is

vanishing (B3 = 0).  

Also, Gulyaev and Hickernell [12] have stated that the surface BG-waves cannot

propagate in the cubic piezoelectrics. This means that they cannot also propagate in
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the cubic piezomagnetics. However, this is not true. The slower BG-wave can exist in

propagation direction <101> of the cubic piezoelectrics and cubic piezomagnetics, 

but the faster BG-wave cannot propagate, for example, see Refs. [13, 14, 15]. Also, 

the existence condition for the surface BG-waves such as the propagation direction

should be perpendicular to an evenfold symmetry axis (twofold, fourfold, or sixfold)

is not true for the cubic materials. For instance, for all the suitable cuts from direction

<100> (Z-cut) to direction <001> (X-cut) in which the acoustic wave can be coupled

with the electrical potential in the cubic piezoelectrics or with the magnetic potential

in the cubic piezomagnetics, only direction <101> (XZ-cut) can support the

propagation of the shear-horizontal surface acoustic waves (SH-SAWs). Indeed, 

direction <101> can brace the propagation of the slower BG-wave and the ultrasonic

surface Zakharenko wave (USZW) because the faster BG-wave cannot propagate in

the cubic media. Also, Refs. [13, 14, 15] have solidly demonstrated that the value of

the corresponding coupling coefficient (CEMC or CMMC) can influence on the

USZW speed in such way that the cubic crystals can be even divided into two groups. 

The first group is for the cubic crystals with the CEMC (CMMC) < 1/3 and the

second group is for the ones with the CEMC (CMMC) > 1/3, where CEMC is the

coefficient of the electromechanical coupling and the CMMC is the coefficient of the

magnetomechanical coupling. It is noticed that this gradation is absent for the

transversely isotropic materials.  

This work is concerned with the acoustic wave propagation with the anti-plane

polarization in the two-phase transversely isotropic plates which can simultaneously

possess the piezoelectric, piezomagnetic, and magnetoelectric effects. These two-

phase materials can be composite materials consisting of the piezoelectric phase and

the piezomagnetic phase, as well as native materials possessing these two phases. The

problems of acoustic wave propagation in the single-phase materials (crystals) such

as piezoelectrics and piezomagnetics are studied already for a long while. Indeed, it is

useful first of all to be familiar with the wave propagation in the single-phase

materials and the reader can find much work on the subject. For instance, some

famous books are cited in Refs. [16-43]. The physical properties of crystals, tensor
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representations, and elasticity theory can be also found in famous classical books

cited in Refs. [44-55]. It is natural to treat the suitable high symmetry propagation

directions [37, 56] which can be also found in the two-phase transversely isotropic

plates (piezoelectromagnetic plates). The suitable propagation direction in the

transversely isotropic piezoelectromagnetic (PEM) plate shown in figure 1 is

perpendicular to both the surface normal and the sixfold symmetry axis. This is

similar to the transversely isotropic piezoelectric plates and the transversely isotropic

piezomagnetic plates. In the configuration shown in figure 1, the in-plane polarized

plate waves represent purely mechanical Lamb type waves and propagation of the

anti-plane polarized shear-horizontal (SH) waves in such plates can be coupled with

both the electrical and magnetic potentials. Indeed, it is useful to investigate the wave

propagation in the high symmetry directions because in this case only elastic waves

with one type of the polarizations mentioned above can be coupled with the

electromagnetic waves. Figure 2 shows both the asymmetrical (flexural) and

symmetrical modes of the guided Lamb waves.  

Figure 1. The rectangular coordinate system for the transversely isotropic (6 mm)

plate of thickness D, where D = 2d and the wavevector K is directed along the x1-

axis. The sixfold symmetry axis and the wave polarization are directed along the x2-

axis.  

It is obvious that like the single-phase materials such as piezoelectrics and

piezomagnetics, the two-phase piezoelectromagnetic (composite) materials can be

utilized in various technical devices such as filters, sensors, etc. There is also modern

D d

0
K

x1

x2

x3
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tendency to use suitable two-phase materials to create smart materials and even a

laboratory on a single chip in the lab-on-a-chip technology. It is apparent that the

application of the piezoelectromagnetic (composite) materials in many technical

smart devices can be preferable due to the energy exchange between the electrical

and magnetic subsystems via the mechanical subsystem. As a result, a lot of review

works cited in Refs. [57-99] can be found in the scientific literature about the various

investigations and applications of the two-phase (composite) materials possessing the

magnetoelectric effect. Concerning the wave propagation in the

piezoelectromagnetics, it is recommended for the reader to read recent books [100, 

101, 102] on the subject. Books [100, 101] theoretically investigate the SH-SAW

propagation in the piezoelectromagnetics with the cubic symmetry and the hexagonal

(6 mm) symmetry, respectively. Book [102] published in 2012 has theoretically

discovered that twenty two different interfacial SH-waves can be guided by the

common interface between two dissimilar transversely isotropic (6 mm)

piezoelectromagnetics. Also, the reader can find the recent theoretical investigations

of the SH-SAWs and interfacial SH-wave propagation in the transversely isotropic

cases in Refs. [103-113] when the studied (composite) materials possess the

magnetoelectric effect. So, these investigations actually broaden the set of the

transversely isotropic materials which can be also used together with piezoelectrics

(piezomagnetics) or even instead of them. It is also necessary to mention the pioneer

works [114-137] on the foundation and investigations of the magnetoelectric

(composite) materials, of which Wood and Austin [136] have discussed the following

possible application of such materials, see also work [137]: magnetic-electric energy

converting components, solid state nonvolatile memory and solid state memories

based on spintronics, multi-state memory which can find application in quantum

computing area, electrical/optical polarization components which can find

applications in communication, light computing. It is also thought that one of the

multi-promising applications of the magnetoelectric materials can be their utilization

in biological and chemical sensing technologies. However, the most investigated

(therefore, most popular) materials for the sensing applications are piezoelectrics. 
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Therefore, it is possible to concisely review various acoustic waves’ technical devices

which can use piezoelectrics for biological and chemical sensing applications.  

Figure 2. The illustration of (a) the plate of thickness D at the rest; (b) asymmetrical

(flexural) and (c) symmetrical guided wave modes propagating through the entire

thickness of the plate.  

Recent reviews [138-142] deal with acoustic wave sensors. Review work [138]

is based on more than 40 years of technological and scientific developments of the

surface generated acoustic wave (SGAW) technology for biosensing applications. 

Various technical devices based on the shear-horizontal surface acoustic wave (SH-

SAW), surface transverse wave (STW), Love wave (LW), flexural plate wave (FPW), 

shear-horizontal acoustic plate mode (SH-APM) and layered guided acoustic plate

mode (LG-APM) can represent the SGAW devices well-known in the biochemical

scientific community. For the last two decades, some of these devices have

demonstrated a high sensitivity in the detection of irrelevant molecules in liquid

media. During these decades, complementary efforts to improve the sensing films

have been done. Future developments of sensor technologies can allow realization of

D (a)

D (c)

D (b)



17

highly sensitive, low cost, small size, multi-channel, portable, reliable and

commercially established SGAW biosensors. A created setup with these features can

make a significant contribution to future developments in the health, food, and

environmental industries. The SGAW biosensors are also likely for the detection of

pathogens and this topic is extremely important for the human health. Several

commercially available SAW sensors are tabulated in Refs. [141, 142]. Today, these

sensors move beyond military and security applications and SAW devices are also

moving into the lab-on-a-chip arena [141]. The SAW sensors are competitively

priced, and some of them can be passively and wirelessly interrogated.  

It is worth mentioning that depending on the method of signal transduction

[138], biosensors can be divided into four basic groups such as optical, mass, 

electrochemical, and thermal. Acoustic wave biosensors represent mass sensors and

they operate with mechanical acoustic waves as their transduction mechanism. 

Depending on the acoustic wave guiding process [143], acoustic wave devices can be

also classified into three following groups: BAW, SAW, and APM devices. In BAW

devices, the acoustic wave propagates unguided through the volume of the bulk

material (substrate). In SAW devices, the acoustic waves can be guided or unguided

and propagate along a single surface of the substrate. In APM devices, the acoustic

waves are guided by the reflection from multiple surfaces. Figure 3 shows the

configuration of the APM device that can be the SH-APM biosensor. The interdigital

transducers fabricated on the surface of the material generate the high-amplitude

acoustic wave that travels in the plate. Usually, the piezoelectric material is quartz, 

but GaAs and LiTaO3 substrates have also been used. The piezoelectric material

converts any possible changes into a measured frequency change, which can also be

described as the acoustic wave velocity. The APM device can be also based on the

Lamb waves known as the complex waves traveling through the entire plate. 

Different families of the Lamb wave modes can be distinguished including

symmetrical modes (in-phase displacements of opposite plate surfaces) and

asymmetrical or flexural modes (anti-phase displacements of opposite plate surfaces)

as shown in figure 2.  
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Figure 3. The configuration of the biosensor based on the shear-horizontal acoustic

plate mode (SH-APM). The plate SH-waves are generated by the input IDTs and

detected by the output IDTs.  

The piezoelectric devices actually represent a cost-effective alternative to the

other popular transducers for biosensors such as the advanced optical approaches

[144]. Among piezoelectric biosensors, QCM-based applications have

comprehensively been reviewed [140]. Some approaches to the SGAW biosensors

based on STW [145, 146, 147], SH-APM [148-152], and LG-APM [153] devices

have been also reported. However, none of these approaches address the detection of

pathogens. Ref. [138] also presents that piezoelectric SGAW-based devices such as

SH-SAW, LW, and FPW biosensor transducers can be successfully applied to the

pathogen detection. The reader can also find some selected investigations of the

Lamb waves for different applications cited in Refs. [154-190].  

Let’s return to the review of investigations of the magnetoelectroelastic

materials (piezoelectromagnetics). In the last decade, the reader can find that several

research groups have an interest in the investigations of the plate waves in the

piezoelectromagnetic materials. Recently published paper [191] used a meshless

method based on the local Petrov-Galerkin approach to solve static and dynamic

problems of two-layer piezoelectromagnetic composites (piezoelectric layer and

piezomagnetic layer) with specific properties. The authors of paper [191] have treated

various boundary conditions and geometric parameters to analyze their influence on

the value of the electromagnetic parameter and also analyzed the composites under a

D

Input
IDTs

viscous conductive liquid

Output
IDTs

Plate
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purely magnetic or combined magneto-mechanical load. They have found that the

magnetoelectric effect is dependent on the ratio of the layer thicknesses and also

considered functionally graded (FG) material properties of the piezoelectric layer and

homogeneous properties of the piezomagnetic layer.  

The interest in the problems of the plate wave propagation in the functionally

graded two-phase plates [192-197] is growing because the FG materials have a

potential to reduce the stress concentration and to increase the fracture toughness. 

Due to the complexity, plane elasticity problems involving cracks in the FG materials

are solved assuming a functional form for variations in material properties, usually a

linear or exponential function. It is well-known that the multifunctional materials

such as the piezoelectromagnetic composites are extensively used in the modern

technical devices, such as sensors, transducers, actuator components, etc. These

composites possessing piezoelectric, piezomagnetic, and magnetoelectric properties

are obviously sensitive to elastic, electric, and magnetic fields. Some composites can

be very brittle and susceptible to fracture that can restrict their employment. 

Therefore, it is important to understand and to analyze the fracture characteristics of

the materials in order to obtain reliable service life predictions for pertinent devices.  

Using the state space approach, Ref. [198] numerically studies the bulk wave

propagation in laminated piezomagnetic/piezoelectric plates with initial stresses and

imperfect interface when either electrically and magnetically open conditions or

shorted ones on the top and bottom surfaces are considered. The obtained numerical

results indicate that the initial compressive stress can reduce the phase velocity of the

wave propagating in a layered multiferroic structure. Also, the imperfect interface can

affect the frequency spectra much larger than initial stresses because imperfection can

lessen the structural stiffness. The authors of paper [199] have also investigated the

dispersion behavior of acoustic waves in multiferroic plates with imperfect interfacial

bonding via the method of reverberation-ray matrix, which is directly established

from the three-dimensional equations of magnetoelectroelasticity in the form of state

space formalism. They have employed a generalized spring-layer model to

characterize the interfacial imperfection and numerically calculated the dispersion
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curves and mode shapes for a typical sandwich piezoelectric/piezomagnetic plate. 

Also, they have investigated the influence of different interfacial bonding conditions

on the dispersion characteristics and corresponding mode shapes and demonstrated

that the obtained results are unconditionally stable in comparison with the traditional

state space method.  

A three-dimensional spectral element method (3D-SEM) was recently developed

in Ref. [200] for analysis of propagation of the Lamb waves in composite laminates

containing a delamination. Ref. [200] has stated that this method can be more

efficient in simulating wave propagation in structures than the conventional finite

element method (FEM) because of its unique diagonal form of the mass matrix. 

Using 3D spectral finite elements, it is possible to simulate three types of composite

laminates such as unidirectional-ply laminates, cross-ply laminates, and angle-ply

laminates and to evaluate different interactions of the Lamb wave modes with

delamination. It has also demonstrated that the symmetric Lamb wave mode may be

insensitive to delamination at certain interfaces of laminates, while the asymmetric

mode can be suitable for identification of delamination in composite structures. The

other recently published paper [201] examines the effect of inclusion shapes, 

inclusion contents, inclusion elastic constants, and plate thickness on the dispersion

relations and modes of wave propagation in inclusion-reinforced composite plates. 

Ref. [201] has modeled the spheroid-like shapes of inclusions that enable the

composite reinforcement geometrical configurations ranging from sphere to short and

continuous fiber. This paper also used the Mori–Tanaka mean-field theory to predict

the effective elastic moduli of the composite plate which can elucidate the effect of

inclusion’s shape, stiffness, and volume fraction on the composite’s anisotropic

elastic behavior. Using the resulting moduli in the dynamic stiffness matrix method, 

the authors of paper [201] can then determine the dispersion relations and the modal

patterns of the Lamb waves and also state that the inclusion contents, aspect ratios, 

and plate thickness affect the propagation velocities, higher-order mode cutoff

frequencies, and modal patterns.  
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Considering the significant nonlinear magnetoelectric (ME) characteristics in

laminated composites, the authors of paper [202] have built a numerical model of

magnetic-mechanical-electric coupling effect based on the nonlinear magnetostrictive

constitutive relation. The change of the ME field coefficients with bias magnetic field

predicted by their model can demonstrate a good agreement with the experimental

results. This paper also predicts the magnetoelectric conversion characteristics of the

composites, calculates and analyzes the influence of the magnetostrictive layer

thickness ratio, composite geometrical size, saturation magnetization, and types of

piezoelectric materials on the ME conversion coefficient of such composites. Report

[203] has discussed a novel frequency multiplier based on the (ME) effect in a simple

multiferroic laminate, made up of an amorphous Metglas (FeBSiC) layer bonded onto

a Pb(Zr,Ti)O3 plate wrapped with a coil. This report has demonstrated that by

applying an input signal with a certain frequency to the coil, an output signal with the

doubled value of the frequency can be generated from the PZT plate due to the ME

coupling. It also states that this ME laminate-based device can be operated in a broad

frequency range and switched by a low bias magnetic field, offering potential

opportunities for frequency multipliers in electrical applications. Ref. [204] has

investigated elastic wave propagation in two-layer piezoelectric/piezomagnetic plate

when the layers are transversely isotropic and perfectly bonded along the interface. In

work [204], the upper and lower surfaces of the plate are traction-free but subjected

to four types of the electric and magnetic boundary conditions. Utilizing these

conditions, the dispersion equations are given in matrix form. This paper has also

provided numerical examples for four kinds of the plates composed of piezomagnetic

CoFe2O4 and piezoelectric BaTiO3, PZT-5A, PZT-2, and PZT-4. It also discussed the

influences of the boundary conditions, thickness ratio, and piezoelectric material

properties on dispersion characteristics and stated that the results can be helpful for

the applications of piezoelectric/piezomagnetic composites or structures in acoustic

wave and microwave devices.  

Based on the 3D linear elastic equations and magnetoelectroelastic (MEE)

constitutive relations, propagation of the Lamb waves in an infinite MEE plate is
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investigated in Ref. [205] for both electrically and magnetically open and shorted

cases. The mechanical, electrical, and magnetic responses of the symmetric and

antisymmetric fundamental modes are also discussed in Ref. [205] which has

obtained results valuable for the analysis and design of broadband ME transducer

using composites. Exploiting the finite-element method, the ME coupling effect in a

bi-layered magnetostrictive-piezoelectric (Tb0.3Dy0.7Fe1.9-PbZr0.52Ti0.48O3) composite

structure is numerically simulated in Ref. [206]. This paper has used the numerical

algorithm based on a synchronization of the mechanical coupling and resonance

between the two layers along the bonding interface. It has also concluded that a

significant enhancement of the magnetoelectric effect by optimizing the thicknesses

of the two layers is possible.  

In paper [207], the anti-plane problem for an interfacial crack between two

dissimilar magnetoelectroelastic plates subjected to anti-plane mechanical and in-

plane magneto-electrical impact loadings is investigated. Paper [207] adopts four

cases of crack surface conditions: magneto-electrically impermeable, magnetically

impermeable and electrically permeable, magnetically permeable and electrically

impermeable, magneto-electrically permeable. For the first three cases, the effects of

loading combination parameters on dynamic energy release rate were demonstrated. 

Since the magneto-electrically permeable condition is perhaps more physically

reasonable for type III crack, the effect of the crack configuration on the dynamic

fracture behavior of the crack tips is also studied in Ref. [207] for the fourth case. It is

thought that these results can be useful for the design of multilayered

magnetoelectroelastic structures and devices. Ref. [208] has developed 3D exact

theory for the bending problem of a multiferroic rectangular plate with ME coupling

and imperfect interfaces and proposed a generalized spring layer model to

characterize the imperfection of the bonding behavior at the interfaces. This theory

can particular adopt the linear relation between the electric displacement and the

jump of electrical potential, the corresponding one for the magnetic field, and linear

relations among different physical fields.  
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By introducing two displacement functions and two stress functions, the

governing equations of the linear theory of magneto-electro-thermo-elasticity with

transverse isotropy are simplified in Ref. [209]. On selecting certain physical

quantities as the basic unknowns, this paper establishes two new state equations. It

also accounts the material inhomogeneity along the sixfold symmetry axis and

employs an approximate laminate model to facilitate deriving analytical solutions. 

Ref. [209] has also treated a functionally graded plate and studied the effect of ME

coupling in a BaTiO3-CoFe2O4 composite predicted from the micromechanics

simulation. Buchanan [210] has compared frequencies of vibration for the layered

materials versus the multiphase materials as a measure of the accurateness of the

derived material constants. Also, the reader can find some works [211, 212]

concerning investigations of multilayered piezoelectromagnetic plates.  

Finally, the paper cited in Ref. [213] presents some useful discussions on the

shear-horizontal (SH) acoustic waves in an inhomogeneous piezoelectromagnetic

plate. This paper studies the hexagonal (6 mm) material polarized in the SH direction

and assumes that the material constants of the plate continuously vary along the

thickness direction. Solving the coupled field equations, the authors of work [213]

have obtained solutions of the mechanical displacement, electrical and magnetic

potentials. They have also considered the influence of the inhomogeneity of the

material constants on the phase velocity and stated that their findings are significant

in the applications of wave propagation in such structures. The propagation of SH

guided waves in a coupled piezoelectric/piezomagnetic plate is also studied in Ref. 

[214]. Both the layers are transversely isotropic of class 6 mm and perfectly bonded

along the interface. Ref. [214] has assumed the mechanically free, electrically open, 

and magnetically closed case for the upper and lower surfaces of the plate. It also

obtained the dispersion relations for two di erent cases: the bulk SH-wave velocity

of piezoelectrics is larger or smaller than that of piezomagnetics. The obtained

numerical results have also demonstrated that the phase velocity approaches the

smaller bulk SH-wave velocity in the two-layer system with the increase in the
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wavenumber for di erent modes. It was also found that the thickness ratio and

properties of the piezoelectrics have a large effect on the dispersion behaviors.  

All the recent works mentioned above have confirmed the fact that various

investigations of the magnetoelectric (two-layer) plates can be found in the modern

scientific literature because the research community has a growing interest in this

matter. However, it is thought that a comprehensive research work on the SH-wave

propagation in the piezoelectromagnetic plates does not exist. The author of this work

has represented below the theoretical investigations of the SH-wave propagation in

the piezoelectromagnetic homogeneous plates which can represent the native

magnetoelectric hexagonal (6 mm) materials (crystals) and the two-phase composites.  
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Chapter I  

Theory of Wave Propagation in Piezoelectromagnetic Plates  

This chapter aims to acquaint the reader with the thermodynamics, constitutive

relations, equations of motion, and boundary conditions. For a transversely isotropic

piezoelectromagnetics of class 6 mm, it is possible to study shear-horizontal (SH)

wave propagation in the plate using the rectangular coordinate system shown in

figure 1, see in the previous section. Like the previous studies in books [101, 102] of

the wave propagation in such materials, the plate SH-waves propagate along the x1-

axis which is perpendicular to both the surface normal directed along the x3-axis and

the sixfold symmetry axis managed along the x2-axis. It is natural to primarily

describe the suitable thermodynamic variables and functions for this case. It is also

assumed that the piezoelectromagnetic plate (thin film) possesses the material

properties of bulk material.  

I.1.  Thermodynamic Variables and Functions  

It is possible to consider a bulk piezoelectromagnetic solid which simultaneously

possesses the piezoelectric, piezomagnetic, and magnetoelectric effects. This

complex two-phase system can be thermodynamically described by means of suitable

thermodynamic variables and functions. Indeed, it is necessary to choose a

thermodynamic potential to properly describe thermoelectromagnetoelastic

interactions in a piezoelectromagnetic solid. In general, eight thermodynamic

potentials are used and it is thought that in this case the thermodynamic potential

called enthalpy He can be utilized in order to obtain adiabatic rather than isothermal

conditions. It is wellknown that an adiabatic process can be considered as that with

the constant entropy S. The entropy S as a thermodynamic variable represents a level
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of disorder in the system. Treating a linear case, it is possible to account only linear

terms in a Taylor series for the enthalpy He relative to an equilibrium condition

He(S0). It is clear that the constant entropy S = S0 actually gives dS = 0. Therefore, 

this thermodynamic variable can be excluded from the further consideration, for

instance, see in books [100, 101, 102].  

These linear terms in a Taylor series for the suitable thermodynamic potential

can contain the following thermodynamic variables frequently written in the tensor

forms: strain ij, electrical field Ei, and magnetic field Hi, where the indexes i and j

run from 1 to 3. For a piezoelectromagnetics, energetic terms of such complex system

described by a thermodynamic potential can be naturally coupled with the following

subsystems: elastic subsystem (thermodynamic variable ij), electric subsystem

(variable Ei), magnetic subsystem (variable Hi) and thermal subsystem (entropy S). 

Therefore, for the likely thermodynamic potential T, one can write the following:  

( )SHEfT kkkl ,,,η=     (I.1)

( )0d,d,d,dd 0 == SHEfT kkklη    (I.2)

I.2.  Constitutive Relations  

It is thought that for the problem of acoustic wave propagation in a

piezoelectromagnetic solid, it is natural to use the following three thermodynamic

functions: stress ij, electrical induction Di, and magnetic induction Bi. The electrical

induction Di is also known as the electrical displacement and the magnetic induction

Bi is also called the magnetic displacement or magnetic flux. These thermodynamic

functions depend on three independent thermodynamic variables described above: the

strain ij, electrical field Ei, and magnetic field Hi. These three functions are written

as follows [100, 101, 102]:   

( )kkklij HEf ,,1 ησ =      (I.3)
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( )kkkli HEfD ,,2 η=      (I.4)

( )kkkli HEfB ,,3 η=      (I.5)

In the linear case, three thermodynamic functions written above depend on three

independent thermodynamic mechanical ( ij), electrical (Ei), and magnetic (Hi)

variables. For a three-dimensional piezoelectromagnetic solid, the coupled

constitutive relations read:  

kkijkkijklijklij HhEeC −−= ησ     (I.6)

kikkikklikli HEeD αεη ++=     (I.7)

kikkikklikli HEhB μαη ++=     (I.8)

In these coupled constitutive relations written above, the used indices i, j, k, and

l run from 1 to 3. It is clearly seen in equation (I.6) that the mechanical

thermodynamic function such as the stress ij also depends on the corresponding

factors at the independent thermodynamic mechanical ( ij), electrical (Ei), and

magnetic (Hi) variables. These factors represent the corresponding proportionality

coefficients for the linear case and are thermodynamically define in the following

subsection. They are called the elastic stiffness constants Cijkl, piezoelectric constants

ekij, and piezomagnetic coefficients hkij. In equation (I.7), the electrical

thermodynamic function such as the electrical displacement Di also depends on the

corresponding factors at the thermodynamic variables, of which the last two are

called the dielectric permittivity coefficients ik and the electromagnetic constants ik. 

In equation (I.8), the magnetic thermodynamic function such as the magnetic

displacement Bi also depends on the corresponding factors at the thermodynamic

variables, of which the last is called the magnetic permeability coefficients or

magnetic constants ik. These material constants ik, ik, and ik will be also

thermodynamically defined in the following subsection.  
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In equations from (I.6) to (I.8), the first independent thermodynamic variable

such as the strain tensor ij can be defined by the following wellknown relation

between the strain and the mechanical displacements for small perturbations:  

∂
∂

+
∂
∂=

i

j

j

i
ij x

U

x

U

2

1η      (I.9)

In relation (I.9), the indices i and j also run from 1 to 3. It is necessary to state that

expression (I.9) represents the dependence of the strain tensor components ij on the

corresponding partial first derivatives of the mechanical displacement components

U1, U2, and U3 with respect to the real space components x1, x2, and x3.  

In equations from (I.6) to (I.8), the second independent thermodynamic variable

such as the electrical field Ei can be also defined by the corresponding partial first

derivatives. Using the electrical potential in the case of the quasi-static (irrotational

field) approximation, the components the electrical field (Ei) can be determined as the

following partial first derivatives with respect to the real space components such as

x1, x2, and x3:   

i
i x

E
∂
∂−= ϕ       (I.10)

Also, the third independent thermodynamic variables such as the magnetic field

Hi participating in equations from (I.4) to (I.6) can be also defined by the

corresponding partial first derivatives. Utilizing the magnetic potential in the quasi-

static approximation, the components of the magnetic field Hi are defined by the

following partial first derivatives with respect to the components x1, x2, and x3:   

i
i x

H
∂
∂−= ψ       (I.11)



29

It is worth mentioning that to exploit the quasi-static approximation when all the

derivatives with respect to time t in the corresponding Maxwell equations and

definitions (I.10) and (I.11) are omitted is common. This approximation can be used

because the speed of the electromagnetic wave is approximately five orders larger

than the speed of any elastic wave [29, 37].  

I.3.  Definitions of Material Constants  

In the coupled constitutive relations from (I.6) to (I.8), all the material

parameters such as Cijkl, ekij, hkij, ik, ik, and ik can be thermodynamically expressed. 

In equations (I.7) and (I.8), the electromagnetic constants ik can be defined by the

following thermodynamic relations:  

const,const, ==
∂
∂=

∂
∂=

Hk

i

Ek

i
ik E

B

H

D

ηη

α    (I.12)

Employing equation (I.7), the thermodynamic definition for the dielectric

permittivity coefficients ik reads:  

const, =
∂
∂=

Hk

i
ik E

D

η

ε     (I.13)

It is apparent that the magnetic permeability coefficients ik in equation (I.8) can

be thermodynamically expressed as follows:  

const, =
∂
∂=

Ek

i
ik H

B

η

μ     (I.14)

In the thermodynamic relations from (I.12) to (I.14), the electromagnetic

constants ik, dielectric permittivity coefficients ik, and magnetic permeability
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coefficients ik stand for the following symmetric tensors of the second rank

(matrices): kiik αα = , kiik εε = , and kiik μμ = . Indeed, the components of the tensors ik, 

ik, and ik are naturally written as (3×3) symmetric matrices [100, 101, 102].   

With equations (I.6) and (I.7), the thermodynamic description of the

piezoelectric constants ekij can be given by the following definitions:  

const,const, ==
∂
∂==

∂
∂

−=
HEkl

i
ikl

Hk

ij
ijk

D
e

E
e

η
σ

η

   (I.15)

Using relations (I.6) and (I.8), it is also visible that the thermodynamic forms of

the piezomagnetic coefficients hkij can be obtained as follows:  

const,const, ==
∂
∂==

∂
∂

−=
HEkl

i
ikl

Ek

ij
ijk

B
h

H
h

η
σ

η

   (I.16)

It is necessary to state that the quantities of both the material parameters hkij and

ekij can be decreased. The symmetry arguments such as ij = ji and ij = ji in

equations (I.15) and (I.16) can also demonstrate the corresponding degrees of

symmetry for the material tensors ekij and hkij. The symmetry influences allow the

existence of the following equalities:  

jikkjiijkkij eeee ===     (I.17)

jikkjiijkkij hhhh ===     (I.18)

Utilizing Voigt’s notation, the (3×3×3) tensor forms for the piezoelectric constants

ekij and piezomagnetic coefficients hkij can be rewritten as the asymmetric (6×3) or

(3×6) matrices: ekij ekP or eijk ePk, hkij hkP or hijk hPk, where the index P runs

from 1 to 6.   
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Finally, expression (I.6) can be soundly employed for the thermodynamic

definition of the elastic stiffness constants Cijkl. These material parameters can be

naturally defined as follows:  

const, =
∂
∂

=
HEkl

ij
ijklC

η
σ

    (I.19)

Thermodynamic definition (I.19) for the material parameters Cijkl states that they

can be determined at constant electrical and magnetic fields. Symmetry arguments

allow some simplifications of the quantity of the stiffness constants Cijkl because the

stress and strain tensors are symmetric: ij = ji and ij = ji. Therefore, the stiffness

tensor Cijkl must also possess a corresponding degree of symmetry resulting in the

following simplifications:  

lkjijilklkijijlkkljijiklklijijkl CCCCCCCC =======   (I.20)

Using Voigt’s notation, the (3×3×3×3) tensor form for the elastic stiffness

constants Cijkl defined by expression (I.19) can be compactly written in a form of

(6×6) symmetric matrix [29, 37, 44-54]. The transformation procedure of a tensor

form into a matrix is wellknown. For this purpose, the following rules are used for the

indices: 11 1, 22 2, 33 3, 23 4, 13 5, 12 6. So, the indices are

changed as ijkl PQ and Cijkl CPQ where the indices P and Q run from 1 to 6.  

It is also necessary to mention for the reader that all the material tensors defined

above by the corresponding thermodynamic relations can be transformed from an

original coordinate system into a required new one. The original coordinate system

usually represents a crystallographic coordinate system. It is necessary to rotate

around the x1-axis, x2-axis, or x3-axis in order to obtain a new propagation direction in

the new coordinate system called the work coordinate system. The new propagation

direction must be directed along the x1-axis in the work coordinate system. This
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situation requires a recalculation of all the values of the independent material

constants. Therefore, the number of independent material constants and their values

must be recalculated. It is obvious that the values of the new material constants are

obtained using the values of the old ones. Exploiting the rules for tensor

transformations [29, 37, 44], some new values of the material constants with the

indexes i, j, k, and l can be obtained by application of the transformation matrices

such as aim, ajn, akp, and alq to the original values of the material constants with the

indexes m, n, p, and q. Therefore, the transformation formulae for all the material

tensors introduced above read:  

mnpqlqkpjnimijkl CaaaaC =     (I.21)

mnpkpjnimijk haaah =      (I.22)

mnpkpjnimijk eaaae =      (I.23)

mnjnimij aa αα =      (I.24)

mnjnimij aa μμ =      (I.25)

mnjnimij aa εε =       (I.26)

It is flagrant that after completion of these complicated transformations, the

tensors of the material parameters in equations from (I.21) to (I.23) can be also

written in their corresponding matrix forms discussed above. It is blatant that these

matrix forms are more convenient for the further theoretical considerations.   

I.4.  Equations of Motion  

It is wellknown in the physical acoustics that the speed of the electromagnetic

waves is approximately five orders larger than that of the acoustic waves. Indeed, the

acoustic waves propagating in solids are extremely slow compared with the

electromagnetic waves propagating in the same materials. However, propagation of

the acoustic waves can be coupled with both the electrical potential and the
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magnetic potential in the quasi-static (irrotational field) approximation. Therefore, 

the Maxwell four field equations [36] of the electromagnetic theory must be naturally

used and also applied to the piezoelectromagnetic solid. Maxwell has creatively

formulated the laws of electrostatics, magnetostatics, and electromagnetism. The

electrostatic and magnetostatic equilibrium equations can be written using the

differential forms of the corresponding Maxwell equations which can be written as

follows:  

0div =D and 0div =B     (I.27)

The first equality in equations (I.27) with the electrical displacement vector D

represents Gauss’s law without free charge and currents and the second equality

represents a divergence of the magnetic flux vector B. It is well-known that the

mathematical operator such as “div” means a divergence that can convert any vector

into a scalar.  

Exploiting Maxwell’s equations (I.27), the governing electrostatic and

magnetostatic equilibrium equations can be respectively expressed as follows:  

0=
∂
∂

i

i

x

D and 0=
∂
∂

i

i

x

B      (I.28)

Equations (I.28) represent the partial first derivatives of the electrical displacement

components Di and the magnetic displacement components Bi with respect to the real

space components xi, where the index i runs from 1 to 3.  

Besides, the governing mechanical equilibrium equation is also written as the

following partial first derivative of the stress tensor components ij with respect to the

real space components xj, where the indexes i and j run from 1 to 3:  

0=
∂
∂

j

ij

x

σ
     (I.29)
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With equation (I.29), wave motions of a piezoelectromagnetic material in

dependence on time t can be described by the equation of motion written in the

following well-known equality [37, 38]:  

2

2

t

U

x
i

j

ij

∂
∂=

∂
∂

ρ
σ

    (I.30)

where is the mass density of the piezoelectromagnetic bulk material. On the right-

hand side in equation (I.30), the partial second derivatives of the mechanical

displacement components Ui with respect to time t represent corresponding

accelerations with the dimension of m/s2.  

In addition to equation of motion (I.30), it is necessary to account the

electrostatics and magnetostatics in the quasi-static approximation:  

0=
∂
∂

j
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x

D and 0=
∂
∂

j

i

x

B     (I.31)

It is obvious that equation (I.30) is coupled with equations (I.31) because the

mechanical ( ij), electrical (Di), and magnetic (Bi) thermodynamic functions

respectively defined by equations from (I.6) to (I.8) depend on the mechanical ( ij), 

electrical (Ei), and magnetic (Hi) thermodynamic variables. The coupled equations of

motion, namely equations (I.30) and (I.31) can be readily written in an expended

form when the mechanical displacements Ui, electrical potential , and magnetic

potential are exploited. Employing equations from (I.9) to (I.11) for coupled

equations (I.30) and (I.31) written above, the coupled equations of motion are then

composed as follows:  
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In equations from (I.32) to (I.34), the indexes i, j, k, and l run from 1 to 3. 

Homogeneous equations from (I.32) to (I.34) represent five partial differential

equations of the second order. These coupled equations of motion constitute the wave

propagation in a piezoelectromagnetics possessing the piezoelectric, piezomagnetic, 

and piezoelectromagnetic effects.  

I.5. Tensor Form of Equations of Motion  

It is also possible to write down the wellknown tensor form for the differential

form of the coupled equations of motion written in the previous subsection. First of

all, it is required to state that these homogeneous partial differential equations of the

second order written above must have solutions in the plane wave forms [37, 38]. 

Therefore, these solutions read:  

( )[ ]txkxkxkUU II ω−++= 332211
0 jexp    (I.35)

where the index I runs from 1 to 5 and there is the following: UI = Ui for I = i, U4 = , 

and U5 = . Also, UI
0, j = (–1)1/2, and stand for the initial amplitudes, imaginary

unity, and angular frequency, respectively. The values of U1
0, U2

0, U3
0, U4

0 = 0, and

U5
0 = 0 should be determined further and the angular frequency is defined by the

linear frequency , namely = 2 . In equation (I.35), the parameters such as k1, k2, 

and k3 are the components of the wavevector K directed towards the wave

propagation. Also, it is possible to write that the following equality occurs:

( ) ( )321321 ,,,, nnnkkkk = where n1, n2, and n3 are the directional cosines. For convenience, 

they can be defined by n1 = 1, n2 = 0, and n3 n3. It is worth noting that the
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wavenumber k in the direction of wave propagation depends on the wavelength as

follows: k = 2 / .  

It is transparent that the utilization of solutions (I.35) and the directional cosines

for corresponding substitutions into the differential form of coupled five

homogeneous equations from (I.32) to (I.34) can actually lead to five equations

written in tensor forms. These five homogeneous equations can be naturally written

in the following compact form [100, 101, 102]:   

( ) 00 =− IphIJIJ UVGL ρδ     (I.36)

where the indices I and J run from 1 to 5 and the phase velocity is defined by  

kVph ω=      (I.37)

Also, in the parentheses on the left-hand side in equation (I.36), GLIJ stands for the

components of the modified tensor in the well-known Green-Christoffel equation

[100, 101, 102] and IJ represents the Kronecker delta-function with the following

conditions: IJ = 1 for I = J, IJ = 0 for I J, and 44 = 55 = 0. It is also central to state

that the modified Green-Christoffel tensor GLIJ is symmetric, i.e. GLIJ = GLJI. For

that reason, it has only 15 independent tensor components.  

Five homogeneous equations written in compact form (I.36) represent the

common problem for determination of the eigenvalues and eigenvectors. In this case, 

the suitable values of n3 for the corresponding phase velocity represent the

eigenvalues and a corresponding eigenvector should exist for each of the suitable

eigenvalues. In the common case, the eigenvector can be expressed in the following

form:  

( )00
5

00
4

0
3

0
2

0
1 ,,,, ψϕ == UUUUU     (I.38)
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According to excellent book [37] and classical work [56], it is possible to find

high symmetry propagation direction in crystals relating to all classes of symmetry, 

but the lowest triclinic symmetry. In the high symmetry propagation directions, it is

possible that tensor form (I.36) of the coupled equations of motion can consist of two

independent sets of homogeneous equations. Indeed, some GL-tensor components

can become equal to zero when acoustic waves propagate in certain directions on

certain cuts. In some certain directions [37, 56] of wave propagation, the in-plane

polarized waves can be coupled with both the electrical and magnetic potentials and

the anti-plane polarized waves represent purely mechanical waves. Therefore, the

corresponding eigenvectors are respectively written as follows:  

( )0
5

0
4

0
3

0
1 ,,, UUUU and ( )0

2U     (I.39)

In the other certain directions [37, 56] the in-plane polarized waves represent

purely mechanical waves and the anti-plane polarized waves can be coupled with

both the electrical and magnetic potentials. As a result, the reader can find that this

case corresponds to the following eigenvectors:  

( )0
3

0
1 ,UU and ( )0

5
0
4

0
2 ,, UUU     (I.40)

This work has an interest in the theoretical investigation of the

piezoelectromagnetic plate SH-waves coupled with both the electrical and magnetic

potentials. Thus, the second eigenvector in expression (I.40) is of the interest. 

Therefore, the following subsection demonstrates the simplifications for this case.  

I.6.  High Symmetry Propagation Directions for SH-Waves

This subsection acquaints the reader with the suitable high symmetry

propagation directions in the transversely isotropic piezoelectromagnetics of class 6
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mm. There are certain cuts and certain propagation directions in the transversely

isotropic piezoelectromagnetic materials [37, 56, 100, 101, 102] in which the

propagation of the pure SH-waves with the anti-plane polarization can be coupled

with both the electrical and magnetic potentials. In the transversely isotropic (6 mm)

piezoelectromagnetic plate shown in figure 1, the suitable propagation direction is

managed along the x1-axis in the work coordinate system (x1, x2, x3) in which the

sixfold symmetry axis is directed along the x2-axis. The work coordinate system was

obtained from the original coordinate system (x’1, x’2, x’3) in which the sixfold

symmetry axis is directed along the surface normal. It is necessary to state that in the

obtained work coordinate system (x1, x2, x3), any rotation around the x2-axis is

appropriate and give suitable cuts for the SH-wave propagation. In this case, the SH-

wave has the mechanical displacement component directed along the x2-axis. In the

studied propagation direction, the coupled equations of motion written in compact

tensor form (I.36) can be actually decomposed [37, 56]. This decomposition allows

one to separately write the equations of motion for the in-plane polarized waves and

those for the anti-plane polarized waves.  

Using equation (I.36) with the second eigenvector in expression (I.40), the SH-

wave propagation coupled with both the electrical potential and the magnetic

potential can be then expressed by the following three homogeneous equations

written in the matrix form:  

=
−

0

0

0

0

0

0

555452

454442

2524
2

22

ψ
ϕ

ρ U

GLGLGL

GLGLGL

GLGLVGL ph

  (I.41)

In equations (I.41), the eigenvector has the following components:    

( )000 ,, ψϕU = ( )0
5

0
4

0
2 ,, UUU     (I.42)
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The suitable eigenvalues n3 can be found when the determinant of the coefficient

matrix in equations (I.41) equals to zero. Therefore, it is possible to write down the

following determinant:  

0

555452

454442

2524
2

22

=
−

GLGLGL

GLGLGL

GLGLVGL phρ
  (I.43)

In equations (I.41) and (I.43), the GL-tensor components read:  

)1( 2
322 nCGL +=      (I.44)

)1( 2
344 nGL +−= ε      (I.45)

)1( 2
355 nGL +−= μ      (I.46)

)1( 2
34224 neGLGL +==     (I.47)

)1( 2
35225 nhGLGL +==     (I.48)

)1( 2
35445 nGLGL +−== α     (I.49)

In equations from (I.44) to (I.49), the directional cosine n3 (eigenvalue) is

defined by n3 = k3/k and the independent material constants for the case are C = C44 =

C66, e = e16 = e34, h = h16 = h34, = 11 = 33, = 11 = 33, and = 11 = 33 [101]. 

Indeed, a corresponding nonzero eigenvector in the form of expression (I.42) should

exist for a suitable nonzero eigenvalue n3. It is also possible that two nonzero

eigenvectors can exist for the same eigenvalue. To reveal this significant peculiarity

of the two-phase materials is the aim of the following two subsections.  

I.7.  Eigenvalues

First of all, it is thought that it is convenient to operate with the following

parameter 2
31 nm += in the GL-tensor components defined by equations from (I.44) to
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(I.49). It is also apparent that it is natural to introduce the matrix determinant in

equation (I.43) as three factors. Therefore, it is obvious that the determinant in

equation (I.43) can be written as follows:  

0

2

=××
−−
−−

−
mm

h

e

hmemVCm ph

μα
αε

ρ
   (I.50)

This form of the determinant written above results from the fact that each

component of the second and third rows (or each component of the second and third

columns) of determinant (I.43) has the same factor such as m. These two factors are

written as the second and third factors in equation (I.50). This peculiarity can

significantly simplify further mathematical considerations.  

In equation (I.50), it is transparent that m = 0 can soundly satisfy the equality. 

So, two the same factors such as m can firmly determine four of six normalized

eigenvalues n3. They can be expressed as follows:  

j)4,3(
3

)2,1(
3 ±== nn      (I.51)

Also, the remnant determinant in equation (I.50) represents a number and it is

required that it must be equal to zero to reveal the rest two eigenvalues n3. Expanding

this determinant, the following secular equation can be obtained:  

( ) ( ) 01 2
4

2 =−+ tphem VVmK     (I.52)

In equation (I.52), Vt4 and 2
emK stand for the speed of the shear-horizontal bulk

acoustic wave (SH-BAW) uncoupled with both the electrical and magnetic potentials

and the coefficient of the magnetoelectromechanical coupling (CMEMC), 

respectively. They are defined by   
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ρCVt =4 and ( )2

22
2 2

αεμ
αεμ

−
−+=

C

ehhe
Kem   (I.53)

Consequently, equation (I.52) provides the following forms of the fifth and sixth

eigenvalues:  

( )2)6,5(
3 1j temph VVn −±= or ( ) 12)6,5(

3 −±= temph VVn (I.54)

where the first equality is for the case of Vph < Vtem and the second is for Vph > Vtem. In

definition (I.54), the velocity denoted by Vtem represents the speed of the SH-BAW

coupled with both the electrical and magnetic potential. It is defined by the following

formula:  

( ) 2/12
4 1 emttem KVV +=      (I.55)

Thus, the first problem such as the determination of the explicit forms for all the

eigenvalues n3 is resolved.  

I.8.  Eigenvectors

The second problem is the determination of the eigenvector explicit forms for all

six eigenvalues n3 obtained in the previous subsection. For this purpose, three

homogeneous equations (I.41) can be rewritten in the following convenient form:  

=
−−
−−

−

0

0

0

0

0

02

ψ
ϕ

μα
αε

ρ U

mmhm

mmem

hmemVCm ph

   (I.56)
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Indeed, the corresponding nonzero eigenvector ( )000 ,, ψϕU for each value of

2
31 nm += must be found using equation (I.56). All six eigenvalues n3 are defined by

expressions (I.51) and (I.54). Exploiting equation (I.56), it is possible to demonstrate

in this subsection below that each of four eigenvalues n3 in expression (I.51) can have

two different eigenvectors and the rest two eigenvalues n3 in expression (I.54) can

have the other two different eigenvectors. However, the corresponding eigenvectors

must be coupled.   

First of all, it is essential to write the common expressions which can be true for

both eigenvalues (I.51) and (I.54). Indeed, it is natural to define the eigenvector

component U0 from the first equation in equations (I.56). Accordingly, U0 can be

readily expressed as the following dependence on both 0 and 0:   

000 ψϕ
A

hm

A

em
U −−= with ( )[ ]2

4tph VVmCA −=   (I.57)

Employing definition (I.57) for the second and third equations in equations

(I.56), one can obtain the following two homogeneous equations which demonstrate

the coupling between the eigenvector components 0 and 0:  

000
2

=+++ ψαϕε
A

meh

A

me    (I.58)

00
2

0 =+++ ψμϕα
A

mh

A

meh    (I.59)

It is crucial to state that equations from (I.57) to (I.59) can reveal all the eigenvector

components such as U0, 0, and 0.  

Four eigenvalues (I.51) correspond to m = 0. So, equations (I.56) can be

rewritten in the following form to determine the corresponding eigenvector:   
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=
−

0

0

0

000

000

000

0

0

02

ψ
ϕ

ρ UVph

   (I.60)

It is clearly seen in equation (I.60) that the single possibility to have a nonzero

eigenvector for nonzero eigenvalues (I.51) is the situation when U0 = 0 for m = 0

agrees with expression (I.57) and there are arbitrary nonzero values for both 0 and
0. The certain values of both 0 and 0 for the case of m = 0 can be determined from

equations (I.58) and (I.59). Therefore, it is possible to state that four eigenvalues

(I.51) actually have the same eigenvector that will be written below. It is also clearly

seen in equation (I.60) that the value of the phase velocity Vph is uncertain and cannot

be equal to zero to have U0 = 0. It is thought that to use equations (I.58) and (I.59) for

determination of the uncertain values of 0 and 0 for m = 0 is natural because this

case couples these two uncertain values with those of the other eigenvector

corresponding to the eigenvalues defined by expression (I.54). It is also essential to

state that eigenvalues (I.51) and the corresponding eigenvectors do not depend on the

phase velocity Vph.  

The following useful expressions can be written for eigenvalues (I.54) coupled

with the phase velocity Vph:  

( )2)6,5(
temph VVm =     (I.61)

bmn j1j )6,5()6,5(
3 ±=−±=    (I.62)

2)6,5()6,5(
emCKmA −=     (I.63)

Exploiting equation (I.58) and the case of m 0 in equation (I.61), one can

check that both equalities (I.58) and (I.59) are satisfied when the eigenvector

components 0 and 0 are expressed as follows:  

αϕ +=
A

meh0 and εψ −−=
A

me2
0    (I.64)
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Using definitions (I.61) and (I.63) for the eigenvector components defined by

expressions (I.57) and (I.64), the first eigenvector for eigenvalues (I.54) can be

formed. It is clearly seen that all the eigenvector components do not depend on the

phase velocity Vph.  

There is however the second case to satisfy equalities (I.58) and (I.59). Using

equation (I.59), it is transparent that the eigenvector components 0 and 0 can be

also defined by  

μϕ +=
A

mh2
0 and αψ −−=

A

meh0    (I.65)

Thus, the eigenvector components defined by expressions (I.57) and (I.65) can

form the second eigenvector for two eigenvalues defined by expression (I.54). It is

also obvious that using definition (I.63), all the components of the second eigenvector

do not depend on the phase velocity Vph, too. Therefore, all the corresponding

eigenvectors for all the eigenvalues do not depend on the phase velocity Vph and only

two eigenvalues (I.54) depend on the velocity.  

It is indispensable to state that to know two different sets of the eigenvector

components is very important because they can lead to two different solutions for the

phase velocity Vph. This fact was first revealed in book [101] for the propagation

problems of the SH-SAWs guided by the free surface of the transversely isotropic

piezoelectromagnetics of class 6 mm. This fact can also complicate the theoretical

investigations of the plate SH-wave propagation.  

It is now possible to write all six eigenvectors for six eigenvalues. Using the 0

and 0 defined by equations (I.64), the first set of the corresponding eigenvectors for

the eigenvalues (I.51) and (I.54) are respectively given as follows:    

( ) ( ) ( ) ( ) ( )εαψϕψϕψϕψϕ −==== ,,0,,,,,,,, (4)0(4)0(4)0(3)0(3)0(3)0(2)0(2)0(2)0(1)0(1)0(1)0 UUUU (I.66)
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( ) ( ) −+−−== εαεαψϕψϕ
2

2

22
(6)0(6)0(6)0(5)0(5)0(5)0 ,,,,,,

ememem CK

e

CK

eh

CK

he
UU (I.67)

Also, the following equalities exist and couple the corresponding eigenvector

components:   

εαψϕψϕ hehehe −=+=+ )5(0)5(0)1(0)1(0    (I.68)

Using the 0 and 0 defined by equations (I.65), it is possible to form the second

set of the eigenvector components for the same eigenvalues defined by expressions

(I.51) and (I.54). The eigenvectors respectively read:   

( ) ( ) ( ) ( ) ( )αμψϕψϕψϕψϕ −==== ,,0,,,,,,,, (4)0(4)0(4)0(3)0(3)0(3)0(2)0(2)0(2)0(1)0(1)0(1)0 UUUU (I.69)

( ) ( ) −+−−== αμαμψϕψϕ
22

2

2
(6)0(6)0(6)0(5)0(5)0(5)0 ,,,,,,

ememem CK

eh

CK

h

CK

he
UU (I.70)

For the second set of the eigenvector components, the following useful

equalities also exist which can significantly simplify the further analytics:   

αμψϕψϕ hehehe −=+=+ )5(0)5(0)1(0)1(0    (I.71)

I.9.  Complete Displacements  

Utilizing the eigenvalues and eigenvectors found in the previous two

subsections, it is possible to compose the complete mechanical displacement U , 

complete electrical potential , and complete magnetic potential . They can be

compactly written in the plane wave forms as follows:  

( )[ ]
=

Σ −+=
6,5,4,3,2,1

3
)(

311
)(0)( jexp

p
ph

ppp tVxnxnkUFU   (I.72)
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( )[ ]
=

Σ −+=
6,5,4,3,2,1

3
)(

311
)(0)( jexp

p
ph

ppp tVxnxnkF ϕϕ    (I.73)

( )[ ]
=

Σ −+=
6,5,4,3,2,1

3
)(

311
)(0)( jexp

p
ph

ppp tVxnxnkF ψψ   (I.74)

In expressions from (I.72) to (I.74), the weight factors F(p) can be determined

from equations in which suitable boundary conditions are accounted. The final

subsection of this chapter describes the realization of the mechanical, electrical, and

magnetic boundary conditions. The complete mechanical displacement U , complete

electrical potential , and complete magnetic potential can be also written in the

following expanded forms:  

( ) ( ){
( ) ( )} ( )[ ]tVxkxknUFxknUF

kxUFkxUFU

ph−×−++

−+=Σ

13
)5(

3
)5(0

43
)5(

3
)5(0

3

3
)1(0

23
)1(0

1

jexpjexpjexp     

expexp
   (I.75)

( ) ( ){
( ) ( )} ( )[ ]tVxkxknFxknF

kxFkxF

ph−×−++

−+=Σ

13
)5(

3
)5(0

43
)5(

3
)5(0

3

3
)1(0

23
)1(0

1

jexpjexpjexp     

expexp

ϕϕ

ϕϕϕ
   (I.76)

( ) ( ){
( ) ( )} ( )[ ]tVxkxknFxknF

kxFkxF

ph−×−++

−+=Σ

13
)5(

3
)5(0

43
)5(

3
)5(0

3

3
)1(0

23
)1(0

1

jexpjexpjexp     

expexp

ψψ

ψψψ
   (I.77)

where F1 = F(1) + F(2), F2 = F(3) + F(4), F3 = F(5), and F4 = F(6). Using the wellknown

formulae such as ( ) ( ) ( )Θ±Θ=Θ± sinhcoshexp and ( ) ( ) ( )Θ±Θ=Θ± sinjcosjexp , it is

possible to rewrite the complete parameters for the case of Vph < Vtem as follows:  

( ) ( ) ( )

( ) ( )[ ]tVxkVVkxUF

VVkxUFkxUFkxUFU

phtemph

temph

−×−+

−++=Σ

1
2

3
)5(0

04

2
3

)5(0
033

)1(0
023

)1(0
01

jexp1sinh     

1coshsinhcosh
   (I.78)

( ) ( ) ( )

( ) ( )[ ]tVxkVVkxF

VVkxFkxFkxF

phtemph

temph

−×−+

−++=Σ

1
2

3
)5(0

04

2
3

)5(0
033

)1(0
023

)1(0
01

jexp1sinh     

1coshsinhcosh

ϕ

ϕϕϕϕ
   (I.79)
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( ) ( ) ( )

( ) ( )[ ]tVxkVVkxF

VVkxFkxFkxF

phtemph

temph

−×−+

−++=Σ

1
2

3
)5(0

04

2
3

)5(0
033

)1(0
023

)1(0
01

jexp1sinh     

1coshsinhcosh

ψ

ψψψψ
   (I.80)

where F01 = F1 + F2, F02 = F1 – F2, F03 = F3 + F4, and F04 = F3 – F4. All the formulae

written above in this subsection are valid within the plate thickness, namely when

dxd +≤≤− 3 . |It is also basic to state that the complete mechanical displacement U in

expression (I.78) does not depend on the weight factors F01 and F02 because U0(1) = 0.  

In the case of Vph > Vtem, the hyperbolic cosine at the weight factor F03 and the

hyperbolic sine at the F04 are converted as follows:  

( ) ( ) −→− 1cos1cosh 2
3

2
3 temphtemph VVkxVVkx (I.81)

( ) ( ) −→− 1sinj1sinh 2
3

2
3 temphtemph VVkxVVkx (I.82)

I.10.  Equations and Parameters for a Vacuum  

In this theoretical investigations there are contacts of the upper (x3 = + d) and

lower (x3 = – d) surfaces of the transversely isotropic piezoelectromagnetic plate with

the other continuum such as a vacuum, see figure 1 in Introduction. Therefore, it is

also necessary to introduce the vacuum material constants and the corresponding

expressions for the electrical and magnetic potentials in a vacuum. For a vacuum

(free space) the value of the elastic constant C0 is very small, namely C0 = 0.001 Pa

[215]. Indeed, this value of C0 is thirteen orders smaller than that for a solid such as

piezoelectromagnetics. Thus, it is transparent that it is too negligible to account this

value in calculations. Also, the vacuum dielectric permittivity constant has the

following value: 0 = 10–7/(4 CL
2) = 8.854187817×10–12 [F/m] where CL =

2.99782458×108 [m/s] is the speed of light in a vacuum.  
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For the free space, it is possible to exploit the wellknown Laplace equation of

type Δ f = 0. This equation can be written as follows:  

( ) 00
2
3

2
1 =+ fkk ϕ     (I.83)

In equation (I.83), the electrical potential above the upper surface (x3 = + d) and

below the lower surface (x3 = – d) of the piezoelectromagnetics can be respectively

written in the following plane wave forms:  

( ) ( )[ ] dxtxkxkF E
f +≥−−= 31131

)0(
0  ,jexpexp ωϕ   (I.84)

( ) ( )[ ] dxtxkxkF E
f −≤−= 31131

)0(
0  ,jexpexp ωϕ   (I.85)

Also, the free space magnetic permeability constant has the following value: 0 =

4 ×10–7 [H/m] = 12.5663706144×10–7 [H/m]. For the magnetic potential, Laplace’s

equation of type Δ f = 0 can be also written in the following form:  

( ) 00
2
3

2
1 =+ fkk ψ     (I.86)

In equation (I.86), the magnetic potential in a vacuum above the upper surface

(x3 = + d) and below the lower surface (x3 = – d) of the piezoelectromagnetic plate

must be also written in the corresponding plane wave forms. Therefore, it is possible

to respectively write the following:  

( ) ( )[ ] dxtxkxkF M
f +≥−−= 31131

)0(
0  ,jexpexp ωψ   (I.87)

( ) ( )[ ] dxtxkxkF M
f −≤−= 31131

)0(
0  ,jexpexp ωψ   (I.88)
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It is clearly seen in equations (I.84), (I.85), (I.87), and (I.88) that both the electrical

and magnetic potentials exponentially decrease in a vacuum when x3 > + d and x3 < –

d, see figure 1.  

I.11.  Mechanical, Electrical, and Magnetic Boundary Conditions at the

Upper and Lower Surfaces  

For the piezoelectromagnetic plate, some certain mechanical, electrical, and

magnetic boundary conditions at both the upper (x3 = + d) and lower (x3 = – d) free

surfaces (the two interfaces between the solid and a vacuum shown in figure 1 in

Introduction) must be used. The mechanically free upper and lower surfaces can be

used as the mechanical boundary conditions. Also, the following electrical boundary

conditions can be used at both the free surfaces of the plate: the electrically closed

surface ( = 0), electrically open surface (D3 = 0), and the continuity of both and D3

at the surfaces, i.e. = f and D3 = Df, where D3 is the normal component of the

electrical displacements and the superscript “f” relates to the free space. Besides, the

magnetic boundary conditions at both the free surfaces are as follows: the

magnetically closed surface (B3 = 0), magnetically open surface ( = 0), and the

continuity of both and B3 at the surfaces, i.e. = f and B3 = Bf, where B3 is the

normal component of the magnetic flux. It is worth noticing that the realization of the

mechanical, electrical, and magnetic boundary conditions is perfectly described in

theoretical work [113] by Al’shits, Darinskii, and Lothe. Also, it is convenient in this

subsection to use x1 = 0 and t = 0 to cope with ( )[ ] 1jexp 11 =− txk ω .   

The mechanically free upper surface of the piezoelectromagnetic plate at x3 = +

d (see figure 1 in Introduction) requires the following condition for the normal

component of the stress tensor 32:  

( ) 0332 =+= dxσ     (I.89)
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where  

( )
[ ] ( ) [ ] ( )

[ ] ( ) [ ] ( )
[ ] ( ) [ ] ( )dkheCUkFdkheCUkF
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)6(
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)3(0)3(0)3(0)3(
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)2(0)2(0)2(0)2(
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)2()1(
3

)1(0)1(0)1(0)1(
3

)1(
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jexpjexp

jexpjexp

jexpjexp

ψϕψϕ
ψϕψϕ

ψϕψϕ
σ

++++++

++++++

+++++

=+=

(I.90)

The possible electrical boundary condition at the free upper surface of the

piezoelectromagnetic plate at x3 = + d can be written as follows: the normal

component of the electrical displacement D3 must be equal to the electrical

displacement Df for a vacuum, where the superscript “f” is used for a vacuum in this

subsection below. This condition reads:  

( ) ( )dxDdxD f +==+= 333     (I.91)

where  

( ) ( )dkkFdxD f
E

f
10103 expj −−=+= εϕ    (I.92)

( )
[ ] ( ) [ ] ( )

[ ] ( ) [ ] ( )
[ ] ( ) [ ] ( )dkeUkFdkeUkF

dkeUkFdkeUkF

dkeUkFdkeUkF

dxD

)6(
3

)6(0)6(0)6(0)6(
3

)6()5(
3

)5(0)5(0)5(0)5(
3

)5(

)4(
3

)4(0)4(0)4(0)4(
3

)4()3(
3

)3(0)3(0)3(0)3(
3

)3(

)2(
3

)2(0)2(0)2(0)2(
3

)2()1(
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)1(0)1(0)1(0)1(
3

)1(

33

jexpjexp

jexpjexp

jexpjexp

αψεϕαψεϕ

αψεϕαψεϕ

αψεϕαψεϕ

−−+−−+

−−+−−+

−−+−−

=+=

(I.93)

The second possible electrical boundary condition is for the electrical potential

at the free upper surface of the plate at x3 = + d. At this surface, it is possible to

require for the electrical potential in the plate and the electrical potential f in a

vacuum that the following equality must be satisfied:  

( ) ( )dxdx f +==+= 33 ϕϕ     (I.94)
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where  

( ) ( )dkFdx f
E

f
103 exp −=+= ϕϕ     (I.95)

( ) ( ) ( ) ( )
( ) ( ) ( )dkFdkFdkF

dkFdkFdkFdx
)6(

3
)6(0)6()5(

3
)5(0)5()4(

3
)4(0)4(

)3(
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)3(0)3()2(
3

)2(0)2()1(
3

)1(0)1(
3

jexpjexpjexp

jexpjexpjexp

ϕϕϕ
ϕϕϕϕ

+++

++=+=
(I.96)

Besides, the magnetic boundary conditions can be also expressed at the free

upper surface of the plate at x3 = + d. First, the magnetic flux normal component B3

must continue in a vacuum which is characterized by the magnetic flux Bf. Therefore, 

it is possible to require the following:  

( ) ( )dxBdxB f +==+= 333     (I.97)

where  

( ) ( )dkkFdxB f
M

f
10103 expj −−=+= μψ    (I.98)
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dkhUkFdkhUkF

dkhUkFdkhUkF
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−−+−−+
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−−+−−

=+=

(I.99)

Indeed, the continuity of the magnetic potential at x3 = + d must be also

required. Therefore, the following equality between the magnetic potential in the

plate and the one f in a vacuum must be satisfied:  

( ) ( )dxdx f +==+= 33 ψψ     (I.100)

where  
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( ) ( )dkFdx f
M

f
103 exp −=+= ψψ     (I.101)

( ) ( ) ( ) ( )
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However, the plate possesses the second surface, namely the lower surface at x3

= – d, see figure 1 in Introduction. This study relates to the case of the homogeneous

boundary conditions. This means that the same mechanical, electrical, and magnetic

boundary conditions must be applied to the lower free surface of the plate. Therefore, 

it is also necessary to write the mechanical, electrical, and magnetic boundary

condition for this free surface. The mechanical condition is the mechanically free

surface that means  

( ) 0332 =−= dxσ     (I.103)

where  
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The electrical boundary conditions can be written as follows:  

( ) ( )dxDdxD f −==−= 333     (I.105)

( ) ( )dxdx f −==−= 33 ϕϕ     (I.106)

where  
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( ) ( )dkkFdxD f
E

f
10103 expj −=−= εϕ    (I.107)
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( ) ( )dkFdx f
E

f
103 exp −=−= ϕϕ     (I.109)
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Finally, the magnetic boundary conditions at x3 = – d can be composed as

follows:  

( ) ( )dxBdxB f −==−= 333     (I.111)

( ) ( )dxdx f −==−= 33 ψψ     (I.112)

where  
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M

f
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This short review of the mechanical, electrical, and magnetic boundary

conditions introduced in this subsection can allow the reader to better understand the

following chapters. The following chapters study the influence of different electrical

and magnetic boundary conditions applied at the upper and lower interfaces between

the transversely isotropic piezoelectromagnetics and a vacuum. It is thought that the

case of the electrically closed surface ( = 0) and the magnetically open surface ( =

0) is a common realization of the boundary conditions to commence the analysis. 

This is the case of study for the following chapter.  
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Chapter II  

The Electrically Closed and Magnetically Open Boundary Conditions  

This chapter studies the SH-wave propagation in the transversely isotropic

piezoelectromagnetic plate when homogeneous mechanical, electrical, and magnetic

boundary conditions are applied to both the free surfaces of the plate. The

homogeneous boundary conditions mean that each of the upper and lower surfaces of

the plate, see figure 1 in Introduction, represents the mechanically free, electrically

closed (electrical potential = 0) and the magnetically open (magnetic potential =

0) surface. In figure 1, the upper free surface is located at x3 = + d and the lower

surface at x3 = – d, where 2d is the plate thickness. For these boundary conditions, it

is necessary to use equations (I.90), (I.96), and (I.102) from the previous chapter for

the upper surface and equations (I.104), (I.110), and (I.116) for the lower surface. For

convenience, these six homogeneous equations can be readily transformed using the

wellknown formulae such as ( ) ( ) ( )Θ±Θ=Θ± sinhcoshexp and ( ) ( ) ( )Θ±Θ=Θ± sinjcosjexp

to deal with the following weight factors F01 = F1 + F2, F02 = F1 – F2, F03 = F3 + F4, 

and F04 = F3 – F4, where F1 = F(1) + F(2), F2 = F(3) + F(4), F3 = F(5), and F4 = F(6). 

These weight factors were originally defined in the ninth subsection of the previous

chapter.  

Therefore, in the case of the upper surface at x3 = + d the mechanical, electrical, 

and magnetic boundary conditions are respectively written as follows:  

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh

0403
)5(0)5(0)5(0

0201
)1(0)1(0

=++++

++

bkdFbkdFheCUb

kdFkdFhe

ψϕ
ψϕ

(II.1)

( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh )5(0
0403

)1(0
0201 =+++ ϕϕ ebkdFbkdFekdFkdF (II.2)

( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh )5(0
0403

)1(0
0201 =+++ ψψ hbkdFbkdFhkdFkdF (II.3)
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For the lower free surface at x3 = – d, three homogeneous equations

corresponding to three boundary conditions can be transformed as follows:  

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh

0403
)5(0)5(0)5(0

0201
)1(0)1(0

=−+++

−+

bkdFbkdFheCUb

kdFkdFhe

ψϕ
ψϕ

(II.4)

( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh )5(0
0403

)1(0
0201 =−+− ϕϕ ebkdFbkdFekdFkdF (II.5)

( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh )5(0
0403

)1(0
0201 =−+− ψψ hbkdFbkdFhkdFkdF (II.6)

In equations from (II.1) to (II.6), k = k1 is the wavenumber in the propagation

direction and the parameter b is defined by  

( )21 temph VVb −=     (II.7)

Using six homogeneous equations from (II.1) to (II.6), it is possible to construct

a suitable determinant of the boundary conditions. It is clearly seen in these six

equations that they have only four unknown weight factors F01, F02, F03, and F04

instead of the initial six. To reduce the number of the unknown weight factors is

possible because four eigenvalues defined by expression (I.51) consist of the first pair

of the equal roots and the second one. So, it is also necessary to reduce the number of

homogeneous equations to also cope with the four ones instead of the six. This

reduction can be done when one equation is used instead of equations (II.2) and

(II.3). It is natural to use an equation that represents a product of a summation of

equations (II.2) and (II.3). Also, the same product can be used instead of equations

(II.5) and (II.6). Besides, it is necessary to remember that there are two different sets

of the eigenvectors: the first set is defined by equations (I.66) and (I.67) and the

second set is defined by equations (I.69) and (I.70). Accounting this fact, the fourth-

order determinant of the boundary conditions (BCD4) can be represented as follows:  
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where )1(0
1M and )5(0

1M are used for the upper surface and )1(0
2M and )5(0

2M for the lower

surface. Employing equations (I.68) and (I.71), it is essential to state that  
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Exploiting equation (I.68), one can get for the upper surface that  

εαψϕ heheM −=+= )1(0)1(0)1(0
1 , ( )
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heheCUM

+−=++= εαψϕ (II.10)

With equation (I.71) used for the lower surface, one can also get that  

αμψϕ heheM −=+= )1(0)1(0)1(0
2 , ( )
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)5(0)5(0)5(0)5(0
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em

em
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K
heheCUM

+−=++= αμψϕ (II.11)

Indeed, one can also use equations (II.11) for the upper surface and equations

(II.10) for the lower surface. However, it is apparent that this reverse case does not

change anything. Also, it is possible to use )1(0
1M and )5(0

1M for both the upper and

lower surfaces or )1(0
2M and )5(0

2M for both the surfaces. It is possible to demonstrate

that in all the cases, the same results can be obtained. First of all, in equation (II.8)

the first and second rows of the BCD4 must be divided by the parameter )1(0
1M and the

rest two rows must be divided by )1(0
2M . Utilizing relations (II.9), equation (II.8) can

be simplified to the following form:  
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It is clearly seen in equation (II.12) that the simplified determinant does not

depend on the parameters )1(0
1M , )5(0

1M , )1(0
2M , and )5(0

2M . This determinant can be

further simplified by means of several mathematical operations applied to the

determinant rows. It is natural to add the first and second rows to the third and fourth

rows, respectively, and then, to multiply the resulting third and fourth rows by ½ and

to subtract them from the first and second rows, respectively. So, equation (II.12)

with the transformed BCD4 reads:  
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em
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(II.13)

It is transparent that the BCD4 in equation (II.13) consists of two independent

determinants of the second order. Exploiting definition (II.7), the first two rows of the

BCD4 result in the following dispersion relation for the determination of the phase

velocity Vnew1 of the first new plate SH-wave:  

( ) ( ) ( ) 01tanh
1

tanh1 2
12

2
2

1 =−
+

−− temnew
em

em
temnew VVkd

K

K
kdVV (II.14)

Dispersion relation (II.14) pertains to the case when the phase velocity is smaller

than the SH-BAW speed Vtem defined by expression (I.55). It is palpable in equation

(II.14) that there exists only single dispersive mode for the new SH-wave in the
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transversely isotropic piezoelectromagnetic plate because the hyperbolic tangent is

changed between zero and unity for +∞≤≤ kd0 . Therefore, equation (II.14) is for the

fundamental mode, also known as the lowest or zero-order mode.  

For the case when the phase velocity is larger than the SH-BAW speed Vtem, the

second hyperbolic tangent in equation (II.14) goes to tangent as a result of the

following equality: ( ) ( )Θ=Θ jtanjtanh . Thus, the phase velocity Vnew1 for the higher-

order modes of the new SH-waves in the plate is defined by  

( ) ( ) ( ) 01tan
1

1tanh 2
12

2
2

1 =−
+

−− temnew
em

em
temnew VVkd

K

K
VVkd (II.15)

Utilizing the third and fourth rows of the BCD4 in equation (II.13) and

definition (II.7), the second possible dispersion relation can be obtained. The second

dispersion relation defined by equation (II.16) written below can determine the phase

velocity Vnew2 for the fundamental mode (Vnew2 < Vtem) of the second new plate SH-

wave. This reads:  

( ) ( ) ( ) 0tanh
1

11tanh
2

2
2

2
2

2 =
+

−−− kd
K

K
VVVVkd

em

em
temnewtemnew (II.16)

Also, an infinite number of the higher-order modes of the second new plate SH-

wave can be found in the case of Vnew2 > Vtem. For this case, equation (II.16) is

transformed into the following form:  

( ) ( ) ( ) 0tanh
1

11tan
2

2
2

2
2

2 =
+

+−− kd
K

K
VVVVkd

em

em
temnewtemnew (II.17)

It is clearly seen in dispersion relations (II.14) and (II.16) that for a very large

value of the plate thickness kd, the phase velocity for both the new plate SH-waves

will approach the SH-SAW velocity corresponding to the surface Bleustein-Gulyaev-
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Melkumyan (BGM) wave [100, 101, 106, 107]. The surface BGM-wave was first

discovered by Melkumyan [107] in 2007. The speed of the nondispersive surface

BGM-wave can be calculated with the following explicit formula:  

1/22

2

2

1
1

+
−=

em

em
temBGM K

K
VV   (II.18)

Also, it is useful to discuss the explicit forms of the complete mechanical

displacement defined by expression (I.78) from the ninth subsection of the previous

chapter, complete electrical potential (I.79), and complete magnetic potential (I.80). 

These complete parameters depend on the unknown weight factors F01, F02, F03, and

F04. The weight factors can be explicitly determined from the second row of equation

(II.13) for the case of equation (II.14) and from the last row for the cases of equations

(II.16) and (II.17). Therefore, they can be respectively written as follows;   

00301 == FF , ( )−= 2
102 1sinh temnew VVkdF , ( )kdF sinh04 −= (II.19)

00402 == FF , ( )−= 2
201 1cosh temnew VVkdF , ( )kdF cosh03 −= (II.20)

It is worth noting that for the case of equation (II.15), the weight factor F02 must have

the following forms: ( ) −= 1sin 2
102 temnew VVkdF and ( )kdF jsinh04 = . Such forms lead

to the real complete parameters defined by expressions (I.78), (I.79), and (I.80).  

Figure II.1 shows the dependence of the normalized velocities of the new

dispersive SH-waves in the transversely isotropic piezoelectromagnetic plate. For a

relatively small value of the coefficient of the magnetoelectroelastic coupling

(CMEMC) 3.02 =emK , the relation between the surface BGM-wave velocity and the

SH-BAW velocity is VBGM/Vtem ~ 0.973. This is shown in figure II.1 by the dotted

line. Below the velocity Vtem, the velocity Vnew1 of the first new SH-wave in the plate



61

starts at some value of kd ~ 4.4 and approaches the velocity VBGM when the value of

the normalized plate thickness kd goes to infinity. Also, the velocity Vnew2 of the

second new SH-wave starts with Vmin/Vtem ~ 0.877 at kd = 0 and can reach VBGM/Vtem

at a large value of the nondimensional parameter kd. This fundamental mode cannot

exist below the minimum value of Vmin/Vtem ~ 0.877. It is clearly seen in figure II.1

that only single modes called the fundamental modes can exist below the Vtem.   

Figure II.1. The fundamental modes’ dispersion relations, where the normalized

velocities Vnew1/Vtem (black) and Vnew2/Vtem (grey) are defined by equations (II.14) and

(II.16), respectively; 3.02 =emK .  

The higher-order modes of the new dispersive SH-waves are shown in figures

II.2 and II.3. It is expected that all the higher-order modes start at a very small value

of kd 0 when all the velocities of the first and second new SH-waves go up to

some infinitely large values, see figure II.3. Also, it is transparent that the velocities

of all the higher-order modes shown in figure II.2 can approach the SH-BAW

velocity Vtem when the dimensionless parameter kd achieves infinity. However, this is

not true for the first higher-order mode shown by the dotted black line in the figure. It

is obvious that this first higher-order mode connects with the corresponding

fundamental mode about the SH-BAW velocity Vtem when the value of the parameter

kd is by about 4.4. Thus, it is possible that this first higher-order mode can be also
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called the fundamental mode due to this connection. Such peculiarity is absent for the

other higher-order modes shown by the dotted grey lines in both the figures. This

occurs due to the fact that the fundamental mode shown by the grey solid line in

figure II.1 cannot reach the value of the SH-BAW velocity Vtem and approaches the

SH-SAW velocity VBGM.  

Figure II.2. The higher-order modes’ dispersion relations, where the normalized

velocities Vnew1/Vtem (black) and Vnew2/Vtem (grey) are defined by equations (II.15) and

(II.17), respectively; 3.02 =emK .  

Figure II.3. The beginnings of the first three higher-order modes, where the

normalized velocities Vnew1/Vtem (black) and Vnew2/Vtem (grey) are defined by equations

(II.15) and (II.17), respectively; 3.02 =emK .  
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It is possible to investigate the case of the other electrical and magnetic

boundary conditions applied to the free surfaces of the piezoelectromagnetic plate. 

This work studies the cases of the homogeneous boundary conditions when the same

set of the boundary conditions is used for both the upper and lower free surfaces. 

Therefore, the following chapters acquaint the reader with the other possibilities.  
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Chapter III  

The Electrically Open and Magnetically Closed Boundary Conditions  

This chapter studies the second possible case of the electrical and magnetic

boundary conditions. In the homogeneous case, the same boundary conditions are

utilized at the upper and lower surfaces of the piezoelectromagnetic plate. The

mechanical boundary condition is the mechanically free surface, the electrical

boundary condition is the electrically open surface (D3 = 0), and the magnetic

boundary condition is the magnetically closed surface (B3 = 0). It is thought that it is

convenient to exploit the weight factors F01, F02, F03, and F04. For the mechanical

boundary condition, it is natural to use equation (II.1) from the previous chapter for

the upper surface at x3 = + d and equation (II.4) for the lower surface at x3 = – d. 

Also, equations (I.93) and (I.108) from the last subsection of Chapter I are likely for

the electrical boundary condition and equations (I.99) and (I.114) are suitable for the

magnetic one.   

For the upper surface at x3 = + d, three homogeneous equations corresponding to

the mechanical, electrical, and magnetic boundary conditions read:  

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh

0403
)5(0)5(0)5(0

0201
)1(0)1(0

=++++

++

bkdFbkdFheCUb

kdFkdFhe

ψϕ
ψϕ

(III.1)

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh

0403
)5(0)5(0)5(0

0201
)1(0)1(0

=+−−−

++
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αψεϕ
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(III.2)

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh
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)5(0)5(0)5(0

0201
)1(0)1(0

=+−−−

++

bkdFbkdFhUb

kdFkdF

μψαϕ
μψαϕ

(III.3)

These three homogeneous equations for the lower free surface at x3 = – d can be

written in the following forms:  
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( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh
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( ) ( ) ( )[ ]
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( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh
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(III.6)

The existence of two different sets of the eigenvectors is the peculiarity that can

complicate the theoretical investigations of the SH-wave propagation in the

piezoelectromagnetic plate. It is obvious that it is necessary to separately treat each

case. Therefore, the following three subsections respectively study the cases when

only the first eigenvectors, only the second eigenvectors, and the first and second

eigenvectors are used.  

III.1.  The first eigenvectors   

Exploiting the first eigenvectors defined by equations (I.66) and (I.67), it is

possible to significantly simplify the equations written above. Indeed, it is useful for

this case to introduce the following equalities:  

0)1(0)1(0 =−=+ αεεααψεϕ , 0
2

2

22

2
)5(0)5(0)5(0 =+−−+−=−− εαααεεεααψεϕ

ememem CK

e

CK

eh

CK

ehe
eU

(III.7)

εμαμψαϕ −=+ 2)1(0)1(0 , 0
2

2
2

22

2
)5(0)5(0)5(0 =+−−+−=−− εμμααεαμψαϕ

ememem CK

e

CK

eh

CK

heh
hU

(III.8)

With equalities (III.7) and (III.8), it is flagrant that equations (III.2) and (III.5)

can be excluded from the further consideration in this subsection. So, equations
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(III.1) and (III.3) for the upper surface and equations (III.4) and (III.6) for the lower

surface can be composed in the following forms, using relation (II.9) from the

previous chapter:  

( ) ( ) ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =++++ bkdFbkdF
K

K
bkdFkdF

em

em (III.9)

( ) ( ) ( )[ ] 0coshsinh 0201
2 =+− kdFkdFαεμ (III.10)

( ) ( ) ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =−++− bkdFbkdF
K

K
bkdFkdF

em

em (III.11)

( ) ( ) ( )[ ] 0coshsinh 0201
2 =−− kdFkdFαεμ (III.12)

It is apparent that it is convenient to divide both equations (III.10) and (III.12) by

( µ – 2). Then, it is natural to subtract equation (III.10) from equation (III.9) and

equation (III.12) from equation (III.11). As a result, equations (III.9) and (III.11) can

be written in the following simplified forms:  

( ) ( ) 0coshsinh 0403 =+ bkdFbkdF   (III.13)

( ) ( ) 0coshsinh 0403 =− bkdFbkdF   (III.14)

It is blatant that equations (III.13) and (III.14) can give the following equation

for the determination of the phase velocity Vph of the plate SH-wave:  

( ) 01sinh 2 =− temph VVkd   (III.15)

However, equation (III.15) has only single suitable solution such as Vph = Vtem at

any value of the dimensionless parameter kd. This is true because the function such as

the hyperbolic sine can be equal to zero when the argument equals to zero. This

means that the SH-BAW with the speed Vtem can propagate in the

piezoelectromagnetic plate at any normalized plate thickness kd, but kd = 0 because
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the plate should have nonzero thickness. The solution such as Vph = Vtem for equation

(III.15) means that any dispersion relation, namely the dependence of the phase

velocity Vph on the parameter kd cannot exist below the velocity Vtem of the SH-BAW

coupled with both the electrical and magnetic potentials.  

For this case, it is also possible to discuss the complete parameters defined by

expressions (I.78), (I.79), and (I.80) from the ninth subsection of Chapter I. These

parameters depend on the unknown weight factors F01, F02, F03, and F04. Utilizing b =

0 and equations (III.13) and (III.14), these weight factors can be found in the

following forms:  

00201 == FF , ( ) 1cosh03 == bkdF , ( ) 0sinh04 == bkdF (III.16)

On the other hand, equations (III.13) and (III.14) can be rewritten for the case

when the phase velocity Vph is larger than the SH-BAW speed Vtem. For this case, sine

and cosine are used instead of the corresponding hyperbolic functions. Therefore, 

these equations read:  

( ) ( ) 0cossinj 104103 =+ kdbFkdbF   (III.17)

( ) ( ) 0cossinj 104103 =− kdbFkdbF   (III.18)

where  

( ) 12
1 −= temph VVb    (III.19)

Consequently, the system of two homogeneous equations (III.17) and (III.18)

gives the following dispersion relation for the determination of the phase velocity

Vnew3 of the third new SH-wave propagating in the piezoelectromagnetic plate:  

( ) ( ) ( ) 02sincossin2 111 == kdbkdbkdb    (III.20)



69

It is clearly seen in equation (III.20) that for this case of Vph > Vtem, an infinite

number of modes of dispersive SH-waves can exist because sine is a periodic

function. Therefore, the velocity Vnew3 of the third new SH-wave can be expressed as

follows:  

... ,3 ,2 ,1 ,
2

1
2

3 =+= n
kd

n
VV temnew   (III.21)

It is worth noting that in definition (III.21) n = 0 gives Vph = Vtem at any value of kd. 

So, this is the case of the nondispersive SH-wave that is excluded in definition

(III.21).  

In this case, the weight factors F01, F02, F03, and F04 can have the following

likely values to deal with the real complete parameters in equations (I.78), (I.79), and

(I.80):  

00201 == FF , ( )kdbF 103 cos= , ( )kdbF 104 sinj= (III.22)

For Vph > Vtem, figure III.1 shows several modes of the dispersive new SH-wave

propagating in the piezoelectromagnetic plate in the case of the homogeneous

boundary conditions at both the upper and lower surfaces of the plate. The values of

the normalized velocity Vnew3/Vtem of the third new SH-wave are calculated with

formula (II.21) and shown by the black dotted lines in the figure. It is blatant that the

normalized velocity Vnew3/Vtem for each mode starts with an infinite value at kd 0

and approaches unity when kd ∞, where k is the wavenumber in the propagation

direction and d is the half-thickness of the piezoeletromagnetic plate as shown in

figure 1 in Introduction.   

It is worth noticing that the dispersion relations in figure III.1 are valid for any

value of the CMEMC 2
emK . It is expected that the nondimensional value of the
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CMEMC can be changed from zero to unity. It is also assumed that the CMEMC

value can equal to zero for nonzero values of the material constants such as e, h, and

. Indeed, the CMEMC value can have a negative sign for the case when a left-

handed material (metamaterial) is studied. Such metamaterials can possess both µ < 0

and < 0. This can result in 2
emK < 0, see formula (I.53) in Chapter I. However, for the

other cases when only either µ < 0 or < 0 there is a probability that 02 =emK can

occur. For zero value of the CMEMC when Vtem = Vt4, it is convenient to use the

velocity Vt4 defined by the first formula in expressions (I.53).  

Figure III.1. The higher-order modes, where the normalzed velocity Vnew3/Vtem is

defined by equation (III.21).  

III.2.  The second eigenvectors  

Employing the second eigenvectors defined by equations (I.69) and (I.70), one

can find that  

2)1(0)1(0 αεμαψεϕ −=+ , 02
22

2

2

2
)5(0)5(0)5(0 =+−−+−=−− ααεμεαμαψεϕ

ememem CK

eh

CK

h

CK

ehe
eU

(III.23)
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0)1(0)1(0 =−=+ μααμμψαϕ , 0
22

2

2

2
)5(0)5(0)5(0 =+−−+−=−− αμμαμααμμψαϕ

ememem CK

he

CK

h

CK

hhe
hU

(III.24)

These values of the second eigenvectors written above lead to the following four

homogeneous equations:  

( ) ( ) ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =++++ bkdFbkdF
K

K
bkdFkdF

em

em (III.25)

( ) ( ) ( )[ ] 0coshsinh 0201
2 =+− kdFkdFαεμ (III.26)

( ) ( ) ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =−++− bkdFbkdF
K

K
bkdFkdF

em

em (III.27)

( ) ( ) ( )[ ] 0coshsinh 0201
2 =−− kdFkdFαεμ (III.28)

It is clearly seen that these four equations written above are identical to four

equations from (III.9) to (III.12) written in the previous subsection. So, it is flagrant

that the second eigenvectors and relations (III.23) and (III.24) actually lead to the

same solution defined by expression (III.21) in the previous subsection. The

dispersion relations for the case of Vph > Vtem are shown in figure III.1 which shows

the behavior of the higher-order modes because the fundamental mode does not exist

for the case of Vph < Vtem.  

III.3.  The first and second eigenvectors  

This subsection treats the third possible case when first eigenvectors (I.66) and

(I.67) are used for the upper free surface of the plate and second eigenvectors (I.69)

and (I.70) are utilized for the lower free surface. It is thought that the converse

configuration must give the same results for the case of the homogeneous boundary

conditions because the upper and lower surfaces are identical. It is obvious that for

the upper surface, equations (III.9) and (III.10) must be considered. For the lower



72

surface, equations (III.27) and (III.28) must be chosen. It is flagrant that in this case

of the first eigenvectors for the upper surface and the second eigenvectors for the

lower surface, the results will be the same to those obtained in the first subsection

because equations from (III.9) to (III.12) are identical to equations from (III.25) to

(III.28).  
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Chapter IV  

The Electrically Open and Magnetically Open Boundary Conditions  

It was demonstrated in Chapters II and III that the exploitation of different

electrical and magnetic boundary conditions can lead to different results. The

electrical and magnetic boundary conditions used in these two chapters soundly result

in the existence of the certain solutions which do not depend on the used

eigenvectors. This chapter studies the SH-wave propagation in the transversely

isotropic piezoelectromagnetic plate when the following mechanical, electrical, and

magnetic boundary conditions are utilized for both the upper and lower free surfaces

of the plate: mechanically free ( 32 = 0), electrically open (D3 = 0), and magnetically

open ( = 0) surface. Therefore, it is natural to use suitable equations obtained in the

previous two chapters. For the upper free surface at x3 = + d, equations (II.1), (III.2), 

and (II.3) are the suitable three homogeneous equations corresponding to three

boundary conditions. For the lower free surface at x3 = – d, equations (II.4), (III.5), 

and (II.6) are the suitable ones. These six homogeneous equations are written with the

weight factors F01, F02, F03, and F04 for convenience and defined below.  

At x3 = + d, the mechanical, electrical, and magnetic boundary conditions are

respectively written as follows:  

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh

0403
)5(0)5(0)5(0

0201
)1(0)1(0

=++++

++

bkdFbkdFheCUb

kdFkdFhe

ψϕ
ψϕ

(IV.1)

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh

0403
)5(0)5(0)5(0

0201
)1(0)1(0

=+−−−

++

bkdFbkdFeUb

kdFkdF

αψεϕ
αψεϕ

(IV.2)

( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh )5(0
0403

)1(0
0201 =+++ ψψ bkdFbkdFkdFkdF (IV.3)
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For the lower free surface at x3 = – d, three homogeneous equations

corresponding to three boundary conditions can be transformed as follows:  

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh

0403
)5(0)5(0)5(0

0201
)1(0)1(0

=−+++

−+

bkdFbkdFheCUb

kdFkdFhe

ψϕ
ψϕ

(IV.4)

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh

0403
)5(0)5(0)5(0

0201
)1(0)1(0

=−−−−

−+

bkdFbkdFeUb

kdFkdF

αψεϕ
αψεϕ

(IV.5)

( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh )5(0
0403

)1(0
0201 =−+− ψψ bkdFbkdFkdFkdF (IV.6)

Using the eigenvector components, these six homogeneous equations can be

further transformed. Therefore, the following subsections deal with the different

cases when the different eigenvectors are utilized.  

IV.1.  The first eigenvectors   

Exploitation of the first eigenvectors defined by expressions (I.66) and (I.67)

means that relations (II.10) and (III.7) must be accounted for the six homogeneous

equations written above. Employing relations (II.9) and (II.10) for equations (IV.1)

and (IV.4), the last two equations can be transformed into the following forms:  

( ) ( ) ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =++++ bkdFbkdF
K

K
bkdFkdF

em

em (IV.7)

( ) ( ) ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =−++− bkdFbkdF
K

K
bkdFkdF

em

em (IV.8)

Using expressions (III.7), equations (IV.2) and (IV.5) can be excluded from the

further considerations in this subsection because they are vanishing. Utilizing the first

eigenvectors defined by expressions (I.66) and (I.67), equations (IV.3) and (IV.6) can

be composed as follows:  
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( ) ( ) ( ) ( )[ ] 0sinhcoshsinhcosh 04032

22

0201 =+−++ bkdFbkdF
K

KK
kdFkdF

em

eem (IV.9)

( ) ( ) ( ) ( )[ ] 0sinhcoshsinhcosh 04032

22

0201 =−−+− bkdFbkdF
K

KK
kdFkdF

em

eem (IV.10)

where 2
eK represents the coefficient of the electromechanical coupling (CEMC). 

Unlike the material characteristic of the two-phase materials such as the CMEMC
2
emK , the CEMC 2

eK is the material characteristic of a single-phase material such as a

pure piezoelectrics and can be defined by the following expression [100, 101]:  

εC

e
Ke

2
2 =     (IV.11)

It is natural to further transform the first pair of equations (IV.7) and (IV.8) and

the second pair of equations (IV.9) and (IV.10). These transformations can be done in

the similar manner completed in Chapter II. First, it is possible to treat equations

(IV.7) and (IV.8). It is possible to add equation (IV.8) to equation (IV.7). The

resulting equation can be divided by ½ and then subtracted from equation (IV.8). The

same simplifications can be carried out with equations (IV.9) and (IV.10). As a result, 

these four equations can be grouped into two independent pairs, of which the first

pair consists of two equations only with the weight factors F01 and F03, but the second

pair of equations is coupled with the weight factors F02 and F04. Thus, the first system

of two homogeneous equations can be introduced in the following forms:  

( ) ( ) 0coshcosh 032

22

01 =−+ bkdF
K

KK
kdF

em

eem   (IV.12)

( ) ( ) 0sinh
1

sinh 032

2

01 =++ bkdF
K

K
bkdF

em

em   (IV.13)

The second system of two homogeneous equations can be written as follows:
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( ) ( ) 0cosh
1

cosh 042

2

02 =++ bkdF
K

K
bkdF

em

em   (IV.14)

( ) ( ) 0sinhsinh 042

22

02 =−+ bkdF
K

KK
kdF

em

eem   (IV.15)

These four equations are valid for the case when the phase velocity Vph is smaller

than the SH-BAW speed Vtem. It is evident that the first pair of these four equations

written above can reveal the velocity Vnew4 of the fourth new SH-wave propagating in

the plate. Indeed, equations (IV.12) and (IV.13) actually lead to the following

dispersion relation:   

( ) ( ) ( ) 01tanh1tanh
1

2
4

2
42

22

=−−−
+

−
temnewtemnew

em

eem VVkdVVkd
K

KK (IV.16)

Using equation (IV.12), the weight factors are defined as follows:  

00402 == FF , ( )bkd
K

KK
F

em

eem cosh
2

22

01

−= , ( )kdF cosh03 −=   (IV.17)

Considering the second pair of equations (IV.14) and (IV.15), the velocity Vnew5

of the fifth new SH-wave propagating in the plate can be revealed. The corresponding

dispersion relation reads:   

( ) ( ) ( ) 01tanh
1

tanh1 2
52

22
2

5 =−
+

−−− temnew
em

eem
temnew VVkd

K

KK
kdVV (IV.18)

Utilizing equation (IV.14), the weight factors can be determined as follows:  

00301 == FF , ( )bkd
K

K
bF

em

em cosh
1

2

2

02

+= , ( )kdF cosh04 −=   (IV.19)
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Following the results obtained in Chapter II, it is possible to mention that the

fundamental modes of the first and second new SH-waves shown in figure II.1 are

calculated with dispersion relations (II.14) and (II.16), respectively. It was discussed

in Chapter II that the velocities of both the new SH-waves approach surface BGM-

wave [100, 101, 105, 106, 107] for a large value of the dimensionless plate thickness

kd. Dispersion relation (IV.18) qualitatively looks like dispersion relation (II.14) with

the single significant difference such that the parameter 2
eK defined by expression

(IV.11) is absent in equation (II.14). The same difference can be found when

dispersion relations (II.16) and (IV.16) are analyzed for comparison. Therefore, the

fundamental modes of the fourth and fifth new SH-waves defined by dispersion

relations (IV.16) and (IV.18) can also approach some surface SH-wave at kd ∞. 

This surface SH-wave is called the piezomagnetic exchange surface Melkumyan

wave or PMESM wave [105]. The surface PMESM-wave was first discovered by

Melkumyan [107] in 2007 and also studied in Refs. [100, 101, 105, 106]. The speed

of the nondispersive PMESM-wave is explicitly defined by the following formula:  

2/12

2

22

1
1

+
−−=

em

eem
temPMESM K

KK
VV    (IV.20)

It is also indispensable to study the case when Vph > Vtem occurs. Exploiting

expression (III.19) from the previous chapter and the wellknown formulae such as

( ) ( )kdbbkd 1coscosh = and ( ) ( )kdbbkd 1sinjsinh = , equations (IV.12) and (IV.13) can be

readily transformed into the following forms:  

( ) ( ) 0coscosh 1032

22

01 =−+ kdbF
K

KK
kdF

em

eem   (IV.21)

( ) ( ) 0sin
1

sinh 1032

2

101 =+− kdbF
K

K
bkdF

em

em   (IV.22)
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As a result, dispersion relation (IV.16) for the determination of the velocity Vnew4

of the fourth new SH-wave can be rewritten for the case of Vph > Vtem in the following

form:  

( ) ( ) ( ) 011tantanh
1

2
4

2
42

22

=−−+
+

−
temnewtemnew

em

eem VVVVkdkd
K

KK (IV.23)

Also, the weight factors for the case of equations from (IV.21) to (IV.23) read:  

00402 == FF , ( )kdb
K

KK
F

em

eem
12

22

01 cos
−= , ( )kdF cosh03 −= ` (IV.24)

where the parameter b1 is defined by expression (III.19).  

Concerning the case of Vph > Vtem, it is also possible to transform the second pair

of equations (IV.14) and (IV.15). These equations can be transformed into the

following forms:   

( ) ( ) 0cos
1

jcosh 1042

2

102 =++ kdbF
K

K
bkdF

em

em   (IV.25)

( ) ( ) 0sinjsinh 1042

22

02 =−+ kdbF
K

KK
kdF

em

eem   (IV.26)

Consequently, the velocity Vnew5 of the fifth new SH-wave propagating in the

plate can be revealed for the case of Vph > Vtem by utilizing the following modified

form of dispersion relation (IV.18):  

( ) ( ) ( ) 01tan
1

1tanh 2
52

22
2

5 =−
+

−−− temnew
em

eem
temnew VVkd

K

KK
VVkd (IV.27)
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The corresponding weight factors are defined by  

00301 == FF , ( )kdb
K

K
bF

em

em
12

2

102 cos
1+= , ( )kdF coshj04 =   (IV.28)

The weight factor F04 in expressions (IV.28) is chosen imaginary because such

choice allow the complete mechanical displacement (I.78), complete electrical

potential (I.79), and complete magnetic potential (I.80) to stay real parameters.  

IV.2.  The second eigenvectors  

In the case of the first and second eigenvectors, equations (IV.1) and (IV.4) can

be transformed into the same forms, see equations from (II.9) to (II.11). For the case

of the second eigenvectors defined by expressions (I.69) and (I.70), equations (IV.7)

and (IV.8) from the previous subsection can be used and multiplied by µ for the

further transformations. So, they read:  

( ) ( )[ ] ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =++++ bkdFbkdF
K

K
bkdFkdF

em

emεμεμ (IV.29)

( ) ( )[ ] ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =−++− bkdFbkdF
K

K
bkdFkdF

em

emεμεμ (IV.30)

Exploiting expressions (III.23), equations (IV.2) and (IV.5) can be written in the

following forms for clearance:  

( ) ( ) ( )[ ] ( ) ( )[ ] 0coshsinh0coshsinh 04030201
2 =+×++− bkdFbkdFkdFkdFαεμ (IV.31)

( ) ( ) ( )[ ] ( ) ( )[ ] 0coshsinh0coshsinh 04030201
2 =−×+−− bkdFbkdFkdFkdFαεμ (IV.32)

Utilizing second eigenvectors (I.69) and (I.70), equations (IV.3) and (IV.6)

multiplied by the electromagnetic constant read:  
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( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh 04032

22
2

0201
2 =+−−+− bkdFbkdF

K

KK
kdFkdF

em

em ααα (IV.33)

( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh 04032

22
2

0201
2 =−−−−− bkdFbkdF

K

KK
kdFkdF

em

em ααα (IV.34)

In equations (IV.33) and (IV.34) there is the parameter 2
αK also used in Refs. 

[100, 101, 102]. It couples together the third term with electromagnetic constants in

the numerator of the CMEMC defined by the second expression in definitions (I.53)

and the second term in the denominator. This material characteristic is therefore

defined by:  

αα
α

α C

eh

C

eh
K ==

2
2     (IV.35)

Because of the fact that there are only four unknown weight factors F01, F02, F03, 

and F04, it is blatant that it is convenient to deal with four homogeneous equations

instead of the first six equations written above in this subsection. To reduce the

number of equations from six to four, it is natural to properly transform equations

(IV.29), (IV.30), (IV.33), and (IV.34). For this purpose, it is possible to treat the first

pair of equations (IV.29) and (IV.33). It is obvious that each of these two equations

must have the same first term which must be equal to the first term in equation

(IV.31). Accounting equation (IV.33) for several simple transformations of equation

(IV.29), the last equation can be finally introduced in the following form:   

( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( )( ) ( ) ( )( )[ ]

( ) ( )[ ] 0sinhcosh

coshsinhsinhcosh

coshsinh
1

coshsinh

04032

22
2

0201
2

04032

2

0201
2

=+−−

−+−−

++++−

bkdFbkdF
K

KK

kdkdFkdkdF

bkdFbkdF
K

K
bkdFkdF

em

em

em

em

αα

α

εμαεμ

(IV.36)
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Accounting equation (IV.29) for several simple transformations of equation (IV.33), 

the last equation can be obtained in the same form written above in equation (IV.36).  

It is overt that the same transformations can be done with the second pair of two

equations (IV.30) and (IV.34). Indeed, these two equations can be separately

transformed into the following form:  

( ) ( ) ( )[ ] ( ) ( )[ ]

( ) ( )( ) ( ) ( )( )[ ]

( ) ( )[ ] 0sinhcosh

coshsinhsinhcosh

coshsinh
1

coshsinh

04032

22
2

0201
2

04032

2

0201
2

=−−−

−−−−

−++−−

bkdFbkdF
K

KK

kdkdFkdkdF

bkdFbkdF
K

K
bkdFkdF

em

em

em

em

αα

α

εμαεμ

(IV.37)

So, the resulting system of four homogeneous equations (IV.31), (IV.32), 

(IV.36), and (IV.37) with four unknown weight factors F01, F02, F03, and F04 must be

further treated. It this set of four equations, it is also necessary to account the fact that

F01 = F02 = 0. This equality is clearly seen in equations (IV.31) and (IV.32). 

Therefore, equations (IV.31) and (IV.37) can be rewritten in the following simplified

forms:   
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(IV.39)

It is clearly seen in equations (IV.38) and (IV.39) that they have only the single

difference such as the sign before the weight factor F04. As a result, the following

dispersion relation for the determination of the velocity Vnew6 of the sixth new SH-

wave propagating in the plate can be obtained by using equation (IV.38) or (IV.39):  
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( ) ( ) 0
1

1tanh1
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em
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KK
VVkdVV α

εμ
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0040201 === FFF , 103 =F    (IV.41)

It is also flagrant that equations (IV.38) and (IV.39) lead to the following second

dispersion relation for the determination of the velocity Vnew7 of the seventh new SH-

wave that is written with the corresponding weight factors as follows:  

( ) ( ) 01tanh
1

1 2
72

222
2

7 =−
+

−−− temnew
em

em
temnew VVkd

K

KK
VV α

εμ
α (IV.42)

0030201 === FFF , 104 =F    (IV.43)

It is worth noting that dispersion relations (IV.40) and (IV.42) are valid for the

case of Vph < Vtem. Thus, these dispersion relations reveal the fundamental modes. 

These zero-order modes can exist in this case because the corresponding SH-SAW

discovered by the author in previous work [101] can propagate with the velocity

defined by expression (163) in book [101], see also expression (5) and (6) in paper

[105] available on-line for an open access. However, this SH-SAW has a peculiarity

such that this SH-SAW speed is slightly smaller than the SH-BAW speed Vtem. So, 

the value of this SH-SAW velocity is situated significantly closer to the value of the

SH-BAW velocity Vtem in comparison with the other SH-SAWs mentioned in the

previous subsection, Chapter II, and the following chapter.  

In the case of Vph > Vtem, dispersion relations (IV.40) and (IV.42) are respectively

transformed into the following forms:  
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IV.3.  The first and second eigenvectors  

In this case, first eigenvectors (I.66) and (I.67) are used for the upper free

surface of the piezoelectromagnetic plate at x3 = + d, and the second eigenvectors

(I.69) and (I.70) are employed for the lower free surface at x3 = – d. Therefore, 

equations (IV.7) and (IV.9) from the first subsection of this chapter can be borrowed

for the upper surface. They read:   

( ) ( ) ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =++++ bkdFbkdF
K

K
bkdFkdF

em

em (IV.46)

( ) ( ) ( ) ( )[ ] 0sinhcoshsinhcosh 04032

22

0201 =+−++ bkdFbkdF
K

KK
kdFkdF

em

eem (IV.47)

For the lower surface at x3 = – d with the second eigenvectors (I.69) and (I.70), 

the corresponding equations are equations (IV.30), (IV.32), and (IV.34) from the

previous subsection. These three homogeneous equations can be written as the

following two equations:  

( ) ( )[ ] ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2
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K
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em

emεμεμ (IV.48)

( ) ( ) ( )[ ] ( ) ( )[ ] 0coshsinh0coshsinh 04030201
2 =−×+−− bkdFbkdFkdFkdFαεμ (IV.49)

( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh 04032

22
2

0201
2 =−−−−− bkdFbkdF

K

KK
kdFkdF

em

em ααα (IV.50)

These three homogenous equations written above can be reduced to two ones. 

Indeed, both equations (IV.48) and (IV.50) can be separately transformed into the

following form:  
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So, it is natural to use equation (IV.51) instead of equations (IV.48) and (IV.50)

to have four homogeneous equations with four unknown weight factors F01, F02, F03, 

and F04. Using equation (IV.49), it is possible to record the following relationship

between the weight factors F01 and F02:  

( ) ( )kdFkdF coshsinh 0201 =     (IV.51)

Next, utilization of relation (IV.51) for equations (IV.46), (IV.47), and (IV.51)

leads to the following three homogeneous equations for the determination of three

weight factors:  
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It is convenient to use the second of these three equations written above to

determine F01 as a function of F03 and F04. Thus, the following two homogeneous

equations for determination of F03 and F04 can be obtained from equations (IV.52)

and (IV.54):  



85

( ) ( )

( ) ( ) 0tanh2tanh
1

2tanh
1

tanh

2

22

04

2

22

03

=
+

−−+

+
−−

bkdkd
K

KK
bF

kd
K

KK
bkdbF

em

eem

em

eem

(IV.55)
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As a result, the following complicated dispersion relation for the determination

of the velocity Vnew8 of the eighth new SH-wave can be written as follows:

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) 011tanh
112cosh

1

2tanh
1

1tanh1

1
1tanh1

12cosh

1

1tanh2tanh
1

1

2
8

2
82

22

2

222

2

22
2

8
2

8

2

222
2

8
2

82

222

2
82

22
2

8

=−−−
+

−+
+

−×

+
−−−−−

+
−−−−+

+
−×

−
+

−−−

temnewtemnew
em

em

em

eem

em

eem
temnewtemnew

em

em
temnewtemnew

em

eem

temnew
em

eem
temnew

VVVVkd
K

KK

K

KK

kd

kd
K

KK
VVkdVV

K

KK
VVkdVV

K

KK

kd

VVkdkd
K

KK
VV

α

α

εμ
α

εμ
α

εμ
α

(IV.57)

Note that dispersion relation (IV.57) is for the case of Vph < Vtem and it can be

readily transformed into the corresponding dispersion relation for the case of Vph >

Vtem. This is like the previous transformations carried out several times in the previous

subsections and chapters. So, it is thought that these transformations are already clear

and there is no necessity to repeat them because it is necessary to save space for the

following chapters. It is obvious that for Vph < Vtem there can exist only single

fundamental mode and for Vph > Vtem, an infinite number of the higher-order modes

can be found because the hyperbolic tangent goes to the periodic function such as

tangent. It is worth noting that obtained dispersion relation (IV.57) is for the case

when all four weight factors F01, F02, F03, and F04 can have some nonzero values. 
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This is true because F01 and F02 are soundly found from relation (IV.51) and the other

couple of the weight factors can be found from relation (IV.55) or (IV.56). However, 

it is possible to demonstrate that an additional dispersion relation can be also found

for this mixed case when the first eigenvectors are used for the upper surface of the

plate and the second eigenvectors are exploited for the lower surface. Note that this

second case is for F01 = F02 =0.   

For this purpose, consider five homogeneous equations from (IV.46) to (IV.50)

anew. It is possible to separately transform equations (IV.46) and (IV.47) into the

same equation. These transformations are similar to those carried out for equations

(IV.48) and (IV.50). So, both equation (IV.46) and (IV.47) can be led to the

following form:   
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(IV.58)

In equation (IV.58), it is already accounted that this is the case when F01 = F02

=0 and the weight factors F03 and F04 must be found. Consequently, equation (IV.51)

reads as follows:    
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(IV.59)

For this reason, the following dispersion relation for the determination of the

velocity Vnew9 of the ninth new SH-wave is composed as follows:  
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Obtained dispersion relation (IV.60) is apt for the case of Vph < Vtem. The weight

factors F03 and F04 can be found from equation (IV.58) or (IV.59). Expression (IV.60)

is relatively simple and can be therefore rewritten for the case of Vph > Vtem as

follows:  
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(IV.61)

It is also possible to treat the reverse case when equations (IV.8) and (IV.10) are

used for the upper surface of the piezoelectromagnetic plate and equations (IV.29), 

(IV.31), and (IV.33) are utilized for the lower surface. For this reverse case, 

equations (IV.57) and (IV.60) also represent dispersion relations. This means that all

possible dispersion relations were found.  
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Chapter V  

The Electrically Closed and Magnetically Closed Boundary Conditions  

The previous chapter has provided dispersion relations for propagation of

several new SH-waves in the piezoelectromagnetic plate when the upper and lower

free surfaces of the plate are mechanically free ( 32 = 0), electrically open (D3 = 0), 

and magnetically open ( = 0) surfaces. This chapter studies the other possible case

when the mechanical boundary condition remains the same, the electrical one

represents the electrically closed surface ( = 0), and the magnetic one is the

magnetically closed surface (B3 = 0).  

Exploiting the weight factors F01, F02, F03, and F04, the mechanical, electrical, 

and magnetic boundary conditions are respectively written for the case of the upper

surface at x3 = + d in the following forms:  

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh

0403
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( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh )5(0
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(V.3)

These three homogeneous equations written above represent equations (II.1), (II.2), 

and (III.3) given in the second and third chapters.  

For the lower free surface at x3 = – d, three homogeneous equations

corresponding to three boundary conditions can be introduced in the following forms:  

( ) ( ) ( )[ ]
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( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh )5(0
0403

)1(0
0201 =−+− ϕϕ bkdFbkdFkdFkdF (V.5)

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh
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(V.6)

These three equations represent equations (II.4), (II.5), and (III.6) given in the second

and third chapters. So, these six homogeneous equations written above must be

further transformed. For this purpose, only the first eigenvectors or only the second

eigenvectors, or the first and second eigenvectors can be used.   

V.1.  The first eigenvectors   

The first eigenvectors are defined by expressions (I.66) and (I.67). Also, 

relations (II.10) and (III.7) must be accounted for the six homogeneous equations

written above. It is obvious that equations (IV.7) and (IV.8) from the previous

chapter are also valid here because the mechanical boundary condition remains the

same. Thus, equations (V.1) and (V.4) are written as follows:  
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1
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em
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K

K
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em

em (V.8)

Equations (V.2) and (V.5) corresponding to the electrical boundary condition

can be rewritten in the following forms, utilizing the first eigenvectors defined by

expressions (I.66) and (I.67):  
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em
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where both equations were multiplied by the electromagnetic constant .  

Finally, equations (V.3) and (V.6) corresponding to the magnetic boundary

condition can be significantly simplified by using relation (III.8) from Chapter III. 

Therefore, these two equations are rewritten in the following simplified forms:  

( ) ( ) ( )[ ] ( ) ( )[ ] 0coshsinh0coshsinh 04030201
2 =+×−+− bkdFbkdFkdFkdFεμα (V.11)

( ) ( ) ( )[ ] ( ) ( )[ ] 0coshsinh0coshsinh 04030201
2 =−×−−− bkdFbkdFkdFkdFεμα (V.12)

It is clearly seen that equations (V.9) and (V.10) written for the electrical

boundary conditions represent equations (IV.33) and (IV.34) from the second

subsection of the previous chapter written for the magnetic boundary condition, 

respectively. Also, equations (V.11) and (V.12) written for the magnetic boundary

condition represent equations (IV.31) and (IV.32) from Chapter IV written for the

electrical one, respectively. As a result, it is possible to state that this case of the

electrical and magnetic boundary conditions with the first eigenvectors can give the

same dispersion relations (IV.40) and (IV.42) obtained in Chapter IV for the second

eigenvectors. Dispersion relations (IV.40) and (IV.42) are valid for the case of Vph <

Vtem when the velocities Vnew6 and Vnew7 of the sixth and seventh new SH-waves

(fundamental modes) can be calculated. For the higher-order modes with Vph > Vtem, 

these velocities Vnew6 and Vnew7 can be calculated with formulae (IV.44) and (IV.45).   

V.2.  The second eigenvectors  

For the second eigenvectors, equations (V.7) and (V.8) corresponding to the

mechanical boundary condition are also valid. This is true due to relations from (II.9)

to (II.11). Using second eigenvectors (I.69) and (I.70), equations (V.2) and (V.5)

corresponding to the electrical boundary condition are written as follows:   
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( ) ( ) ( ) ( )[ ] 0sinhcoshsinhcosh 04032
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KK
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em

mem (V.14)

where 2
mK represents the coefficient of the magnetomechanical coupling (CMMC). 

Unlike the material characteristic of the two-phase materials such as the CMEMC
2
emK , the CMMC 2

mK is a material characteristic of a single-phase material such as a

pure piezomagnetics. It can be defined by the following expression [100, 101]:  

μC

h
Km

2
2 =     (V.15)

It is apparent that equations (V.3) and (V.6) are vanishing because there are two

zero factors defined by expression (III.24) from Chapter III. Also, equations (V.13)

and (V.14) look like equations (IV.9) and (IV.10) from the first subsection of the

previous chapter. However there is the single significant difference such that

equations (V.13) and (V.14) use the CMMC 2
mK , but not the CEMC 2

eK used in

equations (IV.9) and (IV.10). So, it is possible to use 2
mK instead of 2

eK in dispersion

relations (IV.16) and (IV.18) obtained in the previous chapter. Therefore, it is

possible to determine the velocities Vnew10 and Vnew11 of the tenth and eleventh new

SH-waves propagating in the transversely isotropic piezoelectromagnetic plate. For

the fundamental modes with Vph < Vtem, these corresponding new dispersion relations

respectively read:   
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It is transparent that for kd ∞, both the velocities Vnew10 and Vnew11 of the

dispersive SH-waves propagating in the plate will approach some nondispersive SH-

SAW velocity recently discovered by Melkumyan [107]. This SH-SAW velocity is

called the piezoelectric exchange surface Melkumyan wave or PEESM wave [105]

and is defined by the following expression:  

2/12

2

22

1
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−−=

em

mem
temPEESM K

KK
VV    (V.18)

For the case of Vph > Vtem, dispersion relations (V.16) and (V.17) are transformed

into the following forms:   
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It is worth noticing that dispersion relations (V.19) and (V.20) can reveal an infinite

number of the higher-order modes of the new dispersive SH-waves propagating in the

transversely isotropic piezoelectromagnetic plate.  

V.3.  The first and second eigenvectors  

In this case, the first eigenvectors must be used for the upper surface and the

second ones for the lower surface. However, it is also possible to use the reverse case

when second eigenvectors are utilized for the upper surface and the first ones for the

lower surface. The resulting two dispersion relations must be the same for both the

cases. This is similar to the cases treated in the third subsection of the previous

chapter. It is also possible even to use two dispersion relations (IV.57) and (IV.60)
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obtained in Chapter IV and to change them by substituting 2
mK instead of 2

eK . It is

flagrant that the resulting two new dispersion relations will represent the solutions for

the case studied in this subsection. So, equation (IV.57) is transformed into the

following dispersion relation for the determination of the velocity Vnew12 of the

twelfth new SH-wave:  
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(V.21)

Analogically, equation (IV.60) is transformed into the following dispersion

relation for the determination of the velocity Vnew13 of the thirteenth new SH-wave:  
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(V.22)

Obtained dispersion relations (V.21) and (V.22) are fitting for the case of the

fundamental modes when Vph < Vtem. For this case, dispersion relation (V.22) reads:   
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Chapter VI  

Continuity of , D3, , and B3  

This chapter and four following chapters study the SH-wave propagation in the

piezoelectromagnetic plate when the applied electrical and magnetic boundary

conditions allow the evaluation of the influence of the material parameters of the free

space (vacuum) such as the dielectric permittivity constant 0 and the magnetic

permeability constant 0. The values of these vacuum material parameters are given

in the tenth subsection of Chapter I, in which it was also mentioned that the value of

the vacuum elastic constant is too negligible to account in the theoretical

considerations. It is worth also noticing that the previous four chapters have provided

the dispersion relations for several new SH-waves when the used electrical and

magnetic boundary conditions allow one to avoid the consideration of the material

properties of a vacuum.  

So, the mechanical boundary conditions for this case are given by equations

(V.1) and (V.4) from the previous chapter for the upper and lower surfaces of the

plate, respectively. These two equations are already designed to exploit the weight

factors F01, F02, F03, and F04. Also, the electrical and magnetic boundary conditions

can be transformed in order to have the weight factors F01, F02, F03, and F04. First of

all, it is necessary to write the electrical and magnetic boundary conditions with the

weight factors F(1), F(2), F(3), F(4), F(5), and F(6) used in the eleventh subsection of

Chapter I. In this subsection of the first chapter, the electrical boundary conditions

such as the continuity of both the electrical potential and the electrical induction D3, 

namely = f and D3 = Df are defined by expressions from (I.91) to (I.96) for the

upper surface, where the superscript “f” relates to the free space (vacuum). It is

natural to exclude the weight factor FE for a vacuum in expressions (I.92) and (I.95). 
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As a result, the following single equation corresponding to the electrical boundary

conditions for the upper surface can be obtained:  

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }( )

( ) ( ) ( ){
( ) ( ) ( )} 0jexpjexpjexp

jexpjexpjexpj

jexpjexp

jexpjexpjexpjexp

)6(
3

)5(0)6()5(
3

)5(0)5()4(
3

)1(0)4(

)3(
3

)1(0)3()2(
3

)1(0)2()1(
3

)1(0)1(
0

)5(0)5(0)5(0)6(
3

)6(
3

)6()5(
3

)5(
3

)5()1(0)1(0

)4(
3

)4(
3

)4()3(
3

)3(
3

)3()2(
3

)2(
3

)2()1(
3

)1(
3

)1(

=+++

++−

−−+−+×

+++

dkFdkFdkF

dkFdkFdkFk

eUdkkFdkkF

dkkFdkkFdkkFdkkF

ϕϕϕ
ϕϕϕε

αψεϕαψεϕ
(VI.1)

Also, the magnetic boundary conditions such as the continuity of both the

magnetic potential and the electrical induction B3, namely = f and B3 = Bf are

defined by expressions from (I.97) to (I.102) for the upper surface. It is natural to

exclude the weight factor FM for a vacuum in expressions (I.98) and (I.101) and to

write down the following single equation corresponding to the magnetic boundary

conditions:  
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For the case of the homogeneous boundary conditions, the electrical and

magnetic boundary conditions for the lower surface are defined by expressions from

(I.105) to (I.110) and from (I.111) to (I.116), respectively. For the case of x3 = – d, 

they respectively read:   
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and  
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These four homogeneous equations written above with the weight factors F(1), 

F(2), F(3), F(4), F(5), and F(6) must be transformed into four equations with the weight

factors F01, F02, F03, and F04. As a result, three homogeneous equations corresponding

to the mechanical, electrical, and magnetic boundary conditions for the upper surface

at x3 = + d read:   
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For the lower free surface at x3 = – d, three homogeneous equations

corresponding to the mechanical, electrical, and magnetic boundary conditions can be

written in the following forms:  
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This system of six transformed homogeneous equations from (VI.5) to (VI.10)

must be resolved to get dispersion relations for several different cases when only the

first eigenvectors, only the second eigenvectors, or the first and second ones are

exploited.  

VI.1.  The first eigenvectors   

Employing the first eigenvectors defined by expressions (I.66) and (I.67) in the

first chapter for the upper surface of the plate, it is obvious that equation (VI.5) can

be transformed into equation (V.7). Also, equations (VI.6) and (VI.7) written for the

upper surface can be significantly simplified by using expressions (III.7) and (III.8)

from the third chapter. Accordingly, transformed equations (VI.5), (VI.6), and (VI.7)

read as follows:  
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For the lower free surface at x3 = – d, the corresponding three homogeneous

equations can be written in the following simplified forms:  
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It is clearly seen that there are three pairs of equations such as equations (VI.11)

and (VI.14), equations (VI.12) and (VI.15), and equations (VI.13) and (VI.16). It is

worth noticing that all of these six equations have the same dimension such as s2/m2. 

Following the transformations used in the previous chapters, it is possible to obtain

two independent sets, of which each consists of three equations. The first set of three

equations is coupled with the weight factors F01 and F03. These three homogeneous

equations read:  
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It is apparent that each of equations (VI.18) and (VI.19) can be represented as

the following equation:  
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Equation (VI.20) represent a subtraction of equation (VI.19) from (VI.18) or vice

versa. Thus, equations (VI.17) and (VI.20) lead to the following dispersion relation

for the determination of the velocity Vnew14 of the fourteenth new SH-wave in the

piezoelectromagnetic plate when Vph < Vtem:  
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where CL is the speed of light in a vacuum.  

The second set of three homogeneous linear equations coupled with the weight

factors F02 and F04 can be formed by subtractions of equation (VI.11) from (VI.14), 

equation (VI.12) from (VI.15), and equation (VI.13) from (VI.16). So, the resulting

equations read:  
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Similarly, each of equations (VI.23) and (VI.24) can be represented as the

following equation:  
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As a result, equations (VI.22) and (VI.25) solidly lead to the following

dispersion relation for the determination of the velocity Vnew15 of the fifteenth new

SH-wave propagating in the piezoelectromagnetic plate when Vph < Vtem:  
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It is clearly seen in dispersion relations (VI.21) and (VI.26) that for kd ∞, the

velocities Vnew14 and Vnew15 of the fundamental modes of the new SH-waves approach

the corresponding SH-SAW recently discovered in book [101] (see formula (108) in

the book) and also investigated in paper [106]. It is also possible to give dispersion

relations (VI.21) and (VI.26) for the case of Vph > Vtem. They respectively read:  
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VI.2.  The second eigenvectors  

The second eigenvectors defined by expressions (I.69) and (I.70) lead to

equalities (III.23) and (III.24). Using them for the upper surface of the plate when x3

= + d, equations from (VI.5) to (VI.7) are transformed into the following forms:  
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For the lower surface at x3 = – d, equations from (VI.8) to (VI.10) can be

transformed into the following forms:  
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These six homogeneous equations from (VI.29) to (VI.34) look like equations

from (VI.11) to (VI.16) written in the previous subsection. Therefore, these six

equations can be transformed by the same way. Indeed, these six equations can be

represented as two independent sets, of which each consists of three equations. The

first set is coupled with the weight factors F01 and F03 and the second set is coupled

with the weight factors F02 and F04. Then, each set consisting of three equations can

be represented as a set of two equations. Consequently, the resulting four equations

with the same dimension of s2/m2 read:  
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Similar to the results obtained in the previous subsection, two dispersion

relations can be obtained: one is for the case of F02 = F04 = 0 and the second is for F01

= F03 = 0. Therefore, the velocities Vnew16 and Vnew17 of the sixteenth and seventeenth

new SH-waves propagating in the plate can be calculated with the following

dispersion relations written for Vph < Vtem:   
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It is clearly seen in dispersion relations (VI.39) and (VI.40) that for kd ∞, the

velocities Vnew16 and Vnew17 of the fundamental modes of the new SH-waves approach

the corresponding SH-SAW recently discovered in book [101], see formula (120) in

the book. This type of the new SH-SAWs was also investigated in paper [106]. For

Vph > Vtem, these dispersion relations read:  
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VI.3.  The first and second eigenvectors  

This subsection investigates the case when the first eigenvectors are used for the

upper surface and the second eigenvectors are exploited for the lower surface. 

Therefore, equations (VI.11), (VI.12), and (VI.13) from the first subsection and

equations (VI.32), (VI.33), and (VI.34) from the second subsection must be utilized. 

However, one can also treat the reverse situation and it is expected that the resulting

dispersion relation will be the same. In this reverse case, equations (VI.14), (VI.15), 

(VI.16), (VI.29), (VI.30), and (VI.31) must be employed. So, the first pair of

equations (VI.11) and (VI.32) can be transformed into the following two equations:   
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Besides, the second pair of equations (VI.12) and (VI.34) can be also

transformed into the following two independent equations:  
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On the other hand, the last pair of equations (VI.13) and (VI.33) cannot be

transformed into two independent equations. Therefore, each of equations (VI.43)

and (VI.45) coupled with the weight factors F01 and F03 can be led to the same

equation. Analogically, each of equations (VI.44) and (VI.46) coupled with the

weight factors F02 and F04 can be also led to the same equation. Thus, it is possible

finally cope with four equations and four unknown weight factors F01, F02, F03, and

F04. This new set of the four homogeneous equations reads:  
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It is obvious that F01 and F02 are functions of F03 and F04 in formulae (VI.47)

and (VI.48), respectively. Therefore, equations (VI.49) and (VI.50) can be written

only with the weight factors F03 and F04 as follows:   
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It is obvious that the following complicated dispersion relation can be obtained

for the calculation of the velocity Vnew18 of the eighteenth new SH-wave propagating

in the piezoelectromagnetic plate in the case of Vph < Vtem:  
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For the case of kd ∞, this dispersion relation takes the following form:  
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Chapter VII  

Magnetically Open Surfaces and Continuity of and D3  

This chapter also studies the homogeneous case when the same set of the

boundary conditions is exploited for both the upper and lower surfaces of the

piezoelectromagnetic plate. The mechanically free surface ( 32 = 0) is the used

mechanical boundary condition. Besides, the electrical boundary conditions are the

continuity of both and D3 at the surfaces, i.e. = f and D3 = Df. The magnetic

boundary condition is the magnetically open surface ( = 0). With the weight factors

F01, F02, F03, and F04, three homogeneous equations corresponding to the mechanical, 

electrical, and magnetic boundary conditions for the upper surface at x3 = + d are

composed as follows:   
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For the case of the lower free surface at x3 = – d, three homogeneous equations

corresponding to the mechanical, electrical, and magnetic boundary conditions read:  

( ) ( ) ( )[ ]
( ) ( ) ( )[ ] 0coshsinh

coshsinh

0403
)5(0)5(0)5(0

0201
)1(0)1(0

=−+++

−+

bkdFbkdFheCUb

kdFkdFhe

ψϕ
ψϕ

(VII.4)



108

( ) ( ) ( ){ }
( ) ( ) ( ){ }

( ){ ( ) ( ) ( )} 0sinhcoshsinhcosh

coshsinh

coshsinh

)5(0
04

)5(0
03

)1(0
02

)1(0
010

0403
)5(0)5(0)5(0

0201
)1(0)1(0

=−+−+

−−−−

−+

bkdFbkdFkdFkdF

bkdFbkdFeUb

kdFkdF

ϕϕϕϕε

αψεϕ
αψεϕ

(VII.5)

( ) ( ) ( ) ( ) 0sinhcoshsinhcosh )5(0
04

)5(0
03

)1(0
02

)1(0
01 =−+− bkdFbkdFkdFkdF ψψψψ (VII.6)

Thus, it is possible now to further transform these six homogeneous equations

written above employing the first and second eigenvectors.  

VII.1.  The first eigenvectors   

Employing the first eigenvectors defined by expressions (I.66) and (I.67) and

equalities (III.7) and (III.8), these six homogeneous equations written above can be

transformed into suitable forms. For the upper free surface at x3 = + d, it is possible to

write the following forms of transformed equations from (VII.1) to (VII.3):   
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For the lower free surface at x3 = – d, the corresponding three homogeneous

equations can be represented as follows:  
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To have the same dimension of s2/m2, equations (VII.7) and (VII.10) were

multiplied by ( µ – 2)/(e – h ), equations (VII.8) and (VII.11) were multiplied by

/ 0, and equations (VII.9) and (VII.12) were multiplied by µ. So, it is also possible

to use 0 instead of in the corresponding equations. However, it is thought that to

deal with is preferable because the value of 2 must be restricted by the value of µ, 

namely µ > 2 [65, 68]. In the case of the utilization of 0 instead of , the inequality

0µ > 2 is dim and there is a possibility of 0µ < 2 for large values of the

electromagnetic constant .  

It is also possible to represent these six homogeneous equations with the same

dimension which is unequal to s2/m2 when equations (VII.7) and (VII.10) have the

factor of (e – h ) instead of ( µ – 2), equations (VII.8) and (VII.11) have the factor

of e instead of 2, and equations (VII.9) and (VII.12) have the factor of h instead of

µ. In this case, these six homogeneous equations lead to the dispersion relations

obtained in Chapter II for the other set of the electrical and magnetic boundary

conditions such as the electrically closed ( = 0) and magnetically open ( = 0)

surface. Therefore, it is expected that the dispersion relations obtained in this

subsection below can be also true for the boundary conditions used in Chapter II. 

However, to use 0 instead of is unrelated for the case of Chapter II because the

vacuum material parameters are absent in the considerations of the second chapter.   

Following the transformations exploited in the previous chapters, it is natural to

add equation (VII.8) to (VII.9) and equation (VII.11) to (VII.12) to deal with four

homogeneous equations with four weight factors F01, F02, F03, and F04. It is also

apparent that the resulting four equations can be represented as two independent pairs

of the corresponding equations after the usual transformations. Therefore, the

transformed equations read:  
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Finally, the first pair of equations (VII.13) and (VII.14) and the second pair of

equations (VII.15) and (VII.16) result in two different dispersion relations. These

dispersion relations determine the velocities Vnew19 and Vnew20 of the nineteenth and

twentieth new SH-waves propagating in the piezoelectromagnetic plate in the case of

Vph < Vtem. So, they are composed for the case of Vph < Vtem as follows:   
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It is flagrant in dispersion relations (VII.17) and (VII.18) that for kd ∞, both

the velocities Vnew19 and Vnew20 approach the corresponding SH-SAW velocity

recently discovered in book [101], see formulae from (148) to (152) in the book. It is

also lucid that for the case of Vph > Vtem the above written dispersion relations read:  
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VII.2.  The second eigenvectors  

The second eigenvectors defined by expressions (I.69) and (I.70) result in the

existence of equalities (III.23) and (III.24). Using them for the upper and lower

surfaces of the plate, equations from (VII.1) to (VII.6) can be transformed into

equations from (VI.29) to (VI.34) obtained in the second subsection of the previous

chapter. So, the resulting dispersion relations will be similar to those defined by

expressions (VI.39) and (VI.40).   

VII.3.  The first and second eigenvectors  

This case is similar to that treated in the third subsection of the previous chapter. 

For the upper surface, equations from (VII.7) to (VII.9) must be used and for the

lower surface, equations from (VI.32) to (VI.34) defined in the previous chapter are

utilized. It is lucid that here there are also two pairs of equations for transformations. 

Equations (VII.7) and (VI.32) can be transformed into two independent equations

(VI.43) and (VI.44) written in the previous chapter. Also, Equations (VII.8) and

(VI.34) can be transformed into two independent equations (VI.45) and (VI.46). 

Next, each of equations (VI.43) and (VI.45) coupled with the weight factors F01 and

F03 is transformed into equation (VI.47) and each of equations (VI.44) and (VI.46)

coupled with the weight factors F02 and F04 is transformed into equation (VI.48). 

Using equations (VI.47) and (VI.48), the weight factors F01 and F02 are respectively

determined as follows:   
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Exploiting expressions (VII.21) and (VII.22), the weight factors F01 and F02 can

be excluded from equations (VII.9) and (VI.33) rewritten below as follows:  
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Consequently, these two equations after the transformations to have two

equations with two unknown weight factors F03 and F04 read:   
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Finally, the dispersion relation for the calculation of the velocity Vnew21 of the

twenty first new SH-wave propagating in the piezoelectromagnetic plate in the case

of Vph < Vtem is defined by the following complicated equation:  
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Chapter VIII  

Magnetically Closed Surfaces and Continuity of and D3  

It is also natural to theoretically treat the other possible magnetic boundary

condition to compare with the results obtained in the previous chapter. In this chapter, 

the mechanical and electrical boundary conditions at the upper and lower interfaces

between the piezoelectromagnetic plate and a vacuum are similar to those used in the

previous chapter: mechanically free surface ( 32 = 0) and the continuity of both the

electrical potential and electrical induction, namely = f and D3 = Df, where D3 is

the normal component of the electrical displacements and the superscript “f” relates

to the free space. Besides, here the magnetic boundary condition is the magnetically

closed surface (B3 = 0) instead of the magnetically open surface ( = 0) utilized in the

previous chapter.  

Three homogeneous equations corresponding to the mechanical, electrical, and

magnetic boundary conditions (upper surface at x3 = + d) have the following forms:   
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(VIII.3)

For the lower surface of the plate (x3 = – d) three homogeneous equations

corresponding to the mechanical, electrical, and magnetic boundary conditions can be

written as follows:  
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( ) ( ) ( )[ ]
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( ) ( ) ( ){ }
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(VIII.6)

So, this set of six homogeneous equations must lead to several dispersion

relations obtained by using the first and second eigenvectors.  

VIII.1.  The first eigenvectors   

Exploiting the first eigenvectors defined by expressions (I.66) and (I.67) and

equalities (III.7) and (III.8), these six homogeneous equations written above can be

transformed. For the upper surface (x3 = + d) the corresponding three homogeneous

equations read:   

( ) ( ) ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =++++ bkdFbkdF
K

K
bkdFkdF

em

emεμ (VIII.7)

( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh 04032

22
2
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K

KK
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em

em ααα (VIII.8)

( ) ( ) ( ){ } 0coshsinh 0201
2 =+− kdFkdFαεμ (VIII.9)

For the lower surface (x3 = – d) the corresponding three homogeneous equations

take the following forms:  

( ) ( ) ( ) ( )[ ] 0coshsinh
1

coshsinh 04032

2

0201 =−++− bkdFbkdF
K

K
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em

emεμ (VIII.10)
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( ) ( )[ ] ( ) ( )[ ] 0sinhcoshsinhcosh 04032
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K
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em
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( ) ( ) ( ){ } 0coshsinh 0201
2 =−− kdFkdFαεμ (VIII.12)

It is blatant that these six homogeneous equations written above are identical to

equations from (IV.29) to (IV.34) obtained in Chapter IV. Therefore, they lead to two

dispersion relations given by formulae (IV.40) and (IV.42) for the determination of

the velocities Vnew6 and Vnew7 of the sixth and seventh new SH-waves propagating in

the piezoelectromagnetic plate. Next, it is possible to consider the case of the second

eigenvectors.  

VIII.2.  The second eigenvectors  

In this subsection, second eigenvectors defined by expressions (I.69) and (I.70)

from the first chapter must be exploited. The second eigenvectors result in equalities

(III.23) and (III.24) obtained in Chapter III that must be also utilized for six equations

from (VIII.1) to (VIII.6). Using expression (III.24), it is obvious that equations

(VIII.3) and (VIII.6) corresponding to the magnetic boundary condition can be

excluded from the further theoretical considerations done in this subsection. Thus, 

this is the case of four equations with four unknown weight factors F01, F02, F03, and

F04. For the upper surface at x3 = + d, equations (VI.29) and (VI.30) written in

Chapter VI are also suitable here. For the lower surface at x3 = – d, equations (VI.32)

and (VI.33) are appropriate. So, four homogeneous equations respectively read:   

( ) ( ) ( ) ( )[ ] 0coshsinh
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It is obvious that there are two pairs of equations: the first pair is equations

(VIII.13) and (VIII.15) and the second pair is equations (VIII.14) and (VIII.16). After

the usual transformations used in the previous chapters, these two pairs can be

represented as the following two independent pairs of equations:  
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As a result, these two independent pairs of four equations lead to two

independent dispersion relations for the case of Vph < Vtem. Indeed, the velocities

Vnew22 and Vnew23 of the twenty second and twenty third new SH-waves propagating in

the piezoelectromagnetic plate can be calculated with the following formulae:  
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It is also possible to treat the case of kd ∞. For very large values of kd, it is

transparent that the velocities Vnew22 and Vnew23 approach the corresponding SH-SAW

velocity recently discovered in book [101], see formulae from (194) to (198) in the

book. Finally, dispersion relations (VIII.21) and (VIII.22) can be rewritten for the

case of Vph > Vtem as follows:  
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VIII.3.  The first and second eigenvectors  

For this case of the first eigenvectors for the upper surface of the plate and the

second eigenvectors for the lower surface of the plate, it is natural to exploit

equations (VIII.7), (VIII.8), and (VIII.9) for the upper surface and equations (VIII.15)

and (VIII.16) for the lower surface. Using this system of five homogeneous

equations, it is also possible to get two different dispersion relations. First of all, it is

possible to add equation (VIII.7) to (VIII.8) to cope with one equation instead of two

and to subtract equation (VIII.15) from (VIII.16) to form the second equation. It is

natural to have F01 = F02 = 0 due to equation (VIII.9). As a result, the following set of

two homogeneous equations which are coupled by the weight factors F03 and F04

must be treated to obtain the first dispersion relation:    
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Thus, the dispersion relation for the case of Vph < Vtem to calculate the velocity

Vnew24 of the twenty fourth new SH-wave propagating in the piezoelectromagnetic

plate can be composed as follows:   
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(VIII.27)

To obtain the second possible dispersion relation, it is necessary to add equation

(VIII.7) to (VIII.8) to deal with one equation instead of two and to use equation

(VIII.9) for determination of F02 as a function of F01:  

( )kdFF tanh0102 −=    (VIII.28)

Utilizing equation (VIII.9), three equations can be written as follows:  
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Then, it is possible to use equation (VIII.30) to exclude F01 in equations

(VIII.29) and (VIII.31). So, two equations with the weight factors F03 and F04 read:  
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Finally, the second dispersion relation to calculate the velocity Vnew25 of the

twenty fifth new SH-wave propagating in the piezoelectromagnetic plate can be

written for the case of Vph < Vtem as follows:  
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Chapter IX  

Electrically Closed Surfaces and Continuity of and B3  

Consider the mechanically free ( 32 = 0) and electrically closed ( = 0) case for

both the upper and lower surfaces of the piezoelectromagnetic plate of class 6 mm. In

addition, the magnetic boundary condition is the continuity of both the magnetic

potential and the normal component B3 of the magnetic induction at the surfaces, 

i.e. = f and B3 = Bf, where the superscript “f” pertains to the free space (vacuum). 

Thus, three homogeneous equations corresponding to the mechanical, electrical, and

magnetic boundary conditions for the upper surface at x3 = + d must be written as

follows:   
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For the lower surface at x3 = – d, three homogeneous equations corresponding to

the mechanical, electrical, and magnetic boundary conditions can be designed in the

following forms:  
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This set of six homogeneous equations from (IX.1) to (IX.6) must be resolved to

obtain dispersion relations for several different cases when only the first

eigenvectors, only the second eigenvectors, or the first and second ones are used. 

Therefore, this is the main study carried out in the following subsections.  

IX.1.  The first eigenvectors   

Employing the first eigenvectors defined by expressions (I.66) and (I.67) in the

first chapter and expressions (III.7) and (III.8) from the third chapter for the upper

and lower surfaces of the plate, it is possible to find that six equations from (IX.6) to

(IX.6) are respectively transformed into equations from (VI.11) to (VI.16) written in

the first subsection of the sixth chapter. In view of that, two dispersion relations are

defined by equations (VI.21) and (VI.26). They determine the velocities Vnew14 and

Vnew15 of the fourteenth and fifteenth new SH-waves propagating in the

piezoelectromagnetic plate when Vph < Vtem.  

IX.2.  The second eigenvectors  

Exploiting the second eigenvectors defined by expressions (I.69) and (I.70) and

equalities (III.23) and (III.24), these six homogeneous equations written above can be

transformed into some appropriate forms. For the upper surface at x3 = + d, equations

from (IX.1) to (IX.3) can be transformed into the following forms:   
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For the lower surface at x3 = – d, equations from (IX.4) to (IX.6) read as

follows:  
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It is lucid that the set of equations from (IX.7) to (IX.12) look like the other set

of equations from (VII.7) to (VII.12) obtained in the first subsection of Chapter VII. 

However, one very important difference occurs such that 2
mK is used in equations

(IX.8) and (IX.11) instead of 2
eK utilized in equations (VII.9) and (VII.12). 

Therefore, this significant difference results in two new dispersion relations which

must look like dispersion relations (VII.17) and (VII.18) with 2
mK instead of 2

eK . So, 

the velocities Vnew26 and Vnew27 of the twenty sixth and twenty seventh new SH-waves

propagating in the piezoelectromagnetic plate in the case of Vph < Vtem can be

calculated with the following formulae:  
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It is transparently seen in formulae (IX.13) and (IX.14) that for kd ∞, both

Vnew26 and Vnew27 approach the corresponding SH-SAW velocity discovered in book

[101], see formulae from (133) to (140) in the book. It is also evident that for Vph >

Vtem the above written dispersion relations are transformed into the following forms:  
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IX.3.  The first and second eigenvectors  

For this case, equations from (VI.11) to (VI.13) can be used for the upper

surface at x3 = + d. These equations can be written in some suitable forms. For the

lower surface at x3 = – d, equations from (IX.10) to (IX.12) must be also used in the

corresponding suitable forms. These six homogeneous equations can be transformed

by the same way carried out in the third subsection of Chapter VII. So, the resulting

dispersion relation will be similar to that given in equation (VII.27) with the

following differences: 2
eK 2

mK , 2
mK 2

eK , and με 0 0εμ . Therefore, the

dispersion relation for the calculation of the velocity Vnew28 of the twenty eighth new

SH-wave propagating in the plate when Vph < Vtem is defined by  
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Chapter X  

Electrically Open Surfaces and Continuity of and B3  

In this chapter, the following mechanical, electrical, and magnetic boundary

conditions are exploited for both the upper and lower surface surfaces of the

piezoelectromagnetic plate:  

1) mechanically free surface ( 32 = 0);

2) electrically open surface (D3 = 0);  

3) continuity of both the magnetic potential and the normal component B3 of the

magnetic induction at the surfaces, i.e. = f and B3 = Bf, where the

superscript “f” relates to the free space.  

As a consequence, three homogeneous equations corresponding to the

mechanical, electrical, and magnetic boundary conditions for the upper surface at x3 =

+ d read:   
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For the lower surface at x3 = – d, corresponding three homogeneous equations

read as follows:  
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So, this set of six homogeneous equations must be properly transformed into

suitable forms to get dispersion relations with which it is possible to calculate the

dispersive wave phase velocity. This is the main purpose of the following

subsections.  

X.1.  The first eigenvectors   

The first eigenvectors are defined by expressions (I.66) and (I.67) in the first

chapter. Using them, expressions (III.7) and (III.8) were obtained in the third chapter

and they lead to the situation when equations (X.2) and (X.5) can be excluded from

the further consideration in this subsection. For the upper surface of the plate, it is

possible to find that equations (X.1) and (X.3) can be written as follows:  
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For the lower surface at x3 = – d (see figure 1 in Introduction) the corresponding

three homogeneous equations can be written in the following simplified forms:  
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It is natural that these four linear homogeneous equations in four unknowns F01, 

F02, F03, and F04 can be transformed into two independent sets, of which the first set

represents two equations in two unknowns F01 and F03. The second set represents two

equations in two unknowns F02 and F04. These four equations then read:   
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Therefore, it is possible to obtain two dispersion relations. The velocities Vnew29

and Vnew30 of the twenty ninth and thirtieth new SH-waves propagating in the

piezoelectromagnetic plate in the case of Vph < Vtem can be respectively calculated

with the following formulae:   
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It is also possible to analyze dispersion relations (X.15) and (X.16). It is clearly

seen in the dispersion relations that for kd ∞, both the velocities Vnew29 and Vnew30
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approach the corresponding SH-SAW velocity recently discovered in book [101], see

formulae from (180) to (184) in the book.  

For the case of Vph > Vtem, dispersion relations (X.15) and (X.16) can be also

rewritten as follows:  
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X.2.  The second eigenvectors  

The second eigenvectors are defined by expressions (I.69) and (I.70). Thus, 

equalities (III.23) and (III.24) obtained in Chapter III must be used here. For the

upper surface at x3 = + d and the lower surface at x3 = – d, six linear homogeneous

equations from (X.1) to (X.6) can be transformed into the forms given by equations

from (VIII.7) to (VIII.12) which are identical to equations from (IV.29) to (IV.34)

obtained in Chapter IV. Therefore, they obviously result in two dispersion relations

given by formulae (IV.40) and (IV.42) for the computation of the velocities Vnew6 and

Vnew7 of the sixth and seventh new SH-waves propagating in the piezoelectromagnetic

plate.  

X.3.  The first and second eigenvectors  

For the upper surface (x3 = + d) of the plate, it is natural to use equations (X.7)

and (X.8) written in the first subsection of this chapter. For the lower surface (x3 = –

d) the corresponding three homogeneous equations are equations from (VIII.10) to

(VIII.12) given in Chapter VIII. Therefore, it is possible to state that in this

subsection two new dispersion relations can be also obtained. This is similar to the
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results obtained in Chapter VIII. It is natural to use equation (VIII.27) with the

following substitutions: 2
mK 2

eK and με 0 0εμ . Thus, the first dispersion relation

for the case of Vph < Vtem to calculate the velocity Vnew31 of the thirty first new SH-

wave propagating in the piezoelectromagnetic plate can be composed as follows:   
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The second possible dispersion relation can be obtained by the same way used in

the third subsection in Chapter VIII. It is also possible to use equation (VIII.34) with

the following substitutions: 2
mK 2

eK and με 0 0εμ . Finally, the second dispersion

relation to calculate the velocity Vnew32 of the thirty second new SH-wave propagating

in the piezoelectromagnetic plate can be written for the case of Vph < Vtem as follows:   
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Chapter XI  

Conclusive Discussion  

This theoretical work has demonstrated that investigations of the transversely

isotropic piezoelectromagnetic plate of class 6 mm concerning the shear-horizontal

(SH) acoustic wave propagation can reveal existence of as many as thirty two new

SH-waves. Dispersion relations for determination of the phase velocities of new SH-

waves in the plate can be obtained in relatively simple explicit forms. The obtained

results correspond to different sets of the electrical and magnetic boundary conditions

when the mechanical boundary condition such as the mechanically free surface ( 32 =

0) is set the same throughout the investigations carried out in this work. It is worth

noting that homogeneous boundary conditions were used for the upper and lower

surfaces of the plate when the same set of the boundary conditions is applied to either

surface. However, the utilization of different sets of the eigenvectors resulted in three

different cases occurred for each set of the mechanical, electrical, and magnetic

boundary conditions. Possible electrical boundary conditions exploited in this work

include the electrically closed surface ( = 0), electrically open surface (D3 = 0), and

the continuity of both and D3 at the surfaces, i.e. = f and D3 = Df, where D3 is the

normal component of the electrical induction. Also, the superscript “f” relates to the

free space (vacuum). Also, the used magnetic boundary conditions are the

magnetically closed surface (B3 = 0), magnetically open surface ( = 0), and the

continuity of both and B3 at the surfaces, i.e. = f and B3 = Bf.   

This work also demonstrates that for all the treated suitable cases, the obtained

new dispersion relations for calculation of the velocities of the new dispersive SH-

waves propagating in the plates can have fundamental modes. These fundamental

mode velocities are situated below the SH-BAW speed denoted by Vtem. It is

mentioned that the propagation of this SH-BAW is coupled with both the electrical
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and magnetic potentials. It is also necessary to state that the velocities of the

fundamental mode dispersive waves can approach the corresponding SH-SAW

velocities as soon as the dimensionless parameter kd reaches very large values, 

namely kd ∞ where k and d are the wavenumber in the propagation direction and

the plate half-thickness, respectively, see figure 1 in Introduction. It is natural that it

was found that the velocities of the new dispersive SH-waves can approach to ten

known SH-SAWs recently discovered by Melkumyan [107] and by the author of the

book cited in Ref. [101]. Three SH-SAWs discovered by Melkumyan in his

theoretical work [107] are apt for this theoretical work. They are called the surface

Bleustein-Gulyaev-Melkumyan wave characterized by the velocity VBGM, the

piezomagnetic exchange surface Melkumyan wave or PMESM wave (VPMESM), and

the piezoelectric exchange surface Melkumyan wave or PEESM wave (VPEESM). The

last two Melkumyan waves were also studied in paper [105].  

To study the transversely isotropic piezoelectromagnetics concerning the SH-

wave propagation is problematic because many suitable solutions can be found due to

the existence of two different sets of the eigenvectors. Two different sets of the

eigenvectors also exist for piezoelectromagnetics possessing the cubic symmetry. 

This fact was demonstrated in book [100]. However, the existence of two different

eigenvectors for the cubic piezoelectromagnetics does not lead to two different

solutions. In fact, two different eigenvectors give the same SH-SAW velocity for the

cubic piezoelectromagnetics. Therefore, it is thought that it can be more preferable

for experimentalists to cope with the cubic piezoelectromagnetics. However, explicit

forms of the SH-SAW velocities of non-dispersive SH-waves propagating in the

cubic piezoelectromagnetics cannot be obtained and it is necessary to perform

numerical calculations with the corresponding formulae [100] which can be quite

complicated. It is thought that it is also useful to carry out theoretical investigations

of problems of dispersive SH-wave propagation in the cubic piezoelectromagnetic

plates because the cubic piezoelectromagnetics can also possess a strong

magnetoelectric effect.  
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It is transparent that the obtained results in this work can be useful for further

theoretical and experimental investigations of the SH-wave propagation in the

piezoelectromagnetic (composite) plates consisting of dissimilar materials. It is

thought that the simplest example of such laminated plate is a bi-layered plate

consisting of two dissimilar piezoelectromagnetic thin films possessing the common

interface. Indeed, the results can be also suitable for some particular cases when a

single-phase material such as a piezoelectrics or piezomagnetics is used instead of

one of two-phase materials such as piezoelectromagnetics. It is obvious that such

problems of SH-wave propagation in the plates can be analytically resolved even in

the case of the two-layer plate consisting of two dissimilar piezoelectromagnetics. 

Today there are attempts to numerically resolve similar problems. For instance, paper

[111] numerically studies static and dynamic problems of two-layer

magnetoelectroelastic composites with specific properties, where one layer is a pure

piezoelectrics and the second layer is a pure piezomagnetics. The authors of paper

[111] have used a meshless method based on the local Petrov-Galerkin approach. It is

obvious that an analytical study is more preferable in comparison with a numerical

investigation. Indeed, an analytical study can lead to illumination of common features

for all suitable bi-layer plates, while a numerical treatment can give only results

concerning an individual bi-layer plate. It is obvious that when a system has a lot of

parameters similar to piezoelectromagnetic bi-layer plates, it is hard to numerically

reveal common features. For this purpose, it is necessary to calculate a lot of such

materials. Therefore, it is necessary to continue analytical investigations of such

relatively simple systems such as the homogeneous plates and bi-layer plates. This

can be also useful for more complicated problems that can be resolved only

numerically.  
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