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Summary
The lowest-order modes of the dispersive six-partial waves of Rayleigh type (RTW6) have been numerically
obtained for two layered systems consisting of a layer on a substrate in [100] propagation direction of (001)-
cut for both cubic crystals of class 23. Dispersion relations are shown for both a layer of

��� � � � � ��� �
on a

substrate of
��� � � 	�
 ��� �

and vice versa. Dispersion relations show one mode in each case with clear maxi-
mum and minimum, at which it is analytically shown that the group velocity is equal to the phase velocity. It
was concluded that in corresponding highly-symmetric cases, the obtained “non- dispersive” six-partial surface
waves in the treated layered systems are a new non-dispersive type, termed Rayleigh-Zakharenko type (RZTW6)
“non-dispersive” six-partial surface waves. These can exist in layered systems consisting of a layer on a sub-
strate. The possibility of the existence in layered systems of “non-dispersive” waves of both the nine-partial Za-
kharenko type (ZTW9) for centrosymmetrical crystals, and the thirteen-partial Zakharenko type waves (ZTW13)
for non-centrosymmetrical crystals is suggested. In addition, it is shown that dependence of the phase velocity� 
 ����� 
 � � � � � � � � � � � � � � � � ���

in a multi-layered system can be reduced to dependence
� 
 ����� 
 � � � � �

for a
layered system consisting of a layer on a substrate. Thus, both systems can be studied in the same way.

PACS no. 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld

1. Introduction

Surface acoustic waves (SAW) have very important appli-
cations for Acoustoelectronics devices due to their unique
properties. Up to the present time, surface Rayleigh waves
are widely used in filters, delay lines, etc. Initially, Lord W.
Rayleigh [1] analytically discovered that SAW with polar-
ization in the sagittal plane can propagate in an isotropic
bulk medium along the surface of the medium, damping
with depth of the medium. Later, SAW with the same po-
larization were numerically studied in isotropic media and
in anisotropic, piezoelectric monocrystals in [2]. This ref-
erence also shows both the piezoelectric four-partial waves
of Rayleigh type (RTW4) and the non-piezoelectric two-
partial waves of Rayleigh type (RTW2). These waves are
“non-dispersive” waves. The term “non-dispersive” is in-
troduced in order to distinguish these waves, for which
the phase velocity � � � is equal to the group velocity � �
( � � ��� � �"!�$# ), from dispersive waves ( � ��%$� � � or
� �'&(� � � ). For an isotropic medium there is no depen-
dence of � � � on propagation direction.
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With waveguides consisting of a thin film on a substrate,
the waves of Rayleigh type are dispersive waves with the
phase velocity dependent on the non-dimensional value of) *

, where
)

is the wavenumber in the direction of wave
propagation, and

*
is the layer thickness. Figure 1 shows

the layered system. It is more complicated to analytically
study layered systems, where, in the simplest case, six-
partial RTW6-waves propagate [3]. Also, there are the so-
called highly-symmetric propagation directions, where the
dispersive RTW-waves consist of piezoelectric ten-partial
RTW10-waves. Details about the directions of both the
dispersive RTW6-waves and the dispersive RTW10-waves
in layered systems are given in [4] for thirty classes of
crystal symmetry.

Nowadays there is much theoretical and experimen-
tal published work concerning the study of dispersive
RTW-waves in layered systems consisting of isotropic,
anisotropic, piezoelectric materials. See, for example, ref-
erences [5, 6, 7, 8, 9, 10, 11]. P. Schnitzler [5] has theo-
retically studied wave propagation in a CdS-layer of class
6mm on a germanium substrate, neglecting the piezoelec-
tric effect. The same case of transversal isotropy, but with
the CdS-layer on a sapphire substrate, has been calculated
by D. F. Loftus [6]. R. V. Schmidt and F. W. Voltmer [7]
have calculated the dispersion relations for a layered sys-
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tem consisting of a CdS-film on a substrate of fused quartz.
Some very interesting dependencies of the phase velocity
on the layer thickness have been calculated by L. P. Solie
[8] for a layer of fused-quartz on a ��� ������� -substrate, tak-
ing into account the piezoeffect. Calculations of dispersive
waves for the layered systems consisting of W or Cu lay-
ers on a Be-substrate are presented in [4] for applications
to filters and delay lines. Here, dispersive RTW6-waves of
both the first type and the second type are shown. Also, in
[4, 9, 10] one can find complicated formulae for calculat-
ing the phase velocity of dispersive RTW6-waves.

Complicated analytical investigations, both for a lay-
ered system consisting of a transversal-isotropic “hard”
layer on a transversal-isotropic substrate and for a trans-
versal-isotropic “soft” layer on a transversal-isotropic sub-
strate, are presented in [11, 12]. The propagation direc-
tions considered here concern the so-called “pure” non-
piezoelectric six-partial waves of Rayleigh type (RTW6).
The transversal- isotropic media considered were crystals
of classes 4, 422, 4 mm, 4/m, 6, 622, 6 mm, 6/m, as well as
different textures (for example, class 	 m). Both theoreti-
cal and experimental studied of layered systems consisting
of a transversal-isotropic thin film of AlN on the substrate
of fused-quartz, without taking into account the piezoef-
fect for the weakly piezoelectric AlN-film, are presented
in [13]. In this case there is weak dependence of the phase
velocity on the layer thickness, which is convenient for
some technical devices. Good agreement was obtained be-
tween experimental data and numerical values of the phase
velocity for the layered system treated in [13].

Reference [14] is an excellent and classical work deal-
ing with isotropic, anisotropic and piezoelectric layered
systems, for example, glass on ��� ������� , gold on piezo-
quartz, gold on nickel, nickel on gold, fused-quartz on sap-
phire, KCl on nickel, gold or silicon on molybdenum. The
study of Rayleigh type waves in different kinds of layered
systems has also been an active field of study in recent
years. See, for example [15, 16, 17]. In [15, 16, 17] in-
vestigations are presented of dispersive RTW10-waves in
a layered system consisting of piezoelectric semiconduc-
tors. This consists of a transversal-isotropic Z-cut ZnO-
layer (class 6mm) on a (001)-cut and [110]-propagation
direction in GaAs-substrate (class 
 3m), and includes the
piezoelectric effect in both the layer and the substrate.

In the present paper, the six-partial dispersive waves of
Rayleigh type (RTW6) are studied in layered systems con-
sisting of both a ��� 
 � � � ��� � -layer on a ��� 
 � ��� ��� � -sub-
strate and a ��� 
 � ��� ��� � -layer on a ��� 
 � � � ��� � -substrate.
These waves can propagate in directions perpendicular to
the second order symmetry axis for both materials. In these
propagation direction, the waves are non-piezoelectric.
With polarization, these waves propagate in the sagittal
plane along the ��
 -axis, as shown in Figure 1. Both the
��
 -axis and the ��� -axis lie in the sagittal plane. The choice
to study propagation of the dispersive RTW6-waves in lay-
ered systems is taken because of its relative simplicity, and
because such layered systems have not been studied be-
fore. In addition, there is the possibility of finding a new

substrate

layer

0
x2

x3

x1

h

Figure 1. The coordinate system of the layered system, where
�

is the layer thickness.

type of “non-dispersive” wave in layered systems, as is an-
alytically shown below. For the numerical calculations, the
elastic constants ��� � � � and densities � of the treated media
have been taken from [18].

2. Finding the phase velocity

Finding the phase velocity of the dispersive six-partial
Rayleigh type waves (RTW6) in a layered system, consist-
ing of both a layer and a substrate of cubic symmetry, rep-
resents the standard procedure for determining the eigen-
values (the corresponding normal components

)��� of the
wavevector � ) and eigenvectors (the corresponding dis-
placements � �
 and � �� for such polarized waves). The
corresponding three components of the Green-Christoffel
tensor are �� �
 
 , �! "� � and �! �
 � = �� �� 
 . The determi-
nant for determination of the non-dimensional complex
components #$��� ) � % ) can be written as:

&&&& ��' ' #
���( ��
 
 ) ��+* ��
 � ( ��' ' , #$�

* ��
 � ( �"' ' , #$�-��
 
 # �� ( �"' ' ) �.
&&&& ��# / (1)

where ��
 
 �0��� � �1��� � , ��' ' �0��2 2 �1��3 3 and ��
 � �
��� 
 �4��
 � �4��� 
 are the corresponding non-zero com-
ponents of the stress tensor ��� � � � , but ) �� �15$6 * � � � % � � , �
and ) �. �7586 * � � � % � . , � , where � � �$�:9�% ) is the
phase velocity, but �����+; ��
 
 % � and � . �+; �"' ' % � are
the longitudinal and transversal bulk waves, respectively.
For example, for ��� 
 � � � ��� � , there are the following ma-
terial constants: the material density � = 9070 [kg/m � ],
��
 
��45 < = > ? <�@ 5 # 
 � [N/m � ], ��' ' �1< = 
 A 5�@ 5 # 
 � [N/m � ]
and ��
 ���B< = > C A�@ 5 # 
 � [N/m � ]. But for ��� 
 � ��� ��� � there
are: � = 9200 [kg/m � ], ��
 
 �D5 < = C A <8@E5 # 
 � [N/m � ],
�"' '��B< = A ? <$@ 5 # 
 � [N/m � ] and ��
 ���B< = > F 
E@ 5 # 
 � [N/m � ].
Expanding the equality (1), the secular equation appears,
after straightforward transformations, as:

��
 
 ��' ' # ' ��(0G � �
 
 ) ���( � �' ' ) �. (2)

6 * ��
 � ( ��' ' , � H # ���( ��
 
 ��' ' ) �� ) �. � # =
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Therefore, the corresponding four required non-dimen-
sional values of #$� are:

# 
 � � � � � '� � ��� 6 # = A * ) �� ( ) �. ( � � , (3)

� # = A � * ) �� ( ) �. ( � � , � 6 
 ) �� ) �. � 
 � � /
where the anisotropy term � � is equal to the following:

� � � G * ��
 
�6 ��' ' , � 6 * ��
 � ( ��' ' , � H % ��
 
 �"' ' = (4)

It is noted that for isotropic materials there is the well-
known condition ��
 
�6 �"' ' �-��
 � ( �"' ' , from which it
is clearly seen that the anisotropy term � � �(# for such
materials.

The anisotropy term (4) is positive for both �"� 
 � � � ��� �
and �"� 
 � ��� ��� � : � � * �"� 
 � � � ��� � ,�� < = A A % # , but
� � * �"� 
 � ��� ��� � ,�� < = F #"% # . Already for GaAs there
is the negative value: � � * �
	 �
� ,��06�5 = F < &�# according
to [18].

The view of the roots (3) depends on the anisotropy
term (4). Let’s treat three particular cases. The first case
represents the equality � � � � � . , for which there are
two zero roots in (3) together with two real(GaAs) /
imaginary( �"� 
 � � � ��� � and ��� 
 � ��� ��� � ) roots:

# � � '� � � � � ) �� ( � � � � � ; 5�6 ��' ' % ��
 
 ( � � / (5)

where ) �� �45�6 ��' ' % ��
 
 % # for ��' ' &0��
 
 . There is
the relationship between ) �� and ) �. :

��
 
 ) �� �B�"' ' ) �. ( * ��
 
�6 �"' ' , / (6)

which was used in (5).
The second case represents the equality � � � � � � , for

which there are also two zero roots in (3), together with
the two following roots, using the relationship (6):

# � � '� � � � � ) �. ( � � � � � ; 5�6 ��
 
 % �"' ' ( � � / (7)

where ) �. �05�6 ��
 
 % �"' ' &�# for ��' ' &-��
 
 . The roots
(7) can be real. The third particular case in (3) is a very
interesting one, which exists for the following equality:

) �� ( ) �. ( � � ��# = (8)

Then there are four roots, which can all be complex:

# 
 � � � � � '� � � ; � < � )�� ) . = (9)

The condition (8) is fulfilled for the phase velocity:

���� � ��� � � . � * < ( � � , % * � �� ( � �. , / (10)

where the anisotropy term (4) should be � � %-6�< for real
phase velocities.

It is clearly seen from (8) and (9) that four complex
roots (9) can exist for the phase velocities � � � &�� . in the
case � � & # . It is well-known from [2, 3] that for some
cubic materials there are complex roots, for example, for

the suitable phase velocity of the RTW2-waves. But in the
case of the positive anisotropy term � � %$# , the phase
velocity (10) can also be greater than the corresponding
bulk transversal velocity � . for two real and two imagi-
nary roots in (9), as well as, probably, even greater than
the bulk longitudinal velocity ��� for four complex roots
in (9). This could correlate with the interesting numerical
results in [19]. Therefore, the boundary conditions deter-
minants could show solutions for such roots (9) for waves
in monocrystals, as well as in layered systems, consisting
of a solid/liquid layer(s) on a substrate/plate.

Therefore, cubic monocrystals can be divided into two
groups, in the first of which there are those with a positive
anisotropy term (4), but those with a negative anisotropy
term (4) go into the second group. Such different materials
can be the subject of further research. The corresponding
two eigenvectors � �
 and � �� are:

� �
 � � � ��
 
 * # �� , � ( �"' ' ) �. /
� �� ����� �"' ' * # �� , � ( ��
 
 ) �� = (11)

The boundary conditions should satisfy the following six
requirements, which are both at the interface ��� �$# in
Figure 1 and at the free surface ��� � * , for both the cor-
responding two components of the mechanical displace-
ments and for the corresponding two stress tensor compo-
nents:

��
��� 
 �
� � ��� � � �

���
 �
'�
��� 
 �
��� ��� � ���

���
 /
��
��� 
 �
� � ��� � � �

���� �
'�
��� 
 �
��� ��� � ���

���� /
��
��� 
 �
� � ��� � �� 
 � � # � �

���� � � � ����

�
'�
��� 
 ����� ��� � �� 
 � � # ���

���� � ��� ���� /
��
��� 
 �
� � ��� � �� � � � # � �

���� � � � ���� (12)

�
'�
��� 
 ����� ��� � �� � � � # ���

���� � ��� ���� /
'�
��� 
 �
��� ��� � �� 
 � � # ���

���� � ��� ���� � � � ��6 � # ��� ���� ) * H ��# /
'�
��� 
 �
��� ��� � �� � � � # ���

���� � ��� ���� � � � ��6 � # ��� ���� ) * H ��# /

where the index ! is for a substrate, and the index  is for
a layer.
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The boundary conditions determinant from (12) is
therefore:&&&&&&&&&&&&&&&&&&&&&&&&&&&&

��� � � �� ��� � � �� ��� � � ����� � � �� ��� � � �� ��� � � ��� �� � ��� � � �� � �� � ��� � � �� � �� � ��� � � ��	 � �� � 
 � � � �� ��� � � �� 	 � �� � 
 � � � �� ��� � � �� 	 � �� � 
 � � � �� ��� � � ��� �� � ��� � � �� � �� � ��� � � �� � �� � ��� � � ��	 � �� � 
 � � � �� � � � � �� 	 � �� � 
 � � � �� � � � � �� 	 � �� � 
 � � � �� � � � � ��� � � ��� � � ��	 
 � � � �� ��� � � �� �
� 
 
 � � � � � ���� �� � � � �� � ��� � � ��	 � �� � 
 � � � �� � � � � �� �� 
 
 � � � � � �� � �

(13)

� � � � �� � � � � �� � � � � ��� � � � �� � � � � �� � � � � ��� �� � ��� � � �� � �� � ��� � � �� � �� � ��� � � ��	 � �� � 
 � � � �� ��� � � �� 	 � �� � 
 � � � �� ��� � � �� 	 � �� � 
 � � � �� ��� � � ��� �� � ��� � � �� � �� � ��� � � �� � �� � ��� � � ��	 � �� � 
 � � � �� ��� � � �� 	 � �� � 
 � � � �� ��� � � �� 	 � �� � 
 � � � �� ��� � � ��
� ��� � � �� � ��� � � �� � ��� � � ��	 
 � � � �� ��� � � �� � 	 
 � � � �� ��� � � �� � 	 
 � � � �� ��� � � �� �
� 
 
 � � � � � ���� � � 
 
 � � � � � ���� � � 
 
 � � � � � ���� �
� � �� � ��� � � �� � � �� � ��� � � �� � � �� � ��� � � ��	 � �� � 
 � � � �� ��� � � �� � 	 � �� � 
 � � � �� ��� � � �� � 	 � �� � 
 � � � �� ��� � � �� �� 
 
 � � � � � �� � � � 
 
 � � � � � �� � � � 
 
 � � � � � �� � �

&&&&&&&&&&&&&&&&&&&&&&&&&&&&
� � �

The complete two displacements are:����� � � � � �
� ��� � �� 
 � � G � � � 
 � � � 	 
 � � �� � �! � 
 � " � H �

� � � � � � � �
� ��� � �� 
 � � G � � � 
 � � � 	 
 � � �� � �! � 
 � " � H � (14)

The equality (13) must go to zero for given non-dimen-
sional values of

) *
. These depend on the corresponding

values of �"
 , �E� and #$� , which represent the functions (3)
and (11) of the required phase velocity � � � .

3. Numerical results and analysis

Figure 2 shows the dependence of the phase velocity of
the dispersive six- partial Rayleigh type waves (RTW6)
on the layer thickness

) *
. Two curves of the dispersion

relation correspond to two different layered systems: the
first one is a �"� 
 � � � ��� � -layer on a �"� 
 � ��� ��� � -substrate,
and the second one is a ��� 
 � ��� ��� � -layer on a ��� 
 � � � ��� � -
substrate. It can be clearly seen from Figure 2 that in both
cases, when the layer thickness

) * � # , the phase ve-
locities of the dispersive RTW6-waves are equal to those
of the corresponding two-partial waves of Rayleigh type
(RTW2) for the bulk monocrystals. At small

) * &+5 , the

phase velocities of the dispersive RTW6-waves are situ-
ated out of the phase velocity range between the “non-
dispersive” RTW2-waves for bulk �"� 
 � � � ��� � and the
“non-dispersive” RTW2-waves for bulk �"� 
 � ��� ��� � . At) *$# 	 the phase velocities of the dispersive RTW6-
waves approach those of the “non-dispersive” RTW2-
waves for the corresponding layer materials. It is possible
to find a short abstract about this in [20] in Russian; see
also [21].

There is clear maximum or minimum in Figure 2, for
the corresponding treated layered systems, in which it is
possible to analyze the dependence of the phase velocity
on the layer thickness

) *
. This is a very interesting case.

First of all, at points of maximum or minimum, it is possi-
ble to write:% * � � � ,% * ) * , ��# = (15)

The phase velocity can be also written as � � � � 9 * % ) * �
9�% ) , where 9�� < &!' is the circular frequency and ' is the
frequency. Therefore,

% * � � � , can be introduced as

% � � � � ( � %�) 9 *) *+* � ) *-, * 9 * ,E6 9 *-, * ) * ,* ) * , �
�
% * 9 * ,) * 6 � � �

% * ) * ,) * =
Dividing by

% * ) * , gives the equality% * � � � ,% * ) * , � 5) *�� � ��6 � � � ( / (16)

where � � is the group velocity, which is equal to

� � �
% * 9 * ,% * ) * , �

% 9% ) =
And at points of maximum or minimum it is clearly seen
from (15) and (16) that

� � ��� � ��= (17)

The formulae (15), (16) and (17) show that at points
of maximum and minimum the phase velocity is equal
to the group velocity. It means that loading of the lay-
ers on the substrates for the treated layered systems at
small

) */. # = A gives surface RTW6-waves, with the
phase velocity equal to the group velocity at both max-
imum and minimum. This is a special case, because
for “non-dispersive” waves (well-known as bulk waves,
“non-dispersive” Rayleigh type waves, Bleustein-Gulyaev
waves, Maerfeld-Tournois waves, Stoneley waves, leaky
waves, bulk-skimming and the exceptional waves in mo-
nocrystals) the phase velocity is also equal to the group
velocity. Therefore, it is possible to include these sur-
face waves in layered systems as a new type of “non-dis-
persive” surface wave (namely, “non-dispersive” six-par-
tial Rayleigh-Zakharenko type waves or RZTW6-waves),
which can exist in layered systems consisting of a layer
on a substrate. Dispersion relations which display a maxi-
mum and/or minimum phase velocity when plotted against
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Figure 2. Phase velocity dependencies on layer thickness
� �

of
the first type of RTW6-waves.

the value of
) *

, have been numerically calculated or pos-
sible dispersions suggested in many cases; see for ex-
ample [3, 8, 12]. Unfortunately nobody has analytically
shown that corresponding “dispersive” waves are “non-
dispersive” at extreme points, and therefore one deals here
with a new type of “non-dispersive” wave, which propa-
gates in layered systems. There are many books and papers
written in the last decades, in which this phenomenon was
observed (it can be readily shown both theoretically and
experimentally), which strongly confirms the existence of
the phenomenon in many structures with dispersion 9 * ) , .
It is impossible in the present paper to write about all struc-
tures in which this phenomenon occurs, but this is not the
aim of the paper. Reference [3] presents a theoretical and
experimental study of a topographic waveguide consist-
ing of an isotropic medium, where the dependence of the
phase velocity on the value of

) ,
, with different aspect ra-

tios
* % , (
)

is the wavenumber,
*

is the height and
,

is the
width), is at a minimum. Therefore, the “non-dispersive”
localized Zakharenko waves propagate.

Due to the fact that the value of
) *

should always be
positive (see Figure 2), the group velocity can be greater
than the phase velocity as determined by equation (16):
if the phase velocity increases, the group velocity should
be greater than the phase velocity for dispersive waves
( � � %'� � � ), and if the phase velocity decreases, the group
velocity should be less than the phase velocity for other
types of dispersive wave ( � � &�� � � ). Therefore, it is pos-
sible to state that the single mode of the dispersive RTW6-
wave of the first type in Figure 2 can be treated as two dis-
persive sub-modes (two modes) with different dispersion
( � � %"� � � or � � &"� � � ). The first sub-mode is localized
between the “non-dispersive” RTW2-wave for the bulk
�"� 
 � � � ��� � at

) *
= 0 and the “non-dispersive” RZTW6-

wave at
) * . # = A . The second sub-mode is localized be-

tween the “non-dispersive” RZTW6-wave at
) * . # = A and

the “non-dispersive” RTW2-wave for the bulk ��� 
 � ��� ��� �
at
) * # 	 . This choice of treating the propagation di-

rections in a treated layered system is because it is possi-
ble to know in advance about the existence of the “non-
dispersive” RZTW6-waves. This is because the surface

RTW2-wave for the bulk �"� 
 � ��� ��� � is weaker than that
for bulk ��� 
 � � � ��� � , but the bulk transversal wave for bulk
�"� 
 � ��� ��� � is stronger than that for bulk ��� 
 � � � ��� � . Per-
haps this is why the “non-dispersive” RZTW6-wave ex-
ists in treated layered systems. But the same can not be
said about the existence of the “non-dispersive” RZTW6-
waves in layered systems consisting of either isotropic ma-
terials or crystals of another cubic class. Also, nothing
can be said at present about why several “non-dispersive”
RZTW10-waves can exist in the same propagation direc-
tion. This will have to be the subject of further research.

Probably, any mode of dispersive waves can be local-
ized between two different “non-dispersive” waves. How-
ever, this is still uncertain, owing to the use of layered
systems consisting of isotropic materials or the highly-
symmetric propagation directions in layered systems con-
sisting of anisotropic, piezoelectric crystals, in which so-
called “pure” waves of both the Rayleigh type and the
Love type can propagate.

The author has numerically obtained the dependence
of � � � * ) * , in the [110]-highly-symmetric propagation di-
rection of (001)-cut for the same layered systems con-
sisting of cubic piezo-electrical crystals of class 23 stud-
ied in the present paper, in which the dispersive waves
are the piezoelectric ten-partial RTW10-waves. In this
propagation direction, several “non-dispersive” ten-partial
Rayleigh-Zakharenko type waves (RZTW10) were ob-
served. The questions are: what does the number of “non-
dispersive” RZTW10-waves depend on and what is the
maximum number of these waves that can exist? For ex-
ample, in calculations by L. P. Solie [8] there are two “non-
dispersive” RZTW10-waves, while in [15] there is only
one. However, this is outside the scope of the present pa-
per and may be reported in the future. Also, it is necessary
to state that in Figure 2 at

) * . 5 , the phase velocity of the
corresponding dispersive RTW6-waves in the treated lay-
ered systems is equal to that of the corresponding “non-
dispersive” RTW2-waves in the bulk monocrystals. This
means that it is possible to use a layer with a

) * . 5 on
a softer substrate without changing the phase velocity, in
order to protect the surface of the substrate.

It can now be noted that equation (16) is correct for any
point of the dispersion relations. By further analysis, it can
be found that at inflexion points:% � * � � � ,% * ) * , � �'# = (18)

Therefore, using equation (16)% � * � � � ,% * ) * , � �
%% * ) * ,

� 5) * � � ��6 � � � ( �
� 5) *

% * � � ,% * ) * , 6 <
* ) * , � � � ��6 � � � ( =

And at inflexion points using (18)% * � � ,% * ) * , �B<
% * � � � ,% * ) * , = (19)
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The second derivative of the phase velocity is:% � * � � � ,% * ) * , � �
5) *

� % � �% ) * 6 < % � � �% ) * � = (20)

Dividing
% * � � � , by

% * 9 * , gives:% * � � � ,% * 9 * , � � � �9 * ) 5�6 � � �� � * � 5� �
% � �% * ) * , / (21)

from which it can be clearly seen that the equality (17) is
also valid at points of maximum and/or minimum. There-
fore, at these extreme points there is no dependence of the
phase velocity � � � on both the value of

) *
and the value

of 9 * . This means that such waves are non-dispersive. The
expression (21) is more convenient than expression (16)
for experimentalists, who work with dependence � � � * 9 * , ,
but not with � � � * ) * , .

4. The group velocity

The group velocity and the first and the second derivatives
of the group velocity are presented below as functions of
phase velocity,

) *
and phase velocity derivatives:

� � � � � � ( ) *
% � � �% ) * / (22)% � �% ) * �4< % � � �% ) * ( ) * % � � � �% * ) * , � / (23)% � � �% * ) * , � �4F

% � � � �% * ) * , � (
) * % � � � �% * ) * , � = (24)

It can be seen that the # -th derivative of the group velocity
is a function of the # -th derivative of the phase velocity
and of the ( # ( 5 )-th derivative of the phase velocity times) *

: % � � �% * ) * , � � * # ( 5 ,
% � � � �% * ) * , � ( ) *

% � � 
 � � �% * ) * , � � 
 / (25)

where # �'# / 5 / < / = = = / � .
The points at which the group velocity is either max-

imum or minimum can be found from equation (23),
namely:

6 <) *
% � � �% ) * � % � � � �% * ) * , � =

This gives the values of
) *

at these points as:

) * � 
 ) � � �� � � � � * �-6�<
% � � �% ) * � % � � � �% * ) * , � = (26)

The second derivative (24) of the group velocity is equal to
zero at inflexion points, therefore the values of

) *
at these

points are:

) * � � )�� � � �� � � � � � � � * � 6�F
% � � � �% * ) * , �

� % � � � �% * ) * , � (27)

and 6 F) *
% � � � �% * ) * , � �

% � � � �% * ) * , � =

The group velocity has a minimum even for layered sys-
tems consisting of isotropic materials, therefore, equation
(26) gives the layer thickness

) *
for this minimum. The

group velocity has a linear dependence on the value of
) *

near inflexion points that can be written as � � �	� ( ) * � � 
 ,
where

) *
is taken from equation (27) and � and 
 are taken

from equation (22).
The group velocities at points where the derivatives (25)

are equal to zero, can be written as:

� � )�� � � �� � � � � � � � * � � � � * ) *
� � , ( ) * � �
% � � � * ) * � � ,% ) * (28)

and
) * � � � 6 * # ( 5 ,

% � � � �% * ) * , �
� % � � 
 � � �% * ) * , � � 
 /

where # �15 / < / F / = = = / � .
The group velocity can be obtained in two possible

ways: the first is from equation (22) as a function � ���
� � * ) * / � � � / % � � � % % ) * , , where it is suggested that both
the value of

) *
and the � � � are known, but it is neces-

sary to obtain all values of * % � � � % % ) * , for each corre-
sponding values of � � � ; and the second is from equation
(28), where first of all it is necessary to obtain the first few
values of

) * � � from equation (28), from which an approx-
imate value of � � can be obtained.

The first method is more complicated than the second
one. Two boundary points for the group velocity can be
found: one at

) * � # , where � � �"� � � (the case without
a layer for “non-dispersive” waves) and one at

) * # 	 ,
where � � # � � � (or it is possible to write � � ��� � � ).

5. Multi-layered systems

For a multi-layered system, the dependence of the phase
velocity � � � on many layers can be expressed as:

� � � � � � � * ) � 
 * � 
 / ) � � * � � / = = = / ) � � * � ��, � (29)) � ) � 
�� ) � ���-= = = � ) � � /
where

)
is the wavenumber in the direction of wave prop-

agation. Thus the following equation can be written:

� � � � � � � ) ) * � * � 
* � / ) * �
* � �* � / = = = /

) * �
* � �* � * = (30)

Therefore, it follows that the phase velocity � � � depends
on the non- dimensional value of

) * � , which can be taken
to be equal to a real layer thickness, and on the non-
dimentional values of

* � 
 % * � , * � � % * � , = = = , * � �!% * � :
� � � � � � � ) ) * � / * � 
* � /

* � �* � / = = = /
* � �* � * = (31)

Finally, since in experiments the values of
* � 
 % *
� , * � � % * � ,

= = = , * � ��% * � in equation (31) are constant, it is possible to
deal only with the following:

� � � �'� � � * ) * � , = (32)

Expresion (32) for a multi-layered system is similar to
the one for a layered system consisting of a layer on a
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subsrate. Therefore, non-dispersive Zakharenko waves in
multi-layered systems can be dealt with in a similar way
to the treatment of systems consisting of a layer on a sub-
strate.

6. Conclusions

The obtained dispersion relations of the phase velocity as
a function of the non-dimensional value of

) *
have shown

that for a layered system consisting of a �"� 
 � ��� ��� � -
layer on a ��� 
 � � � ��� � -substrate, there is one clear max-
imum. However, for a layered system consisting of a
�"� 
 � � � ��� � -layer on a �"� 
 � ��� ��� � -substrate, there is one
clear minimum. The maximum and minimum indicate that
at these points the phase velocity of the dispersive waves
of Rayleigh type (RTW6) is equal to the corresponding
group velocity of the dispersive RTW6-waves. In gen-
eral, for treated layered systems, the phase velocity of
the surface RTW6-waves is localized in the narrow phase
velocity range (see Figure 2) between the “non- disper-
sive” two-partial Rayleigh type waves (RTW2) for bulk
�"� 
 � � � ��� � and for bulk ��� 
 � ��� ��� � . However, at small
values of

) *
, the phase velocities of the dispersive RTW6-

waves for both cases lie out of this phase velocity range.
Also, there are extreme points at which the phase veloc-
ities of the RTW6-waves are equal to the group veloci-
ties analytically shown in the present paper (see formulae
(15), (16) and (17)). This phenomenon is referred to as the
“non-dispersive” Zakharenko waves. The analytically ob-
tained universal formulae (16), (20) and (25) are valid in
arbitrary propagation directions of arbitrary cuts for any
layered systems (for both Lamb type waves and Love type
waves).

Probably, the “non-dispersive” Zakharenko type waves
(ZTW) can propagate for longer distances than disper-
sive waves in a corresponding mode. A layered system,
in which the “non-dispersive” ZTW-waves can exist, could
be treated as a “monocrystal” at corresponding layer thick-
ness
) * * � � � � � � , . Therefore, a layered system at such

a value of
) *

could be used instead of a true monocrys-
tal. Thus it is possible to excite several “non-dispersive”
ZTW-waves in the same propagation direction in a layered
system. This raises the possibility of using one layered
structure instead of several true monocrystals for further
microminiaturization. Also, it is possible to use the unique
dispersive properties of both � � %�� � � and � � &'� � � that
can occur for the same mode. In addition there are now
researchers who have begun to think about the possibili-
ties of using the dependencies of the derivatives (25) with
respect to

) *
in some technical devices. Both the phase ve-

locity and the group velocity of SAW and their dispersions
can be readily measured; for example, by an original in-
terferometric procedure described in [22], which is based
on simultaneous optical probing of SAW at two different
points and uses the new possibilities offered by the use of
a dual-beam optical interferometer.

For non-highly-symmetric propagation directions (the
so-called low-symmetric cases, in which waves are neither

Love type nor Rayleigh type), both the “non-dispersive”
nine-partial Zakharenko type waves (ZTW9) for cen-
trosymmetrical crystals and the “non-dispersive” thirteen-
partial Zakharenko type waves (ZTW13) for non-centro-
symmetrical crystals will be useful for numerical inves-
tigations of the group velocity in arbitrary cuts and arbi-
trary directions of waves propagation. In anisotropic cases,
many waves of different types can exist in layered sys-
tems consisting of a layer on a substrate. The difficulties
involved in understanding these will be helped by the re-
lations written above and by the presence of the “non-
dispersive” ZTW- waves. In the same cases a layer on a
substrate will result in waves that are (more than thirteen)-
partial, if it is necessary to include magnetic boundary con-
ditions and / or those for semiconductors.

It is also possible that “non-dispersive” leaky Zakha-
renko type waves could exist in layered systems in the
low-symmetric propagation directions. Also, the “non-
dispersive” Zakharenko type waves could exist in multi-
layered systems; for example, in those studied in [23, 24,
25, 26, 27, 28], where dispersive Floquet waves [23] can
also propagate. Also, “non-dispersive” ZTW-waves ex-
ist in layered structures [29], where dispersive Bleustein-
Gulyaev waves can propagate.

Finally, non-dispersive Zakharenko waves (the Zakha-
renko condensation) can be found in different plasma
waveguides that are already intensively studied, see for ex-
ample, reference [30].
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